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ABSTRACT

The notion of best living way on coisotropic lightlike submanifolds is discussed. Some relations
involving the screen Ricci curvature and the screen scalar curvature are given. Two examples of
coisotropic lightlike submanifolds are mentioned and ideals of leaves of screen distributions in
these examples are investigated by the help of these relations.
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1. Introduction

In 1998, B.-Y. Chen [3] firstly introduced ideal immersions in Riemannian context. He called a Riemannian
submanifold in a space form as an ideal submanifold if it receives the least possible amount of tension from
the surrounding space. Also, he explained physical interpretation of ideal immersions as follows:

A submanifold M is an ideal submanifold means that M lives in the best world in a best way. The best world
is a space which has the highest degree of homogeneity. Euclidean spaces, spheres, real projective spaces, real
hyperbolic spaces are mainly examples of the best worlds. In this sense, a best world in differential geometry
could be considered as a Riemannian space form Rm(c) of constant curvature c. Furthermore, if a space is
affected as little as possible from the external influence, then we say that it has best way of living. Thus, every
ideal immersion x : M → Rm(c) indicates a best living way in the best world.

In this direction, B.-Y. Chen established the following important inequality for an n-dimensional Riemannian
submanifold M of an Euclidean space in [3]:

∥H∥2 ≥
2(n+ k −

k∑
j=1

nj)

n2(n+ k − 1−
k∑

j=1

nj)

δ(n1, . . . , nk), (1.1)

where H is the mean curvature vector of M and

δ(n1, . . . , nk) = τ(p)− inf{τ(πn1) + · · ·+ τ(πnk
)} (1.2)

for πn1 , . . . , πnk
run over all k mutually orthogonal subspaces of TpM with dimπj = nj , j = 1, . . . , k. Since the

squared mean curvature measures the amount of the tension at p ∈ M , the equality case of (1.1) holds for all
p ∈ M if and only if M is an ideal submanifold.

Later, ideal submanifolds have been attracted by many geometers. This topic was studied on submanifolds
of real space forms in [4, 9, 10, 17, 26, 27] etc., of complex space forms in [5, 8, 20, 25, 31, 32, 35, 36] etc., of contact
space forms in [7, 24, 34] etc., of nearly constant curvature manifolds [28, 29, 37, 38] etc. Recently, B.-Y. Chen
[6] published a book related with applications of δ-curvatures and ideal submanifolds in semi-Riemannian
manifolds.
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Considering the above facts, it shall be interesting to investigate the notion of ideality in lightlike
(degenerate) submanifolds. But, since any lightlike submanifold contains a radical space and thus trace of
the second fundamental form is meaningless, it doesn’t enable to study the notion of best living way on a
lightlike submanifold. For this reason, we shall investigate to ideality on any leaf of screen distribution of
screen conformal coisotropic lightlike submanifolds in a semi-Euclidean space of index 2 in this paper.

2. Preliminaries

In this section, we recall some basic facts about coisotropic lightlike submanifolds by following the notations
and formulas used in [12, 13, 16, 21, 22].

An (n+ 2)-dimensional (n ≥ 1) lightlike submanifold (M, g, S(TM)) of a semi-Riemannian manifold (M̃, g̃)
of codimension 2 is called a coisotropic lightlike submanifold if it is a submanifold with the degenerate metric g
induced from g̃ and the rank of radical distribution Rad TM is of 2. In this case, Rad TM = TM⊥. Here, S(TM)
denotes an n-dimensional complementary Riemannian distribution of Rad TM , that is

TM = Rad TM ⊕orth S(TM), (2.1)

where ⊕orth denotes the orthogonal direct sum. From (2.1) there exists a field of frame

{ξ1, ξ2, e1, . . . , en} (2.2)

on a coordinate neigborhood U on M , where Rad TM |U = Span{ξ1, ξ2} and S(TM)|U = Span{e1, . . . en}. For
any basis {ξi} of Rad TM |U it is known that there exist smooth sections {Ni} of S(TM⊥)|U satisfying

g̃(Ni, ξj) = δij , g̃(Ni, Nj) = 0 (2.3)

for i, j = 1, 2.
The complementary vector bundle of Rad TM in S(TM⊥), denoted by tr(TM), spanned by the vectors N1

and N2, is called transversal bundle of M . Thus, we have

TM̃ = S(TM) ⊕orth (Rad TM ⊕ tr(TM)) , (2.4)

where ⊕ denote the diret sum, but it is not orthogonal.

