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THE ISOMETRY GROUP OF CHINESE CHECKER SPACE
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(Communicated by Yusuf YAYLI )

Abstract. In this article, we, firstly, find that the spheres in the Chinese
Checkers space are deltoidal icositetrahedrons. Then we show that the group

of isometries of the 3-dimensional space with respect to Chinese Checkers met-
ric is the semi-direct product of deltoidal icositetrahedron group G(D) and
T (3), where G(D) is the (Euclidean) symmetry group of the deltoidal icosite-
trahedron and T (3) is the group of all translations of the 3-dimensional space.

1. Introduction

Convex sets plays an important role in determination of the group of isometries
of certain geometries. Minkowski geometry is a non-Euclidean geometry in a finite
number of dimensions that is different from elliptic and hyperbolic geometry (and
from the Minkowskian geometry of space-time). In a Minkowski geometry the
linear structure is the same as the Euclidean one but distance is not uniform in all
directions. Instead of the usual sphere in Euclidean space, the unit ball is a certain
symmetric closed convex set (Thompson [16]). Each of the geometries induced by
maximum, taxicab, Chinese Checkers, αi and λ−distances is one of the geometry
of this type ( [11], [13], [7], [14], [10], [8]).

Chinese Checkers geometry proposed by Krause [[11], p.65] asking the question
of how to develop a metric which would be similar to the movement by playing
Chinese Checkers. Later Chen [4] gave such a metric for the coordinate plane.
CC-plane geometry has been studied and improved by some mathematicians, (for
some references see So [15] and Colakoglu-Kaya [5]). Three dimensional CC-space
has been introduced and studied analytically by Gelisgen-Kaya-Ozcan [6]. In this
work which is motivated by [9] and [8], we extend the result of CC-plane to three
dimensional CC-space and determine the group of isometries of it.

2. The CC-Spheres and Preliminaries

The Chinese Checkers 3-dimensional space R3
c is almost the same as the Eu-

clidean analytical 3-dimensional space R3. The points, lines and planes are the
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same, and the angles are measured in the same way, but the distance function
is different. CC-metric for 3-dimensional analytical space was introduced in [6].
CC-metric is defined using the following distance function

dc(A,B) = dL(A,B) +
(√

2− 1
)
dS(A,B)

where
dL(A,B) = max {|x1 − x2| , |y1 − y2| , |z1 − z2|}

and

dS(A,B)=min {|x1 − x2|+ |y1 − y2| , |x1 − x2|+ |z1 − z2| , |y1 − y2|+ |z1 − z2|}
where A = (x1, y1, z1), B = (x2, y2, z2) . According to definition of dc−distance the
shortest path between the points A and B is the union of three line segments which
one of them is parallel to a coordinate axes and other line segments each making
π/4 angle with one of other coordinate axes as shown in Fig. 1. Thus, the shortest
dc−distance between A and B is sum of the Euclidean lengths of such three line
segments.

Figure 1(a) Figure 1(b)

Figure 1(a) and Figure 1(b) illustrate CC way from A to B in the case
|y1 − y2| ≥ |x1 − x2| ≥ |z1 − z2| and some of ways from A to B, respectively.

Proposition 2.1. A chinese Checkers sphere is a deltoidal icositetrahedron.

Proof. A Chinese Checkers sphere (ball) with center O and radius r in R3
c is the

set of points (x, y, z) in the 3-dimensional space satisfying the equation

max {|x| , |y| , |z|}+
(√

2− 1
)
min {|x|+ |y| , |x|+ |z| , |y|+ |z|} = r

which is a polyhedra which has 24-faces with vertices
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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as shown in Fig. 2. �

Figure 2(a) Figure 2(b)

Figure 2(a) and Figure 2(b) show the graph of the CC−sphere and graph of the
unit CC−sphere in the first octant, respectively.

CC-unit sphere has 24 deltoidal faces each of which is the part of plane having
one of the following equations

∓x∓
(√

2− 1
)
(y ∓ z)± 1 = 0

∓y ∓
(√

2− 1
)
(x∓ z)± 1 = 0

∓z ∓
(√

2− 1
)
(x∓ y)± 1 = 0.

