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CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI

PLANES

VITOR BALESTRO

(Communicated by Erdal ÖZÜSAĞLAM)

Abstract. In this paper we study a flow by minkowskian curvature where
we have a different Minkowski plane at each time. We derive some evolution

formulas, present sufficient hypotesis for the short time existence and convexity
of solutions and study the motion considering a particular type of families of
Minkowski norms. Also, as a corollary we establish a result about a certain
family of nonlinear parabolic PDE’s.

1. Introduction

The idea behind the Minkowski curvature flow treated in [1] is to consider the
plane R2 with a different norm and study the motion of curves evolving by the
minkowskian curvature in this new context. But, since we are working with (al-
most) arbitrary norms in R2 is quite natural to ask what happens if the norms
change along the motion. There is a (maybe naive) physical application for this:
one can imagine a motion in an ambient where the ”resistence” varies with time.
We will do our generalization as follows: consider R2× [0, T ) ”sliced” in the follow-
ing way: each plane R2 × {t} is identified with the Minkowski plane R2 endowed
with a norm given by a Pt-unit ball with boundary parameterized as usual by pt(θ).
The idea is to consider each curve of the flow lying in one of these planes and evolv-
ing according to its geometry. We could also think about this as a motion in a
2-dimensional fibration over an interval. In this paper we study some results con-
cerning the existence and convergence of the flow under certain conditions to the
family of norms. In section two we define the flow, derive some evolution formulas
and give some conditions on the family of norms that guarantee desired properties
for the flow. In section 3 we study a particular case for what we can ensure exis-
tence of the solution until the (usual) area converges to zero. To finish the paper
we give, using a geometric argument, a estimate for a uniform blow up time for the
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solutions of a family of parabolic PDE’s.

2. The time-dependent minkowskian curvature flow

Let a : S1 × [0, T ) → R a strictly positive smooth function which is π-periodic
on θ for every fixed t. For a function f(θ, t) we will denote the spatial derivatives

by f ′ and the time derivative by ḟ . Suppose that we have a(θ, t) + a′′(θ, t) > 0
everywhere. We can define a family of P-unit balls on R2 defining Pt to be the
region enclosed by the curve:

pt(θ) = p(θ, t) = a(θ, t)er + a′(θ, t)eθ,

where er = (cos θ, sin θ) and eθ = (− sin θ, cos θ), as usual. For each t we have also
the dual ball Qt to Pt. For every t the following holds:

q(θ, t) =
p′(θ, t)

[p(θ, t), p′(θ, t)]
, and

p(θ, t) = − q′(θ, t)

[q(θ, t), q′(θ, t)]

We define the time-dependent minkowskian curvature flow (that, for sake of
convenience, will be called ”generalized flow”, in constrast with the ”usual flow”
studied in [1]) associated to the family of norms given by Pt as an application
F : S1 × [0, T0) → R2, T0 ≤ T , which satisfies

∂F

∂u
(u, t) = v(u, t).q(θ(u, t), t); and

∂F

∂t
(u, t) = −k(u, t).p(θ(u, t), t),

where k(u, t) is the minkowskian curvature of the curve u 7→ Ft(u) calculated with
respect to the Pt norm, and θ(u, t) + π/2 is the angle between ∂F/∂u and the
x-axis. Thus, we can write:

∂F

∂θ
(u, t) = λ(u, t).q(θ(u, t), t)

and then, the curvature is given by

k(u, t) =
[p(θ(u, t), t), p′(θ(u, t), t)]

λ(u, t)

Notice that we have λdθ = vdu. We derive now some evolution formulas.
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Lemma 2.1. We have, for every (u, t) ∈ S1 × [0, T ):

∂v

∂t
= −k2v +

∂ log(a)

∂t
v

Proof. First, we compute

∂

∂t

(
∂F

∂u

)
=

∂v

∂t
q + v

(
∂q

∂θ

∂θ

∂t
+

∂q

∂t

)

Is easy to check that
∂q

∂t
= −∂ log(a)

∂t
q. Since ∂q/∂θ points on the p direction,

writing
∂

∂t

(
∂F

∂u

)
in the basis {p, q} the coefficient of q is

∂v

∂t
− ∂ log(a)

∂t
v. Let us

now compute

∂

∂u

(
∂F

∂t

)
= −∂k

∂u
p− k

∂p

∂θ

∂θ

∂u
= −∂k

∂u
p− k2vq

And then, since u and t are independent parameters we have the desired equality.
�

Notice that we can still work with a Qt-arclength parameter st, but only for a
fixed time. As a corollary of the previous lemma we have an evolution formula to
the Qt-arclength of the curves as follows:

∂LQt

∂t
=

∫ 2π

0

∂v

∂t
du = −

∫ 2π

0

k2v du+

∫ 2π

0

∂ log(a)

∂t
v du,

Lemma 2.2. If there exists M ∈ R such that ȧ(θ, t) ≤ Ma(θ, t) in S1× [0, T ), then
the Qt-lenght of the curves is bounded along the motion.