Let ∇̃ be the Levi-Civita connection on M̃ . The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ), (2.5)

∇̃XNk = −ANk
X +∇t

XNk (2.6)

for all X,Y ∈ Γ(TM), where ∇XY ,ANk
X ∈ Γ(TM) and h(X,Y ),∇t

XNk ∈ Γ(tr(TM)). Here, h is called second
fundamental form and ANk

are called shape operators of M . If we put

Dk(X,Y ) = g̃ (h(X,Y ), ξk) and ρkℓ(X) = g̃
(
∇t

XNk, ξℓ
)

for k, ℓ = 1, 2, then the equations (2.5) and (2.6) become

∇̃XY = ∇XY +

2∑
k=1

Dk(X,Y )Nk, (2.7)

∇̃XNk = −ANk
X +

2∑
ℓ=1

ρkℓ(X)Nℓ, (2.8)

respectively. Consider (2.3) and (2.7), we obtain Dk are symmetric, independent of choosing screen distribution
and satisfy

Dk(X, ξk) = 0 and Dk(X, ξℓ) = −Dℓ(X, ξk) (2.9)

for all X ∈ Γ(TM) and k ̸= ℓ = 1, 2.
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Let us denote the projection of TM to S(TM) by P . From (2.1) we get

∇XPY = ∇∗
XPY + h∗(X,Y ),

= ∇∗
XPY +

2∑
k=1

Ck(X,PY )ξk, (2.10)

∇Xξk = −A∗
ξk
X −

2∑
ℓ=1

ρkℓ(X)ξℓ. (2.11)

Here, h∗ is called local second fundamental form and A∗
ξk

are called local shape operators on S(TM). Using (2.3),
(2.5), (2.7), (2.10) and (2.11), we also have the following equations:

Dk(X,Y ) = g(A∗
ξk
X,Y ), Ck(X,PY ) = g(ANk

X,PY ) (2.12)

for all k ∈ {1, 2}.
The submanifold (M, g, S(TM)) is called irrotational [23] if Dk vanish on Rad TM and it is called totally

geodesic [13] if Dk vanish identically on Γ(TM) for all k = 1, 2. If there exist smooth functions λ′
k on tr(TM)

satisfying

Dk(X,Y ) = λ′
k g̃(X,Y ) (2.13)

for all X,Y ∈ Γ(TM), then the submanifold is called totally umbilical [14].
Let {e1, . . . , en} be an orthonormal basis of Γ(S(TM)). Define

µ1 =
1

n

n∑
j=1

D1(ej , ej) and µ2 =
1

n

n∑
j=1

D2(ej , ej). (2.14)

The submanifold is called minimal if µ1 = µ2 = 0 [1].
Let φk be non-zero functions on a neigborhood U . The submanifold is called screen locally conformal if the

shape operators ANk
and A∗

ξk
of M and S(TM), respectively, are related by

ANk
= φkA

∗
ξk
, (2.15)

i.e.

Ck(X,PY ) = φkD
k(X,Y ) (2.16)

for all X,Y ∈ Γ(TM).

Denote curvature tensors of the ambient manifold and the submanifold by R̃ and R, respectively. Then the
following relation between these tensors holds:

g̃(R̃(X,Y )PZ,PW ) = g(R(X,Y )PZ,PW )

+

2∑
k=1

[Dk(X,PZ)Ck(Y, PW )−Dk(Y, PZ)Ck(X,PW )] (2.17)

for all X,Y, Z,W ∈ Γ(TM) [21].
Let Π = Span{ei, ej} be a 2-dimensional non-degenerate plane in TpM . Then the sectional curvature at p is

expressed by

Kij =
g(R(ei, ej)ej , ei)

g(ei, ei)g(ej , ej)− g(ei, ej)2
(2.18)

We note that since Ck aren’t symmetric, it is clear from (2.17) that the sectional curvature map does not need
to be symmetric for any lighlike submanifold of a semi-Riemannian manifold.