In order to obtain the faces of CC-unit sphere, it is enough to take x, y, z ∈ [−1, 1]
in the above equations. It is clear from Figure 2, CC-unit sphere consist of 24
(twenty-four) deltoids or kites. The short and long edges of each deltoid are in the
ratio 1, 00 : 1, 29.

It is clear from the above information that a CC-sphere is a polyhedra with 24
faces, 48 edges and 26 vertices. This polyhedra is neither a regular nor a semiregular
solid but satisfies the Euler relation V − E + F = 2. Also this polyhedra is a

Catalan solid. Each of 24 edges have length
√

2−
√
2 and the other 24 have length(√

208− 136
√
2
)
/14 Euclidean unit. Each of 8 vertices joins exactly 3 deltoids

and 3 edges; and the remaining 18 vertices join 4 deltoids and 4 edges.
The CC-sphere is one of the Catalan solids and its special name is Deltoidal

icositetrahedron. A Catalan solid is a dual polyhedron to an Archimedean solid.
The Catalan solids are named for the Belgian mathematician, Eugène Catalan, who
first described them in 1865.

The Catalan solids are all convex. They are face-transitive but not vertex-
transitive. This is because the dual Archimedean solids are vertex-transitive and
not face-transitive. Note that unlike Platonic solids and Archimedean solids, the
faces of Catalan solids are not regular polygons. However, the vertex figures of
Catalan solids are regular, and they have constant dihedral angles. A deltoidal
icositetrahedron is a Catalan solid which looks a bit like an overinflated cube. Its
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dual polyhedron is the rhombicuboctahedron. The deltoidal icositetrahedron is
topologically identical to a cube which has all of its edges bisected.

We take the following Lemma from Gelişgen-Kaya-Ozcan [6], which will be useful
to determine reflections in R3

c .

Lemma 2.1. Let l be the line through the points A=(x1, y1, z1) and B=(x2, y2, z2)
in the analytical 3-dimensional space and dE denote the Euclidean metric. If l has
direction vector (p, q, r), then

dc(A,B) = µABdE(A,B)

where

µAB =
max {|p| , |q| , |r|}+(

√
2− 1)min {|p|+ |q| , |p|+ |r| , |q|+ |r|}√

p2 + q2 + r2
.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr, r ∈ R.
Thus, dc(A,B) = |λ|

(
max {|p| , |q| , |r|}+(

√
2− 1)min {|p|+ |q| , |p|+ |r| , |q|+ |r|}

)
and dE(A,B) = |λ|

√
p2 + q2 + r2 which implies the required result. �

The above lemma says that dc-distance along any line is some positive constant
multiple of Euclidean distance along same line. Thus, one can immediately state
the following corollaries:

Corollary 2.1. If A, B and X are any three collinear points in R3, then
dE(A,X) = dE(B,X) if and only if dc(A,X) = dc(B,X) .

Corollary 2.2. If A, B and X are any three distinct collinear points in the real
3-dimensional space, then

dc(X,A) / dc(X,B) = dE(X,A) / dE(X,B) .

That is, the ratios of the Euclidean and dc−distances along a line are the same.

In the remaining part of this work, we will study the isometries of R3
c , and

determine its group of isometries.

3. Isometries of The Chinese Checkers Space (R3
c)

One of the basic problems in geometric investigations for a given space S with a
metric d is to describe the group G of isometries. If S is the Euclidean 3-dimensional
space with the usual metric, then it is well known that G consists of all of trans-
lations, rotations, reflections, glide reflections, rotary reflection and screw of the
3-dimensional space.

It is known that for the Euclidean 3-dimensional space G = E(3) is the semi-
direct product of its two subgroups O(3) (the orthogonal group) and T (3), where
O(3) is the symmetry group of the unit sphere and T (3) (the translation group)
consists of all translations of 3-dimensional space.