Proof. The hypotesis gives
∂ log(a)

∂t
≤ M in S1 × [0, T ). Then, we have

∂LQt

∂t
≤
∫ 2π

0

∂ log(a)

∂t
v du ≤ MLQt .

So, Gronwall’s inequality yields LQt ≤ eMTLQ0 .
�
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We can also derive an evolution formula for the area A(t) enclosed by the curves:

∂A

∂t
=

∂

∂t

(
1

2

∫ 2π

0

[
F (u, t),

∂F

∂u
(u, t)

]
du

)
=

=
1

2

∫ 2π

0

[
∂F

∂t
(u, t),

∂F

∂u
(u, t)

]
du+

1

2

∫ 2π

0

[
F (u, t),

∂2F

∂t∂u
(u, t)

]
du =

=

∫ 2π

0

−kv du = −
∫ LQt

0

k dst = −2A(Pt)

Now, is easy to see that the evolution of the isoperimetric ratio is given by

∂

∂t

(
L2
Qt

A(t)

)
= −2LQt

A(t)

(∫ LQt

0

k2dst −A(Pt)
LQt

A(t)

)
+

2LQt

A(t)

∫ LQt

0

∂ log(a)

∂t
dst

Here we observe that the isoperimetric ratio may be an increasing function. More-
over, the evolution of the isoperimetric ratio depends on the choice of the considered
family of norms.

Let us now turn our attention to the existence of such a generalized flow. For
a fixed t we know that a 2π-periodic, positive and C1 function k : [0, 2π] → R is the
t-minkowskian curvature of a simple, closed, strictly convex and C2 curve if and
only if the equalities

∫ 2π

0

a(θ, t) + a′′(θ, t)

k(θ)
sin(θ) dθ =

∫ 2π

0

a(θ, t) + a′′(θ, t)

k(θ)
cos(θ) dθ = 0(2.1)

hold. With this in mind we claim that we don’t need too strong hypotesis to ensure
short-time existence for the generalized flow. This is justified in the next theorem.

Theorem 2.1. Consider a function k : S1 × [0, T0) → R, T0 ≤ T , such that
k ∈ C2+α,1+α(S1 × [0, T0 − ϵ]) for all ϵ > 0, satisfying the evolution equation:

∂k

∂t
=

a

a+ a′′
k2k′′ +

2a′

a+ a′′
k2k′3 +

∂ log(a+ a′′)

∂t
k(2.2)

with initial condition k(θ, 0) = φ(θ), where φ is a strictly positive C1+α function
satistying (1). Assume that t 7→ a(θ, t) + a′′(θ, t) is nondecreasing for each θ ∈ S1.
Then, using this function (whose short term existence is guaranteed by the standard
theory on parabolic equations) one can build the family of curves on parameter t:

F (θ, t) =

(
−
∫ θ

0

a(σ, t) + a′′(σ, t)

k(σ, t)
sinσ dσ −

∫ t

0

a(0, s)k(0, s) ds,

∫ θ

0

a(σ, t) + a′′(σ, t)

k(σ, t)
cosσ dσ −

∫ t

0

a(0, s)k′(0, s) + a′(0, s)k(0, s) ds

)
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for which the following holds:

(a): for each fixed t the map t 7→ F (θ, t) is a simple, closed and strictly con-
vex curve parameterized as usual whose t-minkowskian curvature is given
by θ 7→ k(θ, t)

(b):
∂F

∂θ
(θ, t) = −k(θ, t).p(θ, t)− a(θ, t)2k′(θ, t).q(θ, t)

Proof. The proofs of (b) and of∫ 2π

0

a(σ, t) + a′′(σ, t)

k(σ, t)
sinσ dσ =

∫ 2π

0

a(σ, t) + a′′(σ, t)

k(σ, t)
cosσ dσ = 0

for every t are straightfoward calculations just like in the usual minkowskian cur-
vature flow. Thus, we only need to prove that k is strictly positive in S1 × [0, T0).
But the hypotesis on a+ a′′ guarantees that we have

∂ log(a+ a′′)

∂t
≥ 0 in S1 × [0, T0)

and then we can repeat the proof of the usual case to prove that kMIN(t) is bounded
by below by kMIN(0). This concludes the proof.

