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Abstract
In this paper, we investigate the problem of finding a common solution to fixed point problem involving
a finite family of multivalued strictly pseudo-contractive mappings and convex minimization problem
in the framework of Hilbert spaces. Inspired by the proximal point algorithm and general iterative
method, a new iterative method for solving the problem is introduced. Strong convergence theorem of
the proposed method is established without any compactness assumption. Our scheme generalize and
extend some of the existing results in the literature.
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1. Introduction
Let H be a real Hilbert space with the inner product 〈., .〉 and norm ‖.‖ respectively. Let K be a nonempty closed

convex subset of H. Consider the following convex minimization problem: find x ∈ K such that

g(x) = min
y∈K

g(y),

where g : H → (−∞, +∞) be a proper convex and lower semi-continuous. The set of all minimizers of g on K is
denoted by argminy∈K g(y). In 1970, Martinet [21] introduced and studied the proximal point algorithm (PPA) for
solving optimization problems. Thereafter the likes of Rockafellar [29], find a solution of the constrained convex
minimization problem in the frame work of Hilbert space by using PPA. Let g be a proper convex and lower
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semi-continuous function on H. The PPA is defined as x1 ∈ H,
xn+1 = argminy∈H

[
g(y) +

1

2λn
‖xn − y‖2

]
,

(1.1)

where λn > 0 for all n ≥ 1. It was proved that the sequence {xn} converges weakly to a minimizer of g provided
∞∑
n=0

λn = ∞. In [12], it was shown that a PPA does not necessarily converges strongly. The fact that a PPA does

not necessarily converges strongly have been overcome by researchers in this area by introducing a more general
PPA in different spaces to obtain a weak and strong convergence . Over the years, researcher have been able to
further extend the convex minimization problems by finding a common element of the set of solutions of various
convex minimization problems and the set of fixed points for nonexpansive mappings in Hilbert spaces and Banach
spaces ( see, e.g., Güler [12], Solodov and Svaiter [31], Kamimura and Takahashi [14], Lehdili and Moudafi [15],
Reich, [28], Chidume and Djitte [7, 8] and the references therein).

Let (X, d) be a metric space, K be a nonempty subset of X and T : K → 2K be a multivalued mapping. An element
x ∈ K is called a fixed point of T if x ∈ Tx. For single valued mapping, this reduces to Tx = x. The fixed point set
of T is denoted by F (T ) := {x ∈ D(T ) : x ∈ Tx}.

The fixed point theory of multi-valued mappings is much more complicated and harder than the corresponding
theory of single-valued mappings. However, some classical fixed point theorems for single-valued mappings have
already been extended to multi-valued mappings; (see, for example, Brouwer [4], Kakutani [13], Nash [24, 25],
Garcia-Falset et al. [27]). The recent fixed point results for multi-valued mappings can be found Blasi et al. [3], Sow
[32], Sene et al. [30], Sow et al. [30] and the references cited therein.

Interest in the study of fixed point theory for multi-valued nonlinear mappings stems, perhaps, mainly from its
usefulness in real-world applications such as Game Theory and Non-Smooth Differential Equations, Optimization.

Let D be a nonempty subset of a normed space E. The set D is called proximinal (see, e.g., [26]) if for each x ∈ E,
there exists u ∈ D such that

d(x, u) = inf{‖x− y‖ : y ∈ D} = d(x,D),

where d(x, y) = ‖x − y‖ for all x, y ∈ E. Every nonempty, closed and convex subset of a real Hilbert space is
proximinal. Let CB(D), K(D) and P (D) denote the family of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of D respectively. The Pompeiu Hausdorff metric on
CB(D) is defined by:

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(D) (see, Berinde [2]). A multi-valued mapping T : D(T ) ⊆ E → CB(E) is called L- Lipschitzian
if there exists L > 0 such that

H(Tx, Ty) ≤ L‖x− y‖, ∀x, y ∈ D(T ). (1.2)

When L ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if L = 1.