Throughout the article we use the following definitions needed, which adopted
from Martin [12]:

A transformation on Chinese Checkers 3-space R3
c is one-to-one correspondence

from the set of points in space onto itself. Transformation α is called an isometry
if dc(X,Y ) = dc(α(X), α(Y )) for all points X and Y. The identity i is defined by
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i(X) = X for every point X. Isometry α is a symmetry for set of points if α fixes
that set of points.

If ∆ is a plane, then the reflection σ∆ is the mapping on the points in Rc such
that σ∆(X) = X if point X is on ∆ and σ∆(X) = Y if point X is off ∆ and plane
∆ is perpendicular bisector of the line segment XY.

If two planes Γ and ∆ intersect at line l, then σ∆σΓ is called a rotation about
axis l.

If Γ and ∆ are two intersecting planes each perpendicular to plane Π, then
σΠσ∆σΓ is called a rotary reflection (a rotatory reflection) about the point common
to Γ,∆ and Π. If M is a point, the inversion σM about M is the transformation
such that σM (X) = Y for all points X where M is the midpoint of X and Y . σM

is sometimes called a point reflection.
If Γ and ∆ are two intersecting planes and M is a point common to Γ,∆, then

σMσ∆σΓ is called a rotary inversion.
If planes Γ and ∆ are parallel, that is, Γ ∥ ∆, then σ∆σΓ is a translation along

the common perpendicular lines to planes Γ and ∆.
Since the CC-space geometry is the study of Euclidean points, lines, planes and

angles in R3, an isometry of R3
c is therefore an isometry of the real space with

respect to the dc metric.

Proposition 3.1. Every Euclidean translation of R3 is an isometry of R3
c .

Proof. Let TA : R3
c → R3

c such that TA(X) = A +X be translation as in the real
3-dimensional space R3, where A = (a1, a2, a3) and X = (x1, y1, z1) ∈ Rc . For
X = (x1, y1, z1) and Y = (x2, y2, z2) ∈ Rc , we have

dc (TA(X), TA(Y ))=max {|a1+x1−a1−x2| , |a2+y1−a2−y2| , |a3+z1−a3−z2|}
+(

√
2− 1)min {|a1+x1−a1−x2|+ |a2+y1−a2−y2| ,

|a1+x1−a1−x2|+ |a3+z1−a3−z2| , |a2+y1−a2−y2|+ |a3+z1−a3−z2|}
= max {|x1 − x2| , |y1 − y2| , |z1 − z2|}+(

√
2− 1)

min {|x1 − x2|+ |y1 − y2| , |x1 − x2|+ |z1 − z2| , |y1 − y2|+ |z1 − z2|}
= dc (X,Y ) .

That is, TA is an isometry. �

Notice that it is enough to consider the planes passing through the origin to find
the rotations and the reflections in R3

c by Proposition 3.1. The following lemma
helps to determine the reflections which preserves the distance in R3

c .

Lemma 3.1. A reflection about the plane ∆ : ax+by+cz = 0 in R3
c is an isometry

if and only if (a, b, c) is parallel to an element the set of vectors

D = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (±1, 1, 0), (1, 0,±1), (0, 1,±1)} .

Proof. Without loss of the generality consider the Euclidean reflection σ∆ about
the plane ax + by + cz = 0 with the unit normal vector (a, b, c), σ∆ : R3

c → R3
c

such that σ∆(x, y, z)=(
(1− 2a2)x− 2aby − 2acz,−2abx+(1− 2b2)y − 2bcz,−2acx− 2bcy+(1− 2c2)z

)
.

Since vector set {E1 = (1, 0, 0) , E2 = (0, 1, 0) , E3 = (0, 0, 1)} is a base of R3, a re-
flection which preserves this base must be an isometry. So it is sufficient to de-
termine the reflections which preserves vectors of this base. Applying Euclidean
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reflection to vectors of the base, one can get

σ∆ (1, 0, 0) =
(
1− 2a2,−2ab,−2ac

)
σ∆ (0, 1, 0) =

(
−2ab, 1− 2b2,−2bc

)
σ∆ (0, 0, 1) =

(
−2ac,−2bc, 1− 2c2

)
.