�

From the evolution formulas we can see that the area A(t) enclosed by the curve
at time t is a decreasing function. But the decay ratio depends on A(Pt), and then
we cannot readily say that the area converges to 0 even for infinite time. Further-
more, we don’t even can tell if the Qt-lengths have an upper bound. But, working
on a certain class of Pt families we can maybe give good answers to these questions.
We work with a particular case in the next section.

3. Homothetic family of P-balls

Consider a Minkowski norm on R2 given by the set P = P0, whose boundary is
parameterized by

p0(θ) = a0(θ)er + a′0(θ)eθ

where a0 is a C∞ and π-periodic function. Let f : [0,∞) → R be a C∞, positive
and nondecreasing function such that f(0) = 1. Then, we can define a family of
Minkowski norms putting

a(θ, t) = f(t)a0(θ)

and, naturally, p(θ, t) = a(θ, t)er + a′(θ, t)eθ = f(t)p0(θ).

Remark. Even if this looks like a simple reparametrization at the time we point
out that, here, we are calculating the curvatures in a different way at each time.
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This interpretation considers the flow evolving with respect to the geometry of each
space.

The hypotesis that f is nondecreasing guarantees short term existence of the gen-
eralized flow associated to this family of norms, taking by initial conditon a closed,
strictly convex and smooth curve. In this particular case the evolution equation
becames

∂k

∂t
=

a0
a0 + a′′0

k2k′′ +
2a′0

a0 + a′′0
k2k′3 +

ḟ(t)

f(t)
k,

We claim that in this case, if the solution continues until the area enclosed by the
curves goes to 0, then the area converges to 0 in finite time. In fact, notice first that

A(Pt) =

∫ 2π

0

[p(θ, t), p′2
∫ 2π

0

[p0(θ), p
′2
0 A(P0)

Now, the evolution formula for the area guarantees that

A(t) = A(0)− 2

∫ t

0

A(Ps) ds = A(0)− 2

∫ t

0

f(s)2A(P0) ds ≤ A(0)− 2tA(P0),

since f(0) = 1 and f is nondecreasing. Then, A(t) converges to zero for some time
T1 ≤ A(0)/A(P0).

Our next claim is that we have an upper bound for the Qt-length of the curves

in finite time. In fact, for finite time we can take an upper bound for
ḟ(t)

f(t)
and use

Lemma 2.2. This proves that the Qt-lenght doesn’t blow up along the motion.

We will now prove that in this case we also have solution until the area con-
verges to 0. The strategy is basically the same that in the usual case treated in [1].
We consider a solution k of (2) defined on S1 × [0, T ) such that the area enclosed
by the associated curves remains bounded away from zero (i.e., we have T ≤ T1)
and prove that k and its derivatives are bounded in S1 × [0, T ). Finally, we use
Ascoli-Arzela’s theorem to extend k past T . The difference here is that we have to
deal with bounds to f and its derivatives. This shouldn’t be a problem since we
are working with a finite time interval [0, T ) ⊆ [0, T1], and then compacity and the
smoothness of f guarantee the needed bounds.

Recall that in the minkowski plane we still can define the median curvature of a
curve parameterized by the usual θ as the supremum of the values x for which we
have k(θ) > x in some interval of length π. We have the estimate

k∗ ≤ C
LQ

A

for a constant C given by
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C =

(
max

θ∈[0,2π]
|q(θ)|

)2

max
θ∈[0,2π]

[p(θ), p′(θ)]

And then, in our generalized case we have

k∗(t) ≤ C(t)
LQt

A(t)
,

with

C(t) =

(
max

θ∈[0,2π]

∣∣∣∣ 1

a(θ, t)

∣∣∣∣)2

max
θ∈[0,2π]

[p(θ, t), p′(θ, t)]

The point here is that there is an uniform upper bound for the median curvature
along the motion if the area is bounded by below by a constant greater then zero.
We already know that we have an upper bound for LQt . We also can (in such a
natural way!) produce an uniform upper bound for C(t) just rewriting

C(t) =
1

f(t)2

(
max

θ∈[0,2π]

1

a0(θ)

)2

f(t)2 max
θ∈[0,2π]

[p0(θ), p
′
0(θ)] =

=

(
max

θ∈[0,2π]

1

a0(θ)

)2

max
θ∈[0,2π]

[p0(θ), p
′
0(θ)]

This is summarized as follows

Lemma 3.1. If A(t) is bounded away from zero on [0, T ), then there is an uniform
upper bound for k∗(t) in [0, T ).