A mapping A : K → H is said to be k-strongly monotone if there exists k ∈ (0, 1) such that for all x, y ∈ K,

〈Ax−Ay, x− y〉H ≥ k‖x− y‖2.

A mapping A : K → H is said to be strongly positive bounded linear if there exists a constant k > 0 such that

〈Ax, x〉H ≥ k‖x‖2, ∀ x ∈ K.

Remark 1.1. From the definition of A, we note that strongly positive bounded linear operator A is a ‖A‖-Lipschitzian
and k-strongly monotone operator.
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Great attention has been paid to single-valued nonexpansive mappings (a special kind of strictly pseudo-contractive
mappings) because many nonlinear problems can be reduced to fixed point problems of nonexpansive mappings.
Among these iterative methods, the Mann iteration method is the mostfavour fixed point algorithm for nonexpansive
mappings since many algorithms can be reducedto Mann iteration. Recall that Mann’s iteration process [16] is
defined as follows: Let C be a nonempty, closed and convex subset of a Banach space X, Mann’s scheme is defined
by {

x0 ∈ C,
xn+1 = αnxn + (1− αn)Txn,

(1.3)

{αn} is a sequence in (0, 1). But Mann’s iteration process has only weak convergence, even in Hilbert space setting.
Therefore, many authors try to modify Mann’s iteration to have strong convergence for nonlinear operators (see,
e.g., [33], [30]).

In 2009, Yao et al. motivated by the fact that Mann’s algorithm method is remarkably useful for finding fixed
points of a nonexpansive mapping, they proved the following theorem.

Theorem 1.1. [37] Let H be a real Hilbert space. Let T : H → H be a nonexpansive mapping with F (T ) 6= ∅. For given
x0 ∈ H, let the sequences {xn} and {yn} be generated iteratively by{

yn = (1− αn)xn
xn+1 = βnyn + (1− βn)Tyn,

(1.4)

{βn} and {αn} are a real sequences in (0, 1) satisfying:

(i) lim
n→∞

αn = 0; (ii)

∞∑
n=0

αn =∞.

Then the sequences {xn} and {yn} generated by (1.4) converge strongly to fixed point of T.

Recently, iterative methods for single-valued nonexpansive mappings have been applied to solve fixed points
problems and variational inequality problems in Hilbert spaces, see, e.g.,[18, 19, 35] and the references therein.

A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping
on a real Hilbert space H:

min
x∈F (T )

1

2
〈Ax, x〉 − 〈b, x〉. (1.5)

In [35], Xu proved that the sequence {xn} defined by iterative method below with initial guess x0 ∈ H chosen
arbitrary:

xn+1 = αnb+ (I − αnA)Txn, n ≥ 0, (1.6)

converges strongly to the unique solution of the minimization problem (1.5), where T is a nonexpansive mappings
in H and A a strongly positive bounded linear operator. In 2006 Marino and Xu [18] extended Moudafi’s results
[20] and Xu’s results [35] via the following general iteration x0 ∈ H and

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (1.7)

where{αn}n∈N ⊂ (0, 1), A is bounded linear operator on H and T is a nonexpansive. Under suitable conditions,
they proved the sequence {xn} defined by (1.7) converges strongly to the fixed point of T,which is a unique solution
of the following variational inequality

〈Ax∗ − γf(x∗), x∗ − p〉 ≤ 0, ∀p ∈ F (T ).

The important class of single-valued k-strictly pseudo-contractive maps on Hilbert spaces was introduced by
Browder and Petryshyn [5] as a generalization of the class of nonexpansive mappings.

Definition 1.1. Let K be a nonempty subset of a real Hilbert space H. A map T : K → H is called k-strictly
pseudo-contractive if there exists k ∈ (0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− y − (Tx− Ty)‖2, ∀x, y ∈ K. (1.8)
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It is trivial to see that every nonexpansive map is strictly pseudo-contractive. Motivated by this, Chidume et al.
[10] introduced the of multivalued strictly pseudo-contractive mappings in real Hilbert as follows.