Clearly dc (O,E1) = dc (O,E2) = dc (O,E3) = 1. If a reflection preserves dc-
distance, we must look for a, b, c which implies

dc (σ∆(O), σ∆(E1)) = dc (σ∆(O), σ∆(E2)) = dc (σ∆(O), σ∆(E3)) = 1.
Thus,

dc (σ∆(O), σ∆(E1)) = 1
dc (σ∆(O), σ∆(E2)) = 1
dc (σ∆(O), σ∆(E3)) = 1

if and only if

max
{∣∣2a2 − 1

∣∣ , |2ab| , |2ac|}+ (
√
2− 1)

min
{∣∣2a2 − 1

∣∣+ |2ab| ,
∣∣2a2 − 1

∣∣+ |2ac| , |2ab|+ |2ac|
}
= 1

max
{
|2ab| ,

∣∣2b2 − 1
∣∣ , |2bc|}+ (

√
2− 1)

min
{
|2ab|+

∣∣2b2 − 1
∣∣ , |2ab|+ |2bc| ,

∣∣2b2 − 1
∣∣+ |2bc|

}
= 1

max
{
|2ac| , |2bc| ,

∣∣2c2-1∣∣}+ (
√
2-1)

min
{
|2ac|+ |2bc| , |2ac|+

∣∣2c2 − 1
∣∣ , |2bc|+ ∣∣2c2 − 1

∣∣} = 1.

Now, one can solve this system of equations and obtain the solutions

(1, 0, 0), (0, 1, 0), (0, 0, 1), (± 1√
2
, 1√

2
, 0), ( 1√

2
, 0,± 1√

2
) and (0, 1√

2
,± 1√

2
).

Conversely, if (p1, q1, r1) and (p2, q2, r2) are the direction vectors of the lines OX
and OY, where σ∆(X) = Y, then dE(O,X) = dE(O, Y ),dc(O,X) = µOXdE(O,X),
dc(O, Y )=µOY dE(O, Y )=µOY dE(O,X), where

µAB =
max {|p| , |q| , |r|}+(

√
2− 1)min {|p|+ |q| , |p|+ |r| , |q|+ |r|}√

p2 + q2 + r2

by Lemma 2.1. Now it is easy to check that µOX = µOY for all possible cases in
the following table, which implies dc(O,X) = dc(O, Y ).

∆ (p2, q2, r2)
x = 0 (−p1, q1, r1)
y = 0 (p1,−q1, r1)
z = 0 (p1, q1,−r1)

x+ y = 0 (−2q1,−2p1, 2r1)
x− y = 0 (2q1, 2p1, 2r1)

∆ (p2, q2, r2)
x+ z = 0 (−2r1, 2q1,−2p1)
x− z = 0 (2r1, 2q1, 2p1)
y + z = 0 (2p1,−2r1,−2q1)
y − z = 0 (2p1, 2r1, 2q1)

Thus, the set Sc of isometric reflections about the planes passing through the
origin consists of the nine Euclidean reflections given above. �

Lemma 3.2. A rotation rθ about a line l passing through O = (0, 0, 0) is an
isometry if and only if rθ ∈ Rc = R1 ∪R2 ∪R3 such that

R1= {rθ | θ ∈ {π/2, π, 3π/2} , rotation axis has a direction vector in D1}
R2= {rθ | θ ∈ {2π/3, 4π/3} , rotation axis has a direction vector in D2}
R3= {rθ | θ = π, rotation axis has a direction vector in D3}

where D1={(1, 0, 0) , (0, 1, 0) , (0, 0, 1)},D2={(1, 1, 1), (-1, 1, 1), (1, -1, 1), (1, 1, -1)}
and D3 = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1,−1, 0), (1, 0,−1), (0, 1,−1)}.
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Proof. Consider the Euclidean rotation rθ about a line l with the direction of a unit
vector (p, q, r), rθ : Rc → Rc which has a matrix representation as follows: cos θ + p2(1− cos θ) pq(1− cos θ)− r sin θ pr(1− cos θ) + q sin θ

pq(1− cos θ) + r sin θ cos θ + q2(1− cos θ) qr(1− cos θ)− p sin θ
pr(1− cos θ)− q sin θ qr(1− cos θ) + p sin θ cos θ + r2(1− cos θ)


.

