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ESCRIBED AND INSCRIBED SIMPLICES AND BEVAN POINT
THEOREM ON n-DIMENSIONAL EUCLIDEAN SPACE WITH
n=3

KENZI SATO

(Communicated by H. Hilmi HACISALIHOGLU)

ABSTRACT. Escribed and inscribed triangles for a triangle on the plane is
generalized to a simplex on the n-dimensional Euclidean space with n = 3.
As an application, we can get Bevan Point Theorem for a simplex on the
n-dimensional Euclidean space.

1. INTRODUCTION.

For a triangle on the plane, three perpendiculars from vertices to the opposite
edges are concurrent and their common point is called the orthocenter of the tri-
angle. Moreover, the common point is consistent with the incenter of the inscribed
triangle, whose vetices are feet of the perpendiculars above. Conversely, the incen-
ter of a triangle is consitent with the orthocenter of the escribed triangle, whose
vetices are excenters. In this paper we generalize it to a simplex on higher dimen-
sional Euclidean space, however, for higher dimensional case, the perpendiculars
from vertices to the opposite faces are not concurrent in general, so there exist sev-
eral ways of generalization. We choose one of these ways of generalization, because
in the way we can calculate the escribed and inscribed simplices explicitly and we
can generalize the following theorem to a simplex on higher dimensional Euclidean
space:

Theorem 1.1. (Bevan point theorem) [2] Let A%(qq,q;,qs) be a triangle on the
plane R? with vertices qy, q;, and, q,, and A%(q¥, q¥, qF) the triangle with vertices
ay, 4%, and q¥, which are excenters of A*(qy,q,,qy). Then, the vector c® — qF
is perpendicular to the edge Al(qy,q,) for distinct i, k, £ =0, 1, 2, and we have

c® =2c—1i, RE = 2R,

where i, ¢, and R are the incenter, the circumcenter, and the circumradius of
A%(qg,q;,4,), and c® and RE are the circumcenter and the circumradius of
A2(qF, qf, qb), respectively.
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qb

There exist three ways of generalization of the escribed and the inscribed trian-
gles of a triangle on R? to the escribed and the inscribed simplices of a simplex on
R"™ for n 2 3.

(A)

For a simplex A™(qq,...,q,) on R™, the inscribed simplex is the simplex
such that the i-th vertex of it is the foot of the perpendicular from the
vertex q; to the opposite face A"~1(qy,...q; .. .,q,), where the circumflex
indicates that the term below it has been omitted. In overview, the escribed
simplex is the image of the inverse mapping of the mapping from simplices
to their inscribed simplices.

For a simplex A"(qq,...,q,) on R™, the escribed simplex is the simplex
such that the opposite face of the i-th vertex of it is including q; and
perpendicular to the straight line passing through i and q;. In overview,
the inscribed simplex is the image of the inverse mapping of the mapping
from simplices to their escribed simplices.

For a simplex A™(qq,...,q,) on R™, the escribed simplex is the simplex
such that the i-th vertex of it is on the straight line passing through i and
q; and its opposite face is including q,. In overview, the inscribed simplex
is the image of the inverse mapping of the mapping from simplices to their
escribed simplices.
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(A) (B) (©)
dn
q1 q1
o0 d0
i i
do / q1 T dn T dn
inscribed simplex escribed simplex escribed simplex

In this paper we use (B):
Definition 1.1. For a simplex
n n
A™(qg,---,4d,) = {ijqj eR"”: ij =1, z; 20 foreach j=0,...,n},
j=0 7=0

the escribed simplex A™(qY, ..., qL) is defined by the simplex with (n—1)-dimensional

face A" 1(qF,. .. qr... ,q2) which is including q; and perpendicular to the vec-
tor i — q;. For a simplex A™(qq,...,q,) whose circumcenter is an interior of
A™(qg,-.-,d,), the inscribed simplex is defined by the simplex whose escribed sim-
plex is A"(qg,...,q,) (notice that the inscribed simplex is uniquely determined,

see Theorem 4.1).