Definition 1.2. A multi-valued mapping T : D(T ) ⊆ H → CB(H) is said to be k-strictly pseudo-contractive, if there
exists k ∈ (0, 1) such for all x, y ∈ D(T ), we have(

H(Tx, Ty)
)2

≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, ∀u ∈ Tx, v ∈ Ty. (1.9)

if k = 1 in (1.9), the map T is said to be pseudo-contractive.

Remark 1.2. It is easily seen that any multivalued nonexpansive mapping is k-strictly pseudocontractive for any
k ∈ (0, 1). Moreover the inverse is not true (see,e.g., Sene et al. [30]).

With this definition at hand, many mathematicians proved some strong convergence theorems for approximating
fixed points of multivalued k-strictly pseudo-contrcative mappings under some compactness conditions (see, for
example, Sene et al. [30], Chidume et .al [10], Sow et al. [34] ).

In 2019, A. A. Mebawondu [22] introduced the following iterative method to find a common element of the set of
minimizers of a convex function and the set of common fixed points of a finite family of multivalued nonexpansive
mappings, proved the following theorem.

Theorem 1.2 ( A. A. Mebawondu [22] ). Let K be a nonempty closed convex subset of a real Hilbert space H. Let m ≥ 1 be
a fixed number, for i, 1 ≤ i ≤ m, let Ti : K → CB(K) be a multivalued nonexpansive mappings and f : K → (−∞, +∞)

be a proper convex and lower semi-continuous function such that Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈K f(y) 6= ∅ and Tip = {p} for

all p ∈
m⋂
i=1

F (Ti).Let {xn} be a sequence defined iteratively from arbitrary x1 ∈ K by:


yn = Jfλn

xn,

zn = γn
0xn +

m∑
i=1

γn
iyin, v

i
n ∈ Tiun

xn+1 = αn
0zn + (1− αn0)wn, wn ∈ Tizn

(1.10)

where = αn
0 ⊂ (0, 1), γn

0 ⊂ (0, 1) and {λn} ⊂]0,∞[ satisfy:

(i)

∞∑
n=0

αn
0 =

∞∑
n=0

γn
0 = 1, (ii){λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequence {xn}

generated by (3.3) converges weakly to an element of Γ.

In the recent years, the problem of finding a common element of the set of solutions of convex minimization
and fixed point problems in real Hilbert spaces have been intensively studied by many authors; see, for example,
[10, 16, 18, 34? , 35] and the references therein.

In this paper, motivated by above results, the fact that the class of multivalued strictly pseudo-contractive
mappings contains those of multivalued nonexpansive and multivalued firmly nonexpansive mappings as sub-
classes and general proximal point algorithm is remarkably useful for solving most important problems with
nonlinear operators, we construct and study an explicit iterative method and prove strong convergence theorems
by using a modified general proximal point algorithm for approximating for approximating a common element
of the set of minimizers of a convex function and the set of common fixed points of a finite family of multivalued
strictly pseudo-contractive mappings in the setting of a real Hilbert space which is a solution of some variational
inequalities problems. Our result extends and improves the results of A. A. Mebawondu [22], Yao et al. [37], Marino
and Xu [18] Rockafellar [29] and many other authors.

2. Preliminaries
Let us recall the following definitions and results which will be used in the sequel.
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Let H be a real Hilbert space. Let {xn} be a sequence in H, and let x ∈ H. Weak convergence of xn to x is
denoted by xn ⇀ x and strong convergence by xn → x. Let K be a nonempty, closed convex subset of H. The
nearest point projection from H to K, denoted by PK assigns to each x ∈ H the unique PKx with the property

‖x− PKx‖ ≤ ‖y − x‖

for all y ∈ K. It is well know that PK satisfies

〈x− PKx, y − PKx〉 ≤ 0 (2.1)

for all y ∈ K.