Since a rotation about an axis l can be expressed as composition of two reflections
by two planes intersecting along the line l, it is sufficient to consider the rotations
about the lines with direction vectors (1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 0) , (1, 0, 1) ,
(0, 1, 1) , (1,−1, 0) , (1, 0,−1) , (0, 1,−1) , (1, 1, 1) , (−1, 1, 1) , (1,−1, 1) or (1, 1,−1)
by Lemma 3.2. In order to find isometric rotations in R3

c , it will be enough to
determine the rotations which preserve the lengths of the edges of the dc-unit sphere.

Now consider the vertices points A1 = (1, 0, 0), A2 = ( 1√
2
, 1√

2
, 0) and

A19 = ( 1
2
√
2−1

, 1
2
√
2−1

, 1
2
√
2−1

) of dc-unit sphere. Rotating A1, A2 and A19 by an

angle θ about the line l, we get

rθ(A1) =
(
cos θ+p2(1- cos θ), pq(1- cos θ)+r sin θ, pr(1- cos θ)-q sin θ

)
rθ(A2) = 1√

2

(
(p2+pq)(1- cos θ)+ cos θ-r sin θ, (pq+q2)(1- cos θ)+ cos θ+r sin θ,

(pr+qr)(1- cos θ)+(p-q) sin θ)

rθ(A19) = 1
2
√
2−1

(
(p2+pq+pr)(1− cos θ)+ cos θ+(q − r) sin θ,

(pq+q2+qr)(1− cos θ)+ cos θ+(r − p) sin θ,
(pr+qr+r2)(1− cos θ)+ cos θ+(p− q) sin θ

)
.

Clearly dc(A1, A2) = 2
√
2 − 2 and dc(A2, A19) =

(
9− 3

√
2
)
/7. If rθ preserves dc-

distances, we must look for θ, θ ̸= 0, which implies dc(rθ(A1), rθ(A2)) = 2
√
2 − 2

and dc(rθ(A2), rθ(A19)) =
(
9− 3

√
2
)
/7. Thus,

dc(rθ(A1), rθ(A2)) = max {|α1| , |β1| , |γ1|}+
(√

2− 1
)

min {|α1|+ |β1| , |α1|+ |γ1| , |β1|+ |γ1|} = 2
√
2− 2,

dc(rθ(A2), rθ(A19)) = max {|α2| , |β2| , |γ2|}+
(√

2− 1
)

min {|α2|+ |β2| , |α2|+ |γ2| , |β2|+ |γ2|}=(9− 3
√
2)/7,

where
α1 = 1√

2

[
((
√
2− 1)p2 − pq)(1− cos θ) + (

√
2− 1) cos θ + r sin θ

]
,

β1 = 1√
2

[
((
√
2− 1)pq − q2)(1− cos θ) + (

√
2− 1)r sin θ + cos θ

]
,

γ1 = 1√
2

[
((
√
2− 1)pr − qr)(1− cos θ)− ((

√
2− 1)q + p) sin θ

]
and
α2 = 1

4−
√
2

([
(1-

√
2)(p2+pq)+

√
2pr

]
(1- cos θ)+(1-

√
2) cos θ+(

√
2q+(

√
2-1)r) sin θ

)
,

β2 = 1
4−

√
2

([
(1-

√
2)(pq+q2)+

√
2qr

]
(1- cos θ)+(1-

√
2) cos θ-(

√
2p+(

√
2-1)r) sin θ

)
,

γ2 = 1
4−

√
2

([
(1-

√
2)(pr+qr)+

√
2r2

]
(1- cos θ)+

√
2 cos θ-(

√
2-1)(p-q) sin θ

)
.