The reason why we use the definition above is that we can calculate the escribed
and inscribed simplices explicitly and we can get the following theorem:

Theorem 1.2. (generalized Bevan point theorem) Let A"(qq,...,q,) be a sim-
plex on R™ and A™(qF,...,qY) its escribed simplex. Then, the vector c® — qF is

~

perpendicular to A"~(qg,...qQ;-..,q,) fori=0,..., n, and we have

_ R?—|c—if?

c?® =2c—i, RE="_" "1
,
where i, ¢, r, and R are the incenter, the circumcenter, the inradius, and the
circumradius of A™(qq, - ..,q,), and c® and RY are the circumcenter and the cir-
cumradius of A™(qf, ..., qY), respectively.

Remark 1.1. For n = 2, the equation M = 2R holds. This is a natural
consequence from Theorems 1.1 and 1.2, but we also have it by direct calculation.
See Remark 2.3.

2. PRELIMINARIES.

For a simplex A™(qy,...,q,) on R™, the family of vectors {qy —d,,,.--,Q,_1 —
q,,} is linearly independent, so it is a basis of R™. Let {tg,...,t,—1} be the dual
basis of it, i.e., (q; — q,,) . tx = d; for i, k=0,..., n— 1, and let t,, = — Z;é t.

Then we have the following proposition and lemma.

Proposition 2.1. For each j = 0,..., n, the dual basis of {qy—q;, - .- qj/—\qj ey
q;} is {to,...tj...,tn}, de, (q; —q;) . tp = dir. — dji fori, k=0,..., n.
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Remark 2.1. Let

~ —

V=(-1)""7det(qy—qy,...q; — q;--- 9, — q;),

which does not depend on the index j = 0,. .., n, where (vg,...,v,_1) is the matrix
that has vg,..., v,_1 as column vectors. Then the signed volume of the simplex
A™(qy,..-,4q,) is V/n! and

(@—-a,) -(@—-a,) - (a—4a,) (d,—1 —a,)
V2 = det ; :
(Apo1—a,) - (g —a,) - (A1 —9p) - (A1 —ay,)

holds. For i =0,..., n, let

ti= (1" (dy — QA —pp - - U — gy -+ Ay, — ) =

= (D" do— gy A — - Ay — g, Ay, — )

which does not depend on k = 0,...,i—1,and £ = i+1,..., n, where {(vo,...,Vy_2))
is the unique vector such that

(vos-- -y Vi2)) . Vi1 = det(vo, ..., V2, V1),

for all v,,_; € R™. Then, t; is perpendicular to the face A"‘l(qp7 e @, dy),
the volume of A""!(qq,...q;...,q,) is |t;|/(n — 1)!, and t; = t;/V holds. See [4].

Lemma 2.1. Let x = Z?:o zjq; be a point in R"™ with Z?:o x; = 1. Then, the
Iktk
[t "

Especially, the foot of the perpendicular from the vertex q to the opposite face
An—l(qO,...a;...,qn) is q — IttTkIZ

foot of the perpendicular from x to the face A" (qq,...qs---,q,) I8 X —

Proof. The vector tj, is perpendicular to A" (qq,...qy - -,q,), S0 it is enough to
show that the point x— T”t":"g is in the affined space spanned by A" ~!(qq,...q - - -,4,,)-
In particular, we have

ik
Ttk Tk
X— %5 =X— —0> tr.t;)(q;, —qi) =
[tx]? |te|? j:O( (9 2
J#k J#k
Tk i 9 n it .tj
=X- W(Z(tk ti)a; + [tk ay) = Z(xj - W)qj7
§=0 3=0

where the first equality is from Proposition 2.1 and the second equality is from
di—oti =0. 4

Remark 2.2. So the height of x from A""1(qg,...qs-..,q,) is [x — (x — Tﬂcitlg )| =

|z |

Tk Especially, the height of q,, from the opposite face is

[t]
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do qn—1 o0 qn-1
We can represent centers and radiuses of the insphere and the circumsphere of a
simplex.