Definition 2.1. Let H be a real Hilbert space and T : D(T ) ⊂ H → 2H be a multivalued mapping. I − T is said to
be demiclosed at 0 if for any sequence {xn} ⊂ D(T ) such that {xn} converges weakly to p and d(xn, Txn) converges
to zero, then p ∈ Tp.

Lemma 2.1 (Demiclosedness Principle, [4]). Let H be a real Hilbert space, K be a nonempty closed and convex subset of
H . Let T : K → CB(K) be a multivalued nonexpansive mapping with convex-values. Then I − T is demi-closed at zero.

Lemma 2.2 ([6]). Let H be a real Hilbert space. Then for any x, y ∈ H, the following inequality hold:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.3 (Xu, [36]). Assume that {an} is a sequence of nonnegative real numbers such that an+1 ≤ (1− αn)an + αnσn
for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence in R such that

(a)

∞∑
n=0

αn =∞, (b) lim sup
n→∞

σn ≤ 0 or
∞∑
n=0

|σnαn| <∞. Then lim
n→∞

an = 0.

Lemma 2.4. [17] Let tn be a sequence of real numbers that does not decrease at infinity in a sense that there exists a subsequence
tni

of tn such that tni
such that tni

≤ tni+1
for all i ≥ 0. For sufficiently large numbers n ∈ N, an integer sequence {τ(n)} is

defined as follows:
τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n)→∞ as n→∞ and
max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.5. [19] Let K be a nonempty closed convex subset of a real Hilbert space H and T : K → K be a mapping.
(i) If T is a k-strictly pseudo-contractive mapping, then T satisfies the Lipschitzian condition

‖Tx− Ty‖ ≤ 1 + k

1− k
‖x− y‖.

(ii) If T is a k-strictly pseudo-contractive mapping, then the mapping I − T is demiclosed at 0.

Lemma 2.6. [38] Let H be a real Hilbert space. Let K be a nonempty, closed convex subset of H and A : K → H be a

k-strongly monotone and L-Lipschitzian operator with k > 0, L > 0. Assume that 0 < η <
2k

L2
and τ = η

(
k− L2η

2

)
. Then

for each t ∈
(

0,min{1, 1

τ
}
)
, we have

‖(I − tηA)x− (I − tηA)y‖ ≤ (1− tτ)‖x− y‖, x, y ∈ K.

Lemma 2.7 (Sene et al. [30]). Let K be a nonempty, closed and convex subset of a real Hilbert space H and βi ∈ ]0, 1[, i =

1, · · · , n such that
n∑
i=1

βi = 1. Then,

∥∥∥ n∑
i=1

βiui

∥∥∥2

=

n∑
i=1

βi‖ui‖2 −
∑
i<j

βiλj‖ui − uj‖2 ∀ u1, u2, · · · , un ∈ K. (2.2)
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Let g : K → (−∞, +∞) be a proper convex and lower semi-continuous function. For any λ > 0, define the
Moreau-Yosida resolvent of g in a real Hilbert space H as follows:

Jgλx = argminu∈K
[
g(u) +

1

2λ
‖x− u‖2

]
,

for all x ∈ H. It was shown in [12] that the set of fixed points of the resolvent associated with g coincides with the
set of minimizers of g. Also, the resolvent Jgλ of g is nonexpansive for all λ > 0 (see [11]).

Lemma 2.8. (Miyadera [23]) For any r > 0 and µ > 0, the following holds:

Jgr x = Jgµx(
µ

r
x+ (1− µ

r
)Jgr x).

Lemma 2.9 (Sub-differential inequality, [1]). Let g : H → (−∞, +∞) be a proper convex and lower semicontinuous
function. Then, for all x, y ∈ H and λ > 0, the following sub-differential inequality holds:

1

λ
‖Jgλx− y‖

2 − 1

λ
‖x− y‖2 +

1

λ
‖x− Jgλx‖

2 + g(Jgλx) ≤ g(y). (2.3)

3. Main Results
Throughout this section, we will assume that H be a real Hilbert space and K be a nonempty, closed convex subset
of H. Let A : K → H be an α-strongly monotone and L-Lipschitzian operator, m ≥ 1 be a fixed number, for
i, 1 ≤ i ≤ m, let Ti : K → CB(K) be a multivalued ki-strictly pseudo-contractive mapping and g : K → (−∞, +∞)

be a proper convex and lower semi-continuous function such that Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈K g(y) 6= ∅.