If direction vector of l is in D1, say (1, 0, 0) , then (p, q, r) = (1, 0, 0) . Us-

ing these values of p, q, r in the equations dc(rθ(A1), rθ(A2)) = 2
√
2 − 2 and
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dc(rθ(A2), rθ(A19)) = (9− 3
√
2)/7 one obtains

max
{∣∣√2− 1

∣∣ , |cos θ| , |sin θ|}+ (
√
2− 1)

min
{∣∣√2− 1

∣∣+ |cos θ| , |cos θ|+ |sin θ| ,
∣∣√2− 1

∣∣+ |sin θ|
}
= 4− 2

√
2

max
{√

2-1,
∣∣(1-√2) cos θ-

√
2 sin θ

∣∣ , ∣∣√2 cos θ+(1-
√
2) sin θ

∣∣}+ (
√
2− 1)

min
{√

2-1+
∣∣(1-√2) cos θ-

√
2 sin θ

∣∣ ,√2-1+
∣∣√2 cos θ+(1-

√
2) sin θ

∣∣ ,∣∣(1-√2) cos θ-
√
2 sin θ

∣∣+ ∣∣√2 cos θ+(1-
√
2) sin θ

∣∣} = 6-3
√
2.

From this equation, one gets θ = π/2, π or 3π/2. That is, every Euclidean rotation
about x-axis with θ = π/2, π or 3π/2 is an isometry of R3

c . Similarly, if direction
vector of l is one of (0, 1, 0) or (0, 0, 1) , then θ = π/2, π or 3π/2.

If direction vector of l is in D2, say (1, 1, 1) , then (p, q, r)=
(
1/
√
3, 1/

√
3, 1/

√
3
)
.

Using these values of p, q, r in the equations dc(rθ(A1), rθ(A2)) = 2
√
2− 2 and

dc(rθ(A2), rθ(A19)) =
(
9− 3

√
2
)
/7. One gets

dc(rθ(A1), rθ(A2))=
1

3
√
2
(max {|α3| , |β3| , |γ3|}+

(√
2− 1

)
min {|α3|+ |β3| , |α3|+ |γ3| , |β3|+ |γ3|}) = 2

√
2− 2,

dc(rθ(A2), rθ(A19))=
1

4−
√
2
(max {|α4| , |β4| , |γ4|}+

(√
2− 1

)
min {|α4|+ |β4| , |α4|+ |γ4| , |β4|+ |γ4|})=

(
9-3

√
2
)
/7,

where
α3 = (

√
2− 2) + (2

√
2− 1) cos θ +

√
3 sin θ

β3 = (
√
2− 2) + (−

√
2− 1) cos θ + (

√
2− 1)

√
3 sin θ

γ3 = (
√
2− 2)(1− cos θ)−

√
6 sin θ

and
α4 = 2−

√
2

3 (1− cos θ) + (1−
√
2) cos θ + 2

√
2−1√
3

sin θ

β4 = 2−
√
2

3 (1− cos θ) + (1−
√
2) cos θ − 2

√
2−1√
3

sin θ

γ4 = 2−
√
2

3 (1− cos θ) +
√
2 cos θ.

From this equation, one obtains θ = 2π/3 or 4π/3. That is, every Euclidean rotation
about the line l that has the direction vector (1, 1, 1) with θ = 2π/3 or 4π/3 is an
isometry of R3

c . Similarly, if direction vector of l is one of (−1, 1, 1) , (1,−1, 1) , or
(1, 1,−1) , then θ = 2π/3, or 4π/3.

If direction vector of l is in D3, say (1, 1, 0) , then (p, q, r) =
(
1/

√
2, 1/

√
2, 0

)
.