By consequence we have the following proposition

Proposition 3.1. If k∗(t) is bounded in [0, T ), then the function

t 7→
∫ 2π

0

(a0(θ) + a′′0(θ))a0(θ) log

(
k(θ, t)

f(t)

)
dθ

is also bounded in [0, T ).

Proof. A straightfoward calculation gives us

d

dt

(∫ 2π

0

(a0(θ) + a′′0(θ))a0(θ) log

(
k(θ, t)

f(t)

)
dθ

)
=

=

∫ 2π

0

(a0(θ)k(θ, t))
2 − ((a0(θ)k(θ, t))

′)
2
dθ

From now on we use basically the same strategy used in the usual case. Fix any
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t ∈ [0, T ) and let A = {θ ∈ [0, 2π] | k(θ, t) > k∗(t)}. We have the estimate on A:∫ 2π

0

(a0k)
2 − ((a0k)

′)
2
dθ ≤ 2k∗(t)

∫ 2π

0

a0(a0 + a′′∗0 (t)2
∫
A

(a′20 + 2a0a
′′
0 + a20dθ

Here we must take some care with the first integral on the right side. First, notice
that

∫ 2π

0

a0(a0 + a′′0)k dθ =
1

f(t)2

∫ 2π

0

[p(θ, t), p′(θ, t)]k dθ =
1

f(t)2

∫ 2π

0

k2λ dθ =

1

f(t)2

∫ 2π

0

k2v du

This is not the derivative of LQt with changed sign as in the usual case, but this
won’t be a problem. Once we have∫ 2π

0

k2v du = −∂LQt

∂t
+

ḟ(t)

f(t)

∫ 2π

0

v du = −∂LQt

∂t
+

ḟ(t)

f(t)
LQt

we can use uniform bounds (remember f is bounded by below by 1) for f , ḟ and
LQt to write

1

f(t)2

∫ 2π

0

k2v du ≤ −C0
∂LQt

∂t
+ C1

for constants C0, C1 > 0 which don’t depend on t. This yields∫ 2π

0

(a0k)
2 − ((a0k)

′)
2
dθ ≤ −2k∗(t)C0

∂LQt

∂t
+ 2k∗(t)C1 + 2πk∗(t)C2,

where C2 = max
θ∈[0,2π]

∣∣(a′20 + 2a0a
′′
0 + a20

∣∣. Now, integrating and using, again, a bound

for LQt yields the desired estimate for finite time, which is what we want.
�

Corollary 3.1. In the same conditions of the proposition the function t 7→
∫ 2π

0

a0(a0+

a′′0) log(k) dθ is bounded in [0, T ).

Proof. Let M be an upper bound given for

∫ 2π

0

a0(a0 + a′′0) log

(
k

f

)
dθ. Then,

∫ 2π

0

a0(a0 + a′′0) log(k) dθ ≤ M + log(f(t))

∫ 2π

0

a0(a0 + a′′0) dθ,

and then we have the desired since log(f(t)) is bounded for finite time. Notice also
that we have an obvious lower bound (not necessarily positive):∫ 2π

0

a0(a0 + a′′0) log (kMIN(0)) dθ ≤
∫ 2π

0

a0(a0 + a′′0) log(k) dθ
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for every t ∈ [0, T ). �

Proposition 3.2. There exists a constant N ≥ 0 such that∫ 2π

0

((a0(θ)k(θ, t))
′)
2
dθ ≤

∫ 2π

0

(a0(θ)k(θ, t))
2
dθ +N

for every T ∈ [0, T ).

Proof. We will first consider the function g : [0, T ) → R given by :

g(t) =

∫ 2π

0

(a0(θ)k(θ, t))
2−((a0(θ)k(θ, t))

′)
2
+2a0(θ) (a0(θ) + a′′0(θ)) log(k(θ, t))

ḟ(t)

f(t)
dθ

After some calculations we have that its derivative is given by

dg

dt
=

∫ 2π

0

2a0(a0 + a′′0)

k2

(
∂k

∂t

)2

+ 2a0(a0 + a′′0) log(k)
∂2 log(f)

∂t2
dθ

and then,

dg

dt
≥ 2

∫ 2π

0

a0(a0 + a′′0) log(k)
∂2 log(f)

∂t

2

dθ ≥

≥ 2
∂2 log(f)

∂t2

∫ 2π

0

a0(a0 + a′′0) log (kMIN(0)) dθ ≥ C

for some constant C that we cannot take positive because we may have kMIN(0) < 1.
In particular we can assume C < 0. Notice that we used, again, uniform bounds
for f and its derivatives in finite time. By integration we have, for each t ∈ [0, T )

g(t) ≥ g(0) + Ct ≥ g(0) + CT,

since C < 0. Then, substituting g by its expression and rearranging the terms we
have for every t ∈ [0, T ),

∫ 2π

0

((a0k)
′)
2
dθ ≤ −g(0)− CT +

∫ 2π

0

(a0k)
2dθ + 2

ḟ(t)

f(t)

∫ 2π

0

a0(a0 + a′′0) log k dθ ≤

≤
∫ 2π

0

(a0k)
2dθ − g(0)− CT +M,

where M is a time-independent constant given by bounds on f and f ′ and by the
previous corollary. Taking N to be any positive number greater than −g(0)−CT +
M yields the desired.