Lemma 2.2. The incenter i, the inradius r, the circumcenter c, and the circum-
radius R of A™(qq,...,q,) can be represented by the following:

n
1
i=r) |tjla,, N et
]Zzzo Y Z?:o“‘j‘

n
Zd?jtj for i=0,...,n,
§=0

N |

1 n
CZQi+§Zd?jtja R=
§=0

where d;; = |q; — qj|.

Proof. For i = Z;L:O rjq; with Z?:o xj = 1, notice that z; > 0 for each j =0,...,
n. The height £ of i from A" !(qq,...qy--.,q,) does not depend on the index

[tel
k = 0,..., n, because the height is equal to the inradius r. So zp = % and
j=01%J
r = ‘f—:l = ﬁ For the circumcenter and the circumradius, it is enough to
j=0ltJ

notice that the result of the following calculation does not depend on k:
2 2

1« 1 —
qk_(qi+§zdzzjtj) = (qk_qi)_izdgjtj =
j=0 =0
2 2

n n n
1 1
=@-2ﬁﬂ%-%”§§ﬁﬁj=§2ﬁﬁj
§=0 §=0 j=0

The following lemma is useful.

Lemma 2.3. The following equations hold:

1 n
(2.1) x—c=—3 3 x—qlt,
1=0

1 n
(2.2) Q=§§:ﬁﬂhh+&ijiJ:Quwm
k=0
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1 n ) n n
(2.3) R? = 5 Z d?jcj for i=0,...,n, Z Z dwczc],
j=0 i=0 j=0
(2.4)
1 n n 1 n n
(x—¢).(y—¢c)=—5 YOS di(wi— i)y —¢j) = R* - 3 SO dmy;,
=0 j=0 i=0 j=0

(25) R ) ) ML AN CAh]

i=0 j=0

2
(2.6) Z\t o, -2 = e il

for arbitrary x = Y x;q; and y = > o yiq; in R™ where ¢ = Y. ¢;q; with

Z?:o Ty = Z?:o Yi = Zy o¢i =1L

Proof. We have all equations by the following direct calculations. For (2.1):
X_C:O+(x_qn)_(c_qn):

=3 ghema+ x—a) (- a,) - 5t =

1 n 1 n
=5 200 ) — (@ = ) = =5 3 et

where the second equality is from Z?:o t; = 0, Proposition 2.1, and Lemma 2.2.
For (2.2):

1 n n
§Zd§ktk ti=(c—q;).t;i= ch(Qk —q;).t;=
k=0 k=0

= ch(éik — 5”) =C; — 5”
k=0

For (2.3):
;Z;)d?jcj—; Od?j(cg Gjn +2dfn: Zd Zd Wb t) +2dfn:
J= J=
=1§n: dj, b Zd i+ Zd in— 0
2k:0 370
Z(EEH:d2 t + ( li
9 kn 'tk 2
k=0 j=0

=((c—q,)+(a, —q,)) . (c—q,) = R?,

and

,sz %—Z Zd ZR%FR?.
=0 7=0
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For (2.4):

(x—c).(y—¢) =Y aila,—q,). > yila,—q,) =) Y ——2" Ty
. P ,

Zdzn Z; Zyj Zx;)zdinyj szm r;y __7zzdlj zyg7
=0 7=0

1=0 j=0 =0 j=0

where the last equality is from >0 2} = Y0 jyi = 0 with 2} = z; — ¢; and
Yi = yi — ¢, and