Using these values of p, q, r in the equations dc(rθ(A1), rθ(A2)) = 2
√
2− 2 and

dc(rθ(A2), rθ(A19)) = (9− 3
√
2)/7 one gets

1

2

(
max

{∣∣cos θ + (1−
√
2)
∣∣ , ∣∣(1−√

2)− cos θ
∣∣ ,√2 |sin θ|

}
+
(√

2− 1
)

min
{∣∣cos θ + (1−

√
2)
∣∣+ ∣∣(1−√

2)− cos θ
∣∣ , ∣∣(1−√

2)− cos θ
∣∣+√

2 |sin θ| ,∣∣(1−√
2)− cos θ

∣∣+√
2 |sin θ|

})
= 2

√
2− 2
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and

1

4−
√
2

(
max

{∣∣1−√
2 + sin θ

∣∣ , ∣∣1−√
2− sin θ

∣∣ , ∣∣√2 cos θ
∣∣}+

(√
2− 1

)
min

{∣∣1−√
2 + sin θ

∣∣+ ∣∣1−√
2− sin θ

∣∣ , ∣∣1−√
2 + sin θ

∣∣+ ∣∣√2 cos θ
∣∣ ,∣∣1−√

2− sin θ
∣∣+ ∣∣√2 cos θ

∣∣}) = (9− 3
√
2)/7.

From this equation, one gets θ = π. That is, every Euclidean rotation about the line
l that has the direction vector (1, 1, 0) with θ = π is an isometry of R3

c . Similarly,
if direction vector of l is one of (1, 0, 1) , (0, 1, 1) , (1,−1, 0) , (1, 0,−1) or (0, 1,−1) ,
then θ = π.

Conversely, if rθ(X) = Y, then it can easily be check that µOX = µOY for all
possible cases as in Lemma 3.2. For instance:

rotation
(1, 0, 0)
θ = π/2

1√
2
(1, 1, 0)

θ = π

1√
3
(1, 1, 1)

θ = 2π/3
· · ·

(p2, q2, r2) (p1,−r1, q1) (q1, p1,−r1) (r1, p1, q1) · · ·
Thus, the set Rc of isometric rotations about the lines passing through the origin

consists of exactly twenty-three Euclidean rotations mentioned above. �

Clearly the inversion σO aboutO = (0, 0, 0), which maps (x, y, z) to (−x,−y,−z),
is an isometry of Rc and preserves the dc-unit sphere. σO will be useful to give the
following two lemmas:

Lemma 3.3. There are only six rotary reflections about O that preserve the dc-
distances.

Proof. Since a rotary reflection ρ := σΠσ∆σΓ = σΠrθ, rθ ∈ Rc, Γ and ∆ perpen-
dicular to Π, one has to consider both the possible 9 cases for Π and 13 choices for
the axes of rotations by Lemma 3.2 and Lemma 3.3. But notice that non of the
lines in D2 is perpendicular to any one of planes given in Lemma 3.2.

If Π stands for the plane x = 0, then (1, 0, 0) is unit direction vector of rθ and
ρ(x, y, z)=σΠrθ(x, y, z)=(-x, y cos θ-z sin θ, y sin θ+z cos θ). Consequently, ρ(A1)=

(-1, 0, 0), ρ(A2)=(-1/
√
2, cos θ/

√
2, sin θ/

√
2) and ρ(A19)=( −1

2
√
2−1

, cos θ−sin θ
2
√
2−1

, cos θ+sin θ
2
√
2−1

).