Now, we recall the following result [13]:
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Theorem 2.1. Let (M, g, S(TM)) be an r-lightlike submanifold of a semi-Riemannian manifold (M̃, g̃). Then the
following assertions are equivalent:

i) S(TM) is integrable.
ii) h∗ is symmetric on Γ(S(TM)).
iii) AN is self-adjoint on Γ(S(TM)) with respect to g.

As a consequence of Theorem 2.1, we see that the sectional curvature is symmetric on every screen conformal
lightlike submanifold of a semi-Riemannian manifold.

3. Ideality of lightlike submanifolds

In this section, we start by recalling some basic facts about the energy equation and harmonicity in
Riemannian geometry and semi-Riemannian geometry.

Let σ : (M, g) → (M̃, g̃) be a smooth map between Riemannian manifolds (M, g) and (M̃, g̃). The energy
density at a point p ∈ M , denoted by e(σ), is defined by

e(σ) =
1

2
∥dσ∥2, (3.1)

where ∥dσ∥2 is the Hilbert-Schmidt norm of the differential of σ, given by ∥dσ∥2 = tracegσ∗(g̃), with respect to
the induced metric on the bundle T ∗M ⊗ σ−1(TM̃). The total energy of σ is given by

E(σ) =

∫
D
e(σ)dvg, (3.2)

where dvg denotes the measure on M induced by its metric and D denotes any compact domain in M .
The mapping σ is called harmonic if it is a critical point of the energy functional E, that is

τ(σ) = traceg(∇σdσ) = 0, (3.3)

where ∇σ is the connection on the vector bundle T ∗M ⊗ σ−1(TM̃) induced by the Levi-Civita connections on
M and M̃ . Here, τ(σ) is a section of the bundle σ−1(TM̃), called tension field of σ. Also, it is known that any
harmonic map is a C2-smooth local solution of the Laplace-Beltrami equation, given in local coordinates xi by

∆M =
1√

|det(gij)|

∑
i

∂xi

(∑
i

gij∂xj

)
, (3.4)

where gij is the inverse of the metric g.

Hovewer, in semi-Riemannian context, integration of a compact domain is questionable since the Hopf-
Rinow theorem doesn’t hold for a semi-Riemannian manifold and due to the possibility of degenerate fibers
in this domain. Thus, the harmonic maps between semi-Riemannian manifolds or lightlike manifolds behave
differently from the Riemannian context.

Now, let σ : (M, g) → (M̃, g̃) be a smooth map. Let us consider the following two cases:

Case 1: M is a Riemannian or semi-Riemannian manifold and M̃ is lightlike manifold.

Case 2: M is a lightlike manifold and M̃ is a semi-Riemannian manifold.

For the case 1, the tension field can not be defined since g̃ is degenerate and thus σ−1(TM̃) will not exist. In
this direction, K. L. Duggal [11] introduced a special class of lightlike submanifolds in which harmonic maps
can be defined for the first case as follows:

Definition 3.1. A lightlike manifold is called globally null if it admits a globally null vector field and a complete
Riemannian hypersurface.
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Let (M, g) be a Riemannian (or semi-Riemannian) manifold and (M̃, g̃) be a globally null manifold. Consider
a smooth map σ : (M, g) → (M̃, g̃) defined by

σ : M → M̃ ′ ⊂ M̃, σ(M) = M̃ ′,

where M̃ denotes a complete Riemannian hypersurface of M̃ . Then the pullback σ−1(TM̃ ′) exists and thus, σ
is a harmonic map if and only if the equation (3.4) holds or τ(σ) = 0.

For the case 2, harmonic maps also can not be defined since trace of the second fundamental form is
meaningless on the radical space. To heal this, B. Sahin stated the following definition in [30].