�

Lemma 3.2. If

∫ 2π

0

a0(a0+a′′0) log (k) dθ is bounded in [0, T ), then for any δ > 0

there exists a constant C such that if k(θ, t) > C in an interval J (varying the
parameter θ) then we have necessarily |J | ≤ δ.



CURVATURE MOTION IN TIME-DEPENDENT MINKOWSKI PLANES 79

Proof. The proof is identical to the proof in the usual case.
�

Proposition 3.3. If

∫ 2π

0

a0(a0 + a′′0) log (k) dθ is bounded in [0, T ), then k(θ, t)

has an upper bound in S1 × [0, T ).

Proof. The proof is, again, identical to the proof in the usual case.
�

Combining these lemmas and propositions yields

Theorem 3.1. If the area A(t) enclosed by the curves associated to the t-minkowskian
curvature function k admits a strictly positive lower bound on [0, T ), then k is uni-
formly bounded in S1 × [0, T ).

Let us prove now that the first spatial derivative of k is also bounded provided
k is bounded.

Proposition 3.4. If k is bounded in S1 × [0, T ), then k′ is also bounded in S1 ×
[0, T ).

Proof. As in the usual case, consider the function u : S1 × [0, T ) → R given by
u = k′ct+h(θ), where h(θ) = log

(
a0(θ)

2
)
and c is to be choosen later. After some

calculations we have that u is a solution of the second-order linear parabolic equa-
tion:

∂u

∂t
=

(
c+ 3k2 +

ḟ(t)

f(t)

)
u− k2

2a′0
a0 + a′′0

∂u

∂θ
+

∂

∂θ

(
k2

a0
a0 + a′′0

∂u

∂θ

)
Now, using bounds for k, f and ḟ one can choose c such that the coeficient of u
is nonpositive. Then, using the maximum principle we have that u is bounded in
S1 × [0, T ), and then k′ is also bounded since we are working with finite time.

�
To show that the higher derivatives of k are also bounded in S1 × [0, T ) we re-

peat the proof of the usual case adding some terms given by the new term on the
evolution equation. The bounds for f and its derivatives will provide the necessary
bounds for this new terms. Thus we have, as in the usual case:

Theorem 3.2. The solution to the generalized minkowskian curvature flow asso-
ciated to the family of norms given by a(θ, t) = f(t)a0(θ) where a0 is a positive,
π-periodic and C∞ function, and f is a positive, nondecreasing, C∞ function with
f(0) = 1 continues until the area enclosed by the curves converges to zero.

Since the solution cannot continues after the area goes to zero we have an corol-
lary concerning the blow up of a family of PDE’s.
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Corollary 3.2. Fix a function g : S1 → R which is smooth and π-periodic, and a
smooth and strictly positive function u0 : S1 → R such that∫ 2π

0

g(θ) + g′′(θ)

u0(θ)
sin(θ)dθ =

∫ 2π

0

g(θ) + g′′(θ)

u0(θ)
cos(θ)dθ = 0.

Let F be the family of the positive, nondecreasing and smooth functions f : [0,∞) →
R with f(0) = 1, and consider the associated family of PDE’s:

ut =
g

g + g′′
u2uθθ +

2g′

g + g′′
u2uθ + u3 +

ḟ

f
u

u(0) = u0

Then, we must have an uniform upper bound for the blow up time of the solutions
to these PDE’s that only depends on g and u0. In other words, there exists a time
T = T (u0, g) such that picking any solution u for some of these PDE’s we must
have u or some of its derivatives blowing up for some t ≤ T . The time T is explicitly
given by the ratio T = A/2B where A is the area of the curve whose minkowskian
curvature with respect to the norm given by the curve a : θ 7→ g(θ)er + g′(θ)eθ is
u0; and B is the area of the curve a.

Even though this might be obvious for someone who has familiarity with non-
linear parabolic PDE’s, we think the interest here is that we arrived at this result
using, essencially, geometric methods.
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