- %Z > daiy; =

i=0 j=0
3OS ey + 33 e+ 3O+ 33 )
1=0 j=0 1=0 j= jO’LO 10]0
= R? 2R2+Z2R2x’+Z2R2 +ZZd” alyl) = ZZdw iy,
i=0 j=0 =0 j=0 =0 j=0

where the second equality is from (2.3). For (2.5):

x—yP=lx—c+ly—cf—2(x-c).(y-c)=
1 n n
S S )+ (73S ) -
i=0 j=0 i=0 j=0
1 n n
— (2R - 3 DD & (wiys + viwy)) =
i=0 j=0
S s )
=0 j=0

where the second equality is from (2.4). For (2.6):

th la; =i = -3 thyl sz (Okj = rltr|)(0e; — rlte]) =

go k=0 £=0

n n n
=3 Z|tj|(r2d§j|tk| Fr Y dftel =2 Y diltkllte]) =

£=0 k=0 ¢=0

—th |(r Zd Jtk] = (R? = le —1]*)) =
(RQ—l —i|2) R —je—i? _ R?—|c—if?
T T o T ’

where the first equality is from (2.5) for x = q; and y = i, and third and fourth
equalities are from (2.4) for x =y = 1. O

Remark 2.3. The square of the circumradius can be represented by the following

(notice that this fraction is irreducible as a division of polynomials of C[.. ., d;;, . . .],
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1
R? = ~(=5)"*" det

2
dOO

2
an

It is from §9.7.3.7 of [1] or the following caluculation

& 42, -1
by o, oo
det | = det dé d2: :
: : 1
2 2 n0 nn
d%O e d%n -1
= det : : :
dny e 7, -1
Yo dioci Yo diei 1= ¢
d(2)0 d(2)n -1 d(2)()
—det | : D = 2R det |
d?LO e din -1 d1210
2R? 2R? 0 1
— _(_2)7L+1R2‘72’

2
dOn

2
dnn

V2,

d(]n 1
a2, 1
1 0

where the third equality is from (2.3) and the last equality is from

— 2 2 2
dn—l,O - an —d

—2(qp —4a,) - (4o — dy)

B _Q(qn—l - an) . (qO - qn)

an
1

n—1,n

0 -1 —d,
d(2)0 d(2)n
0 . .
2 2
-1 7d72L—1,n drle o dran
. 0
0 1
d(%O - d7210 - d(%n d(z)n - d721n - d(z)n
n—1,n d%—l,n - d?)n - d2
dELO d%n
1 1

—2(qp —ay) - (Ap—1 — dy)

_2(q7L—1 - q2n) . (qn—l - qn)

n,n—1

1

o0 -

—_
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Let n = 2. Then, it means R = di2dgadyi /(2|V]). On the other hand, from Remark

2.2,
d d d 1%
bol = 22, Il = =& Wl e
14 14 14 di2 + doz2 + do1
hold. These and (2.4) for x =y =i imply

R?— lc — i|2 = d%2r|t1|r|t2| + d827"|t0|r|t2| + d31r|t0\r|t1\ =

5 |2|:

) do2 do1 2 di2 do1
=diy + di +
dy2 + do2 + do1 d12 + do2 + do1 dy2 + do2 + do1 d12 + do2 + do1
dis do2 di12dp2dor

+d? .
s+ do2 + do1 di2 + do2 + doy d12 + do2 + dox
So we have
a2y 1 diadoador  diz + do2 + do1
R* —lc—i*)- = ~ =2R.
( | | )7‘ di2 + do2 + do1 V]

3. ESCRIBED SIMPLICES AND GENERALIZATION OF BEVAN POINT THEOREM.
The following theorem is the explicit representation of the escribed simplex.