Definition 3.2. Let (M, g) be a lightlike manifold and (M̃, g̃) be a semi-Riemannian manifold. A smooth map
σ : M → M̃ is called harmonic if the following assertions hold:

i) ∇ dσ = 0 on Rad TM .
ii) trace|S(TM)∇ dσ = 0, where the trace|S(TM) denotes the trace restricted to S(TM) with respect to the

degenerate metric g.

It is clear from Definition 3.2 that if σ : M → M̃ is an r-lightlike immersion, then dσ is equal to the second
fundamental form given in (2.5). Thus, an r-lightlike immersion is harmonic if and only if it is a minimal
immersion.

From the above facts we state the following definition:

Definition 3.3. Let (M, g, S(TM)) be a lightlike submanifold of an (n+m)-dimensional semi-Euclidean space
Rn+m

q . Suppose S(TM) is integrable and (M ′, g′) is an n-dimensional leaf of S(TM) immersed in Rn+m
q as a

co-dimension m with the non-degenerate metric g′. The leaf (M ′, g′) is called ideal if ∥H ′∥2 the Hilbert-Schmidt
norm of the mean curvature vector H ′(p) of M ′ takes optimum value at every point of it.

Now, consider (M, g, S(TM)) is an (n+ 2)-dimensional coisotropic lightlike submanifold of an (n+ 4)-
dimensional semi-Euclidean space Rn+4

2 and S(TM) is an integrable distribution. If M ′ is an n-dimensional
leaf on S(TM), from (2.6) and (2.10) we have

∇XY = ∇′
XY +

2∑
k=1

Ck(X,Y )ξk +

2∑
k=1

Dk(X,Y )Nk (3.5)

for all X,Y ∈ Γ(TM ′), where ∇′ is the induced connection of M ′. Here, the second fundamental form h′ of M ′

is given by

h′(X,Y ) =

2∑
k=1

Ck(X,Y )ξk +

2∑
k=1

Dk(X,Y )Nk (3.6)

and the mean curvature vector H ′(p) of M ′ satisfies

H ′(p) = trace|S(TM)(h
′)

=

n∑
i=1

2∑
k=1

Ck(ei, ei)ξk +

2∑
k=1

µkNk, (3.7)

where {e1, . . . , en} is an orthonormal basis of Γ(S(TM)).
From (2.16) and (3.7) if (M, g, S(TM)) is screen conformal, then it follows that

nH ′(p) =

2∑
k=1

[µkNk + φkµkξk] (3.8)

and

n2∥H ′(p)∥2 = 2

2∑
k=1

φkµ
2
k, (3.9)

where µk is given in (2.14).
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4. Some relations for coisotropic lightlike submanifolds

We begin this section with the following definition:

Definition 4.1. Let (M, g, S(TM)) be an (n+ 2)-dimensional screen conformal lightlike submanifold of an
(n+ 4)-dimensional semi-Riemannian manifold of index 2. The screen Ricci curvature tensor, denoted by
RicS(TM), is defined by

RicS(TM)(X,Y ) = trace|S(TM){Z → R(X,Z)Y } (4.1)

for any X,Y ∈ Γ(S(TM)).

Suppose that {e1, . . . , en} be an orthonormal basis of Γ(S(TM)). The screen Ricci curvature at a unit vector
ei ∈ Γ(S(TM)), denoted by RicS(TM)(ei), is given by

RicS(TM)(ei) =

n∑
j ̸=i=1

g (R(ei, ej , ej)ei) =

n∑
j ̸=i=1

Kij . (4.2)

We note that since the screen distribution is Riemannian, it is clear that the sectional curvature map can
be bounded and so the screen Ricci curvature can also be bounded. This features enable to studying some
comparision theorems for coisotropic lightlike submanifolds. Also,
a) If n = 1, the screen Ricci curvature vanishes identically.
b) If n = 2, the screen Ricci curvature is equal to the sectional curvature.