We consider the following fixed point problem:

Problem 1.

find x ∈ K such that x ∈
m⋂
i=1

F (Ti). (3.1)

We consider the following convex minimization problem:

Problem 2.
find x ∈ K such that g(x) ≤ g(y), ∀ y ∈ K. (3.2)

Remark 3.1. We can observe that x∗ solves Problem 3.1 and Problem 3.2 if and only if x∗ ∈ Γ.

We show the main result of this paper, that is, the strong convergence analysis for Algorithm 1.

Algorithm 1. Step 0. Take {αn} ⊂ (0, 1), η > 0, and {λn} ⊂]0,∞[ arbitrarily choose x0 ∈ K; and let n := 0.
Step 1. Given xn ∈ K, compute xn+1 ∈ K as


un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

yn = β0un +

m∑
i=1

βiv
i
n, v

i
n ∈ Tiun

xn+1 = PK(I − αnηA)yn, n ≥ 0.

(3.3)

Update n := n+ 1 and go to Step 1.
Where β0 ∈]µ, 1[, µ := max

{
ki, i = 1, ....,m

}
, βi ∈ ]0, 1[ and β0 + β1 + · · ·+ βm = 1.

Theorem 3.1. Assume that I − Ti is demiclosed at origin and Tip = {p} for all p ∈ Γ. Suppose that:

(i) lim
n→∞

αn = 0; (ii)0 < η <
2α

L2
, and

∞∑
n=0

αn =∞ and {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 0 and some

λ. Then, the sequences {xn} and {un} defined by Algorithm 1 converge strongly to x∗ ∈ Γ, which is a unique solution of the
following variational inequality:

〈Ax∗, x∗ − p〉 ≤ 0, ∀p ∈ Γ. (3.4)
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Proof. From the choice of η, properties of PΓ, and A is strongly monotone, then the variational inequality (3.4) has a

unique solution in Γ. Without loss of generality, we can assume αn ∈
(

0,min{1 , 1

τ
}
)

where τ = η
(
k − L2η

2

)
. In

what follows, we denote x∗ to be the unique solution of (3.4). Now, we prove that the sequences {xn} is bounded.
Let p ∈ Γ. Then, g(p) ≤ g(u) for all u ∈ K This implies that

g(p) +
1

2λn
‖p− p‖2 ≤ g(u) +

1

2λn
‖u− p‖2

and hence Jgλn
p = p for all n ≥ 0, where Jgλn

is the Moreau-Yosida resolvent of g in K. We have

‖un − p‖ = ‖Jgλn
xn − p‖ ≤ ‖xn − p‖, ∀n ≥ 0. (3.5)

By Using (3.3) and Lemma 2.7, we have

‖yn − p‖2 =
∥∥∥β0(un − p) +

m∑
i=1

βi(v
i
n − p)

∥∥∥2

= β0‖un − p‖2 +

m∑
i=1

βi‖vin − p‖2 −
m∑
i=1

β0βi‖vin − un‖2 −
m∑

1≤i<j

βiβj‖vin − vjn‖2.

Using the fact that, for i = 1, · · · ,m, Tip = {p}, we get

‖yn − p‖2 ≤ β0‖un − p‖2 +

m∑
i=1

βi

(
H(Tiun, Tip)

)2

−
m∑
i=1

β0βi‖vin − un‖2 −
m∑

1≤i<j

βiβj‖vin − vjn‖2.

Using the fact that, for i = 1, · · · ,m, Ti is ki-strictly pseudo-contractive, we have

‖yn − p‖2 ≤ β0‖un − p‖2 +

m∑
i=1

βi

(
‖un − p‖2 + ki‖vin − un‖2

)
−

m∑
i=1

β0βi‖vin − un‖2

−
m∑

1≤i<j

βiβj‖vin − vjn‖2.