Lemma 3.1. Let A"(qY,...,qE) be the escribed simplex of A™(qq,-..,q,). Then,
we have

Foze—i  Holemifti oy rlbili-q)
r ] R? —|c—1i]?
R2_ _ 32
CE:QC*L RE:#; C?:Hti‘a
z”: . 1 z”: |t§3|2qE B i
E =~ p2_|c_il2’ E Y 7 p2_|c_jl2’
=G R? —|c—1{ =G R? —|c —1i]
fori=0,..., n.
Proof. First, we have
JFi
Y |t;]
ar =i+ (qf —1i) :1+Z((q§—1).(qj —1))(t; — |t-|ti) =
— i

J#Z

t;
—1+Z|q]—1| t; —m ; —1+Z|qj—1\ t; _|t|| i) =

7=0

R? —|c—1|2

—i-20l—c)— . o

where the second equality is from the duality of {q, —1i,... (f—\l ..,q, —i} and

{to — ﬂzo‘lt . I: }t B ‘Ii ‘lt } (this is the special case of the duality of
{qo—x ,...ﬁ...,qn—x} and {to—20t;,...6; — Dt;...,t,— Z2t;}), the third

equality is from the perpendicularity of vectors q; — i and qf - q; for j distinct



30 KENZI SATO

from 4, and the last equality is from (2.1) for x = i and (2.6). From the calculation
above, the following equations are obvious:
R2 _ _ 22
cE e — i _
T
Secondly, we can represent the vector of the dual basis:

o ritli—a)
TR e

=2c—1, RE =

from the calculation

(f ) Tl 0) R leni b by G-
Rl Ul D

R —[c—if? " ol "ol R —Je—i7

= (= m+m |t|Zf“\t| q;) =

Okj — Oki | 0uj — 0ui
[ Sl (- " )=
' ]z:(:) ! [t [te]

T’|tk| 75]“' 7’|tz| 5@1
|t [te]

= [ti|(—
for k, £ = 0,..., n. Thirdly, we have

R2—Je—if® t, rtil(i—q) _

C;‘E —Oni = (CE *qg) -t;‘E =

r [tn] " R%2—|c—il?
[t4]
|t ‘ |t |Z7’|t | qz |tl| Zr“’ | nj — nz) =
n
t;
— 5 il = 62) = ]~ 6.
n

Fourthly, the results above imply
[t7 1

n
J 2
Z CE - (R thJHl q]| ﬂa

j=0 J

where the last equality is from (2.6). At last, we have

- |t3E|2 E r - : 2 o B2 —e—if g
D = ey Il (2o 1) - S o) =
= (= e —iP)” & v Iyl
1 NN
:m(QC_I)_Z‘l_%FtJ)_
§=0
1 i

=R feoip 2T = e

where the second equality is from (2.6) and the third equality is from (2.1) for
x = i, respectively. O

Remark 3.1. Notice that cf = r|t;| > 0 for i = 0,..

., m, so the circumcenter of
A"(qF,...,qE) is an interior of it.
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The lemma above is essentially including generalized Bevan point theorem
R%—|c—i|?
— .

Proof of Theorem 1.2. We already get two equations ¢® = 2c—iand R® =
Moreover, the vector ¢® — qP is parallel to t;, so it is perpendicular to the face
A" (qy,...q; ..., q,) O
4. INSCRIBED SIMPLICES.

The following lemma and theorem give us the explicit representation of the

inscribed simplex.
Lemma 4.1. For a simplex A™(qy,...,q,) whose circumcenter is an interior of
,q) be the simplex with vertices

it (i.e., c; >0 for j =0, .., n), let A™(q),...
1 "t )2 t;
1 J v
Z;’L:O |CJ7| = Cj C;

Then, we have the following equations:
I - |tj|2 I - |t |2
t; = (Z ?)Ci(c - q;), |ti| = R(Z o )Cis
j=0 j=0 I
1 1 g 1 - |tj|2Ol
- [t;]2 7 - [t;]2 i YR
RY 0% im0 6 =0
1
2c! — il =¢, (Rl)zf\clfilzzin e
sl
fori=0,...,n
Proof. The equation
n
|t;]
3w
=0
is implied from
tk tg n
t;[? -+ = It;]?
f A Sl SR

SONTE
1 ] Ce

, n. S0, it is obvious that

1] — Z i |2
3

fork:,é:O,...