Remark 4.1. The screen Ricci curvature was firstly introduced by K. L. Duggal in [15] and named by the authors
in [18, 19] for a lightlike hypersurface of a Lorentzian manifold.

Definition 4.2. Let (M, g, S(TM)) be an (n+ 2)-dimensional screen conformal lightlike submanifold of an
(n+ 4)-dimensional semi-Riemannian manifold of index 2. Suppose {e1, . . . , en} is an orthonormal basis of
Γ(S(TM)). The screen scalar curvature at a point p ∈ M , denoted by rS(TM)(p), is defined by

rS(TM)(p) =

n∑
i,j=1

Kij . (4.3)

Taking into consideration the equations (2.16), (2.17) and (4.3), we have

rS(TM)(p) = r̃S(TM)(p) +

2∑
k=1

φk

n∑
i,j=1

Dk
iiD

k
jj − (Dk

ij)
2. (4.4)

where Dk
ij = Dk(ei, ej) for i, j ∈ {1, . . . , n}, k ∈ {1, 2} and r̃TpM (p) is the scalar curvature of screen distribution

of M̃ (see the equation (2.3) in [20]) given by

r̃S(TM)(p) =

n∑
i,j=1

g̃(R̃(ei, ej)ej , ei). (4.5)

Theorem 4.1. Let (M, g, S(TM)) be an (n+ 2)-dimensional screen conformal coisotropic lightlike submanifold of an
(n+ 4)-dimensional semi-Riemannian manifold (M̃, g̃). Then we have the following statements:

a) If φk > 0 for all k = 1, 2, then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n2∥H ′(p)∥2. (4.6)

The equality case of (4.6) holds for all p ∈ M if and only if S(TM) is totally geodesic.
b) If φk < 0 for all k = 1, 2, then

2rS(TM)(p) ≥ 2r̃S(TM)(p) + n2∥H ′(p)∥2. (4.7)

The equality case of (4.7) holds for all p ∈ M if and only if S(TM) is totally geodesic.
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c) If φ1 > 0 and φ2 < 0, then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n2∥H ′(p)∥2 − 2

n∑
i,j=1

φ2(D
2
ij)

2. (4.8)

The equality case of (4.8) holds for all p ∈ M if and only if D1 vanishes on S(TM).
d) If φ1 < 0 and φ2 > 0, then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n2∥H ′(p)∥2 − 2

n∑
i,j=1

φ1(D
1
ij)

2. (4.9)

The equality case of (4.9) holds for all p ∈ M if and only if D2 vanishes on S(TM).

Proof. If we put (3.9) in the equation (4.4), we have

2rS(TM)(p) = 2r̃S(TM)(p) + n2∥H ′(p)∥2 − 2

2∑
k=1

φk

n∑
i,j=1

(Dk
ij)

2. (4.10)

The rest part proof of theorem is straightforward.

From Theorem 4.1 we get the following proposition:

Proposition 4.1. Let (M, g, S(TM)) be an (n+ 2)-dimensional screen conformal coisotropic lightlike submanifold of an
(n+ 4)-dimensional semi-Euclidean space Rn+4

2 .
a) If φk > 0 for all k = 1, 2 and rS(TM) > 0, then any n-dimensional leaf of S(TM) does not admit a minimal

immersion.
b) If φk < 0 for all k = 1, 2 and rS(TM) < 0, then any n-dimensional leaf of S(TM) does not admit a minimal

immersion.

As a consequence of Proposition 4.1, it is clear that any harmonic (or minimal) map is ideal but the converse
part is not always true.

Now, we shall need to following lemma for later uses:

Lemma 4.1. [33] If a1, ..., an are n-real numbers (n > 1), then

1

n
(

n∑
i=1

ai)
2 ≤

n∑
i=1

a2i , (4.11)

with equality if and only if a1 = ... = an.