Hence,

‖yn − p‖2 ≤ ‖un − p‖2 −
m∑
i=1

βi(β0 − ki)‖vin − un‖2. (3.6)

Since β0 ∈]µ, 1[, we obtain,

‖yn − p
∥∥∥ ≤ ‖un − p∥∥∥ ≤ ‖xn − p‖. (3.7)

From (3.3), (3.7) and Lemma 2.6, we have

‖xn+1 − p‖ ≤ ‖(I − αnηA)yn − p‖
≤ (1− ταn)‖xn − p‖+ αn‖ηAp‖

≤ max {‖xn − p‖,
‖ηAp‖
τ
}.

By induction, it is easy to see that

‖xn − p‖ ≤ max {‖x0 − p‖,
‖ηAp‖
τ
}, n ≥ 0.

Hence {xn} is bounded also are {un)}, and {yn}.
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Consequently, by inequality (3.6) and property of µ, we obtain

‖xn+1 − p‖2 = ‖PK(I − αnηA)yn − p‖2

≤ ‖yn − p− αnηAyn‖2

= ‖yn − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2

≤ ‖un − p‖2 −
m∑
i=1

βi(β0 − ki)‖vin − un‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖

≤ ‖xn − p‖2 −
m∑
i=1

βi(β0 − ki)‖vin − un‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖.

Thus, for every i, 1 ≤ i ≤ m, we get

m∑
i=1

βi(β0 − ki)‖uin − vn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖.

Since {xn} is bounded, then there exists a constant B > 0 such that for every i, 1 ≤ i ≤ m,
m∑
i=1

βi(β0 − ki)‖vin − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnB. (3.8)

Now we prove that {xn} converges strongly to x∗. Now we divide the rest of the proof into two cases.
Case 1. Assume that there is n0 ∈ N such that {‖xn− p‖} is decreasing for all n ≥ n0. Since {‖xn− p‖} is monotonic
and bounded, {‖xn − p‖} is convergent. Clearly, we have

lim
n→∞

[
‖xn − p‖2 − ‖xn+1 − p‖2

]
= 0. (3.9)

It then implies from (3.8) that

lim
n→∞

m∑
i=1

βi(β0 − ki)‖vin − un‖2 = 0. (3.10)

Since β0 ∈]µ, 1[, we have

lim
n→∞

∥∥∥un − vin∥∥∥2

= 0. (3.11)

Since vin ∈ Tiun, it follows that
lim
n→∞

d(un, Tiun) = 0, ∀ i = 1, · · · ,m. (3.12)

Let p ∈ Γ. Using Lemma 2.9 and since g(p) ≤ g(un), we get

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖un − p‖2. (3.13)

Therefore, from (3.3), Lemma 2.2 and inequality (3.13), we get that

‖xn+1 − p‖2 = ‖(I − αnηA)yn − p‖2

≤ ‖yn − p− αnηAyn‖2

≤ ‖yn − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖

≤ ‖un − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2

≤ ‖xn − p‖2 − ‖xn − un‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2

and hence

‖xn − un‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnη‖yn − p‖‖Ayn‖+ α2
n‖ηAyn‖2.

Thanks inequality (3.9) and αn → 0 as n→∞, we have

lim
n→∞

‖xn − un‖ = 0. (3.14)
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Next, we prove that lim sup
n→+∞

〈x∗, x∗ − xn〉 ≤ 0. Since H is reflexive and {xn} is bounded, there exists a subsequence

{xnj
} of {xn} such that xnj

converges weakly to ω in K and

lim sup
n→+∞

〈Ax∗, x∗ − xn〉 = lim
j→+∞

〈Ax∗, x∗ − xnj
〉.