Hence, we have

B I i)y LT
i=0 =0 % =0 =0 G
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We also have

n n
1 It;|? t;
.1
1 =Zr1\t£|quzcl n [t;]2 (Z CJ qj_i):
i=0 i=0 Zj:() c;  g=0 v
_ 1 i: |‘Gj|2q Yot _ 1 - \thQq
- [t; ]2 ] g [t;12 [t ]2 ] YN
Z?:o (fj =0 i Z?:o c]j Z?:o éj =0 i

The result of the calculation

n

c+i Lo CHi
|T qapl” = |—— -

kDo e =0 >i—o o =0 I Ck
1 - 1 = [t;]? |t
= i O 00 — ) — e (O By — ) — 0 =
Ck Zj—o ¢;  J=0 ijo c; =0 k
1 1 |t =6 [t
(o) - = (B g, SR T
cn Z?:o léjl Z?:o léjl Ck par g Ck
B 1
o It;]2
Ym0 o
does not depend on the index &k = 0,..., n, so we have
I T
1
CI:C—;—I7 and (RI)2_|C—~2_1 _i1|2_n7|t|2
Zj:O CJJ‘

Theorem 4.1. A"(q},...,ql) is the inscribed simplex of A™(qy,...,q,), i.e.,
for arbitrary A™(qq,...,q,), the simplex A"((q®)), ..., (q%)L) is consistent with
A™(qy,---,4d,), and for arbitrary A™(qq, . - -, q,,) whose circumcenter is an interior

of it, the simplexr A™((q))F, ..., (aq")E) is consistent with A™(qy, ..., q,,)-
Proof. We can calculate the vertices of the simplices directly:
P et _

1 n
@)= Q) =

dlj=0 —m =0 I g
]Ocj

. i i—q,
=(R* - |c—i|? - d =q:
RH2 — | —i']? t! e q

IE:QI_'I—( = =q,.
(@); =(2c —1) - nt 7 q;
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Remark 4.1. We can consider other types of correspondence. For example, for
Eg=++=€p_oa=1 aHdEn_lign:*I,
- 1
i1 =T, giltjla; and 7,1, = =
are the center and the radius of one of spheres touching all affined spaces spanned
by (n — 1)-dimensional faces of a simplex A™(qq,...,q,). For A"(q,...,q,) with
R? —lc —ip_1,[> # 0 and 3°7_&5[t;| > 0, let

R2 - |C - in—l,n|2 ti

Tn—1,n Ei‘ti‘7

En_1,n .
q; = 2c — In—1,n —

En—1,n2
. En—1,n En_1ny : . . [t " "
fori =0,...,n. Then, A"(qy" " "",...,qn"""") is the simplex with E;‘I:o e

E E §
0 and g;¢;"""" > 0 for i = 0,..., n (in particular, g;¢; """ = r,_1,»|t;| > 0). On

the other hand, for a simplex A™(qq,...,q,) with Z?:o 1t1” # 0 and g;¢; > 0 for

cj

1=0,...,n,let

2=0 e =0 Y
for i = 0,..., n (notice that the right-hand side above is same to the right-hand
Li_1n Li_1n

side of the formula of the inscribed simplex). Then, A™(q, e, dn ) is
the simplex with (R»-1.7)% — |eln-1n — iI"_l’"\Q # 0 and Z?:o €j|t;"_1'”| > 0 (in

n—1,n
s Inf N t 2 tv 2
particular, Y27_o ;[6;" " | = 37 RISj_o b |e; = RIS,
to the theorem above, these mapppings A"(qg, ..., q, ) — A”(qg"’l’”, .. 7qg"’l’")

> 0). Similar

and A™(qq,.-.,4q,) — A"(qé"’l’", ce, qI”’l‘") are inverse mappings each other.

12

E
qay”

E E
Q" q2 q”
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