Theorem 4.2. Let (M, g, S(TM)) be an (n+ 2)-dimensional screen conformal coisotropic lightlike submanifold of an
(n+ 4)-dimensional semi-Riemannian manifold (M̃, g̃). Then we have the following statements:

a) If φk > 0 for all k = 1, 2, then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n(n− 1)∥H ′(p)∥2. (4.12)

The equality case of (4.12) holds for all p ∈ M if and only if M is totally umbilical.
b) If φk < 0 for all k = 1, 2, then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n(n− 1)∥H ′(p)∥2 − 2

2∑
k=1

φk

n∑
i ̸=j=1

(Dk
ij)

2. (4.13)

The equality case of (4.13) holds for all p ∈ M if and only if µk = Dk(X,X) for all unit vector X ∈ Γ(S(TM)) and
k = 1, 2.

c) If φ1 > 0 and φ2 < 0, then

2rS(TM)(p) ≤ 2r̃S(TM)(p) + n(n− 1)∥H ′(p)∥2 − 2φ2

n∑
i ̸=j=1

(D2
ij)

2. (4.14)
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The equality case of (4.14) holds for all p ∈ M if and only if

D1(X,Y ) = λ1g(X,Y ), for all X,Y ∈ Γ(S(TM)), (4.15)

where λ1 is a smooth function on ltr(TM).

Proof. Using (4.4), we have

rS(TM)(p) = r̃S(TM)(p) + n2
2∑

k=1

φkµ
2
k −

2∑
k=1

φk

n∑
i ̸=j=1

(Dk
ij)

2

−
2∑

k=1

φk

n∑
i=1

(Dk
ii)

2. (4.16)

If we take φk > 0 for all k ∈ {1, 2} and use Lemma 4.1 in (4.16), we get (4.14).
The equality case of (4.14) holds for all p ∈ M if and only if

Dk
11 = · · · = Dk

nn, Dij = 0, for all i ̸= j ∈ {1, . . . , n} and k ∈ {1, 2} ,

which shows that M is totally umbilical with λk = 1. This is the proof of the (a) statement of the theorem.
Similarly, one can prove the statements (b) and (c).

Now, we recall the following theorem of D. H. Jin in [21].

Theorem 4.3. Let (M, g, S(TM)) be a proper totally umbilical coisotropic submanifold of semi-Riemannian space form
M̃(c) of constant curvature c. If the screen distribution S(TM) is totally geodesic, then c = 0.

From (a) statements (or (b) statements) of both Theorem 4.1 and Theorem 4.2 we get the following corollary
immediately:

Corollary 4.1. Let M be an (n+ 2)-dimensional screen homothetic coisotropic submanifold of semi-Riemannian space
form Rn+4

2 (c). If both the equality cases of (4.6) and (4.12) hold for all p ∈ M simultaneously then c = 0.

5. Some applications

In this section, we are going to obtain some corollaries by the help of relations given in the previous section
and investigate the notion of ideality for some examples of screen conformal coisotropic lightlike submanifold
of a semi-Euclidean space.

From (4.8) inequality in (c) statement of Theorem 4.1 we obtain the following corollary:

Corollary 5.1. Let (M, g, S(TM)) be a screen locally conformal coisotropic lightlike submanifold of (n+ 4)-dimensional
semi-Euclidean space Rn+4

2 with φ1 > 0 and φ2 < 0 then we have

2rS(TM)(p) ≤ n2∥H ′(p)∥2 − 2

n∑
i,j=1

φ2(D
2
ij)

2. (5.1)

If the equality case of (5.1) holds for all point p ∈ M , then any n-dimensional leaf of S(TM) is ideal.

Now, we give an example of coisotropic lightlike submanifolds as follows:

Example 5.1. Let M̃ = (R7
2, g̃), where R7

2 is a semi-Euclidean space of signature (−,−,+,+,+,+,+) with respect
to the canonical basis

{∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂x7}.

Consider a submanifold M of R7
2 given by

x2 = (x2
3 + x2

5)
1
2 , x4 = x1, x3 > 0, x5 > 0.
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Then we have

S(TM) = Span{X1 = x5∂x2 + x2∂x5, X2 = ∂x6, X3 = ∂x7},
Rad TpM = Span{ξ1 = ∂x1 + ∂x4, ξ2 = x2∂x2 + x3∂x3 + x5∂x5},

tr(TM) = Span{N1 =
1

2
(−∂x1 + ∂x4),

N2 =
1

2
(−x2∂x2 + ∂x3 − x5∂x5)}.