From (3.12) and the fact that I − Ti are demiclosed, we obtain ω ∈
m⋂
i=1

F (Ti). Using (3.3) and Lemma 2.8 we arrive at

‖xn − Jgλxn‖ ≤ ‖un − Jgλxn‖+ ‖un − xn‖
≤ ‖Jgλn

xn − Jgλxn‖+ ‖un − xn‖

≤ ‖un − xn‖+ ‖Jgλ
(λn − λ

λn
Jgλn

xn +
λ

λn
xn

)
− Jgλxn‖

≤ ‖un − xn‖+ ‖λn − λ
λn

Jgλn
xn +

λ

λn
xn − xn‖

≤ ‖un − xn‖+
(

1− λ

λn

)
‖un − xn‖

≤
(

2− λ

λn

)
‖un − xn‖.

Hence,
lim
n→∞

‖xn − Jgλxn‖ = 0. (3.15)

Since Jgλ is single valued and nonexpasive, using (3.15) and Lemma 2.1, then ω ∈ F (Jgλ) = argminu∈K g(u).
Therefore, ω ∈ Γ.On other hand, using the fact that x∗ solves (3.4), we then have

lim sup
n→+∞

〈Ax∗, x∗ − xn〉 = lim
j→+∞

〈Ax∗, x∗ − xnj
〉

= 〈Ax∗, x∗ − ω〉 ≤ 0.

Finally, we show that xn → x∗.

‖xn+1 − x∗‖2 = ‖PK(I − ηαnA)yn − x∗‖2

≤ 〈(I − ηαnA)yn − x∗, xn+1 − x∗〉
= 〈(I − ηαnA)yn − x∗ − αnηAx∗ + αnηAx

∗, xn+1 − x∗〉
≤ ‖(I − αnηA)(yn − x∗)‖‖xn+1 − x∗‖

+αn〈ηAx∗, x∗ − xn+1〉
≤ (1− αnτ)‖xn − x∗‖‖xn+1 − x∗‖+ αn〈ηAx∗, x∗ − xn+1〉
≤ (1− αnτ)‖xn − x∗‖2 + 2αnη〈Ax∗, x∗ − xn+1〉.

From Lemma 2.3, its follows that xn → x∗. We can check that all the assumptions of Lemma 2.3 are satisfied.
Therefore, we deduce xn → x∗.
Case 2. Assume that there is not n0 ∈ N such that {‖xn − x∗‖} is not monotonically decreasing sequence. Set
Ωn = ‖xn − x∗‖ and τ : N→ N be a mapping for all n ≥ n0 (for some n0 large enough) by τ(n) = max{k ∈ N : k ≤
n, Ωk ≤ Ωk+1}.
We have τ is a non-decreasing sequence such that τ(n) → ∞ as n → ∞ and Ωτ(n) ≤ Ωτ(n)+1 for n ≥ n0. From
(3.8), we have

m∑
i=1

βi(β0 − ki)
∥∥∥uτ(n) − viτ(n)

∥∥∥2

≤ ατ(n)B.

Furthermore, we have

lim
n→+∞

m∑
i=1

βi(β0 − ki)‖uτ(n) − viτ(n)

∥∥∥2

= 0.



104 T. M. M. Sow

Since β0 ∈]µ, 1[, we have

lim
n→∞

∥∥∥uτ(n) − viτ(n)

∥∥∥2

= 0. (3.16)

Since viτ(n) ∈ Tiuτ(n), it follows that

lim
n→∞

d
(
uτ(n), Tiuτ(n)

)
= 0 ∀ i = 1, · · · ,m. (3.17)

By same argument as in case 1, we can show that xτ(n) converges weakly in K and lim sup
n→+∞

〈Ax∗, x∗ − xτ(n)〉 ≤ 0.

We have for all n ≥ n0,

0 ≤ ‖xτ(n)+1 − x∗‖2 − ‖xτ(n) − x∗‖2 ≤ ατ(n)[−τ‖xτ(n) − x∗‖2 + 2η〈Ax∗, x∗ − xτ(n)+1〉],

which implies that

‖xτ(n) − x∗‖2 ≤
2η

τ
〈Ax∗, x∗ − xτ(n)+1〉.

Then, we have
lim
n→∞

‖xτ(n) − x∗‖2 = 0.

Therefore,
lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Thus, by Lemma 2.4, we conclude that

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof.

Now, we apply Algorithm 1 for solving fixed points problem involving multivalued nonexpansive mappings
and convex minimization problem without demiclosedness assumption.

Theorem 3.2. Let H be a real Hilbert space and K be a nonempty, closed convex cone of H. Let A : K → H be an α-strongly
monotone and L-Lipschitzian operator, m ≥ 1 be a fixed number, for i, 1 ≤ i ≤ m, let Ti : K → CB(K) be a multivalued
ki-strictly pseudo-contractive mapping and g : K → (−∞, +∞) be a proper convex and lower semi-continuous function

such that Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈K g(y) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ K by:


un = argminu∈K

[
g(u) +

1

2λn
‖u− xn‖2

]
,

yn = β0un +

m∑
i=1

βiv
i
n, v

i
n ∈ Tiun

xn+1 = PK(I − αnηA)yn, n ≥ 0.

(3.18)

With conditions {αn} ⊂ (0, 1) and η > 0 satisfy:

(i) lim
n→∞

αn = 0, (ii) 0 < η <
2α

L2
and

∞∑
n=0

αn =∞,

(iii)β0 ∈]µ, 1[, µ := max
{
ki, i = 1, ....,m

}
, βi ∈ ]0, 1[ and β0 + β1 + · · ·βm = 1.

(iv) {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequences {xn} and {un} defined by
Algorithm 1 converge strongly to x∗ ∈ Γ, which is a minimizer of g in K as well as it is also a common fixed points of Ti in K.

Proof. Since every multivalued nonexpansive mapping is multivalued strictly pseudo-contractive mapping, then,
the proof follows Lemma 2.1 and Theorem 3.1.
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Corollary 3.1. Let H be a real Hilbert space. Let m ≥ 1 be a fixed number, for i, 1 ≤ i ≤ m, let Ti : H → H be a ki-strictly
pseudo-contractive mapping and g : H → (−∞, +∞) be a proper convex and lower semi-continuous function such that

Γ :=

m⋂
i=1

F (Ti) ∩ argminy∈B g(y) 6= ∅. Let {xn} be a sequence defined iteratively from arbitrary x0 ∈ H by:


un = argminu∈H

[
g(u) +

1

2λn
‖u− xn‖2

]
,

yn = β0un +

m∑
i=1

βiTiun

xn+1 = (1− αn)yn, n ≥ 0.

(3.19)

With conditions {αn} ⊂ (0, 1) satisfies:

(i) lim
n→∞

αn = 0, (ii)

∞∑
n=0

αn =∞,

(iii)β0 ∈]µ, 1[, µ := max
{
ki, i = 1, ....,m

}
, βi ∈ ]0, 1[ and β0 + β1 + · · ·βm = 1.

(iv) {λn} is a sequence such that λn ≥ λ > 0 for all n ≥ 1 and some λ. Then, the sequences {xn} and {un} defined by
Algorithm 1 converge strongly to x∗ ∈ Γ.

Proof. Since every single-valued strictly pseudo-contractive is multivalued strictly pseudo-contractive mapping,
then, the proof follows Theorem 3.1.

4. Conclusion
The problem of finding a common element of the set of fixed points of nonlinear operators and the set of

solutions of convex minimization problem has attracted much attention because of its extraordinary utility and
broad applicability in many branches of mathematical science and engineering. General terative algorithm and
proximal point algorithm are remarkably useful methods for solving most important problems with nonlinear
operators. In this article, we introduce and analyze a new iterative algorithm for approximating a common
solution of an equilibrium problem, variational inequality problems and fixed point problems with a finite family
of multivalued strictly pseudo-contractive mappings without imposing any compactness-type condition on either
the operators or the space considered. The results obtained in this paper are important improvements of recent
important results in this field.
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