By direct computations, we get

∇̃ξ1X1 = ∇̃ξ1X2 = ∇̃ξ1X3 = ∇̃ξ1ξ2 = 0,

∇̃X1X1 = x2∂x2 + x5∂x5, ∇̃X2X2 = ∇̃X3X3 = 0.

Using the Gauss and Weingarten formulas, we see that both D1 and C1 vanish on Γ(S(TM)),

D2(X1, X2) = D2(X1, X3) = D2(X2, X2) = D2(X2, X3) = D2(X3, X3) = 0,

D2(X1, X1) = −(x3)
2, C2(X1, X1) =

1

2
, C2(X1, X2) = C2(X2, X2) = 0.

Consequently, we obtain M is a screen conformal coisotropic lightlike submanifold with φ1 is arbitrary and
φ2 = − 1

2(x3)2
.

Consider M ′ to be a 3-dimensional leaf of S(TM). Then it follows that

TM ′ = Span{X1, X2, X3}.

By straightforward computations, it can be seen that the equality case of (5.1) holds. Therefore, M ′ is an ideal
leaf.

Similarly, examples for other cases can be given.

Now, we recall the following well known lemma of B.-Y. Chen [2].

Lemma 5.1. If n > 2 and a1, . . . , an, a are real numbers such that

(

n∑
i=1

ai)
2 = (n− 1)(

n∑
i=1

a2i + a),

then
2a1a2 ≥ a,

with equality holding if and only if
a1 + a2 = a3 = · · · = an.

Using (4.4), Lemma 5.1 and following a smilar proof way of Lemma 3.2 in [2] or Theorem 4.2 in [19], we have
the following:

Corollary 5.2. Let (M, g, S(TM)) be an (n+ 2) dimensional (n > 2) screen conformal coisotropic lightlike submanifold
of a semi-Euclidean space of index 2. Suppose φk > 0 for k = 1, 2 and Π = Span{e1, e2} is a 2-dimensional non-
degenerate plane section of TpM . Then we have

rS(TM)(p)−K(Π) ≤ 1

8

(
n2(n− 2)

n− 1
+ 1

)
∥H ′(p)∥2. (5.2)

If the equality case of (5.2) holds for all p ∈ M then S(TM) is totally geodesic.

Now, we give another example of screen conformal coisotropic lightlike submanifold as follows:
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Example 5.2. Let M be a submanifold of R7
2 given by

x1 = u1, x2 = u2, x3 = u1 sinu3,

x4 = u1 cosu3, x5 = u4, x6 = u2, x7 = u5.

Then we have

Rad TM = Span{ξ1 = ∂x1 + sinu3∂x3 + cosu3∂x4,

ξ2 = ∂x2 + ∂x6},
S(TM) = Span{Z1 = u1 cosu3∂x3 − u1 sinu3∂x4, Z2 = ∂x5,

Z3 = ∂x7},

tr(TM) = Span{N1 =
1

2
(−∂x1 + sinu3∂x3 + cosu3∂x4)},

N2 =
1

2
(−∂x2 + ∂x6)}.

By direct calculations, we obtain

D1(Z1, Z1) = −u1, D1(Z1, Z2) = D1(Z2, Z2) = D1(Z2, Z2) = 0,

C1(Z1, Z1) = −1

2
u1, C1(Z1, Z2) = C1(Z2, Z2) = 0.

Therefore, (M, g, S(TM)) is a screen conformal coisotropic lightlike submanifold of R7
2 with φ1 = 1

2 and φ2 is
arbitrary.

Consider M ′ to be a 3-dimensional leaf of S(TM). Then it follows that

TM ′ = Span{Z1, Z2, Z3}.

By straightforward computations, it can be seen that the equality case of (5.2) does not hold. Therefore, M ′ isn’t
an ideal leaf.
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