Since dc(A1, A2)=2
√
2− 2 and dc(A2, A9)=(9− 3

√
2)/7,

dc(ρ(A1), ρ(A2)) = 2
√
2− 2 ⇔ max

{∣∣√2− 1
∣∣ , |cos θ| , |sin θ|}+

(√
2− 1

)
min

{∣∣√2− 1
∣∣+ |cos θ| ,

∣∣√2− 1
∣∣+ |sin θ| , |cos θ|+ |sin θ|

}
= 4− 2

√
2

⇔ θ ∈ {π/2, π, 3π/2}

dc(ρ(A2), ρ(A19))=(9-3
√
2)/7 ⇔

max
{√

2-1,
∣∣(√2-1) cos θ+

√
2 sin θ

∣∣ , ∣∣(√2-1) sin θ-
√
2 cos θ

∣∣}
+
(√

2-1
)
min

{√
2-1+

∣∣(√2-1) cos θ+
√
2 sin θ

∣∣ ,√2-1+
∣∣(√2-1) sin θ-

√
2 cos θ

∣∣∣∣(√2-1) cos θ+
√
2 sin θ

∣∣+ ∣∣(√2-1) sin θ-
√
2 cos θ

∣∣} = 6− 3
√
2

⇔ θ ∈ {π/2, π, 3π/2} .
Now it is easy to show that σΠrπ = σO, and therefore there are exactly two rotary
reflections obtained using the plane x = 0. Similarly, one can easily obtain new
rotary reflections using the planes y = 0 and z = 0 as Π.
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If Π denotes the plane x + y = 0, then
(
1/
√
2, 1/

√
2, 0

)
is unit direction vector

of rθ and

ρ(x, y, z) = σΠrθ (x, y, z)

=
((

cos θ−1
2

)
x−

(
1+cos θ

2

)
y + sin θ√

2
z,(−1−cos θ

2

)
x+

(
cos θ−1

2

)
y − sin θ√

2
z,

− sin θ√
2

x+ sin θ√
2
y + cos θz

)
.

Clearly ρ(A1) = ( 12 (cos θ − 1), −1
2 (1 + cos θ), −1√

2
sin θ), ρ(A2) = (−1√

2
, −1√

2
, 0),

ρ(A19) =
1

2
√
2−1

(−1 + sin θ√
2
,−1− sin θ√

2
, cos θ) and

dc(ρ(A1), ρ(A2)) = 2
√
2− 2 ⇔

max
{∣∣cos θ +√

2− 1
∣∣ , ∣∣− cos θ +

√
2− 1

∣∣ ,√2 |sin θ|
}
+
(√

2− 1
)

min{
∣∣cos θ+√

2− 1
∣∣+ ∣∣− cos θ+

√
2− 1

∣∣ , ∣∣cos θ+√
2− 1

∣∣+√
2 |sin θ| ,∣∣− cos θ +

√
2− 1

∣∣+√
2 |sin θ|} = 4

√
2− 4

⇔ θ = π

dc(ρ(A2), ρ(A19)) = (9− 3
√
2)/7 ⇔

max
{∣∣1−√

2− sin θ
∣∣ , ∣∣1−√

2− sin θ
∣∣ , ∣∣√2 cos θ

∣∣}+ (√
2− 1

)
min

{∣∣1−√
2− sin θ

∣∣+ ∣∣1−√
2− sin θ

∣∣ , ∣∣1−√
2− sin θ

∣∣+ ∣∣√2 cos θ
∣∣ ,∣∣1−√

2− sin θ
∣∣+ ∣∣√2 cos θ

∣∣} = 6− 3
√
2

⇔ θ = π

but ρ = σΠrπ = σO the inversion about O = (0, 0, 0). That is, there is no new
rotary reflection in this case.

Similarly, it is easily seen that there is no new rotary reflection if Π is any of the
remaining planes x− y = 0, x+ z = 0, x− z = 0, y+ z = 0, y− z = 0 and rotations
axes are parallel to any one of (1,−1, 0) , (1, 0, 1) , (1, 0,−1) , (0, 1, 1), (0, 1,−1) ,
respectively. �

Lemma 3.4. There exist only eight rotary inversions about O that preserves the
dc-distances.

Proof. Since a rotary inversion ρ := σOσ∆σΓ = σOrθ, rθ ∈ Rc, one has to consider
possible 13 cases for the axes of rotations by Lemma 3.3.

If rθ denotes the rotations about x-axis, then (1, 0, 0) is unit direction vector
of rθ and ρ(x, y, z) = σOrθ(x, y, z) = (−x,−y cos θ + z sin θ,−y sin θ − z cos θ).

Consequently, ρ(A1) = (−1, 0, 0), ρ(A2) = (−1/
√
2,− cos θ/

√
2,− sin θ/

√
2) and

ρ(A19)=
1

2
√
2−1

(−1,− cos θ + sin θ,− cos θ − sin θ). Since dc(A1, A2)=2
√
2 − 2 and
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dc(A2, A9)=(9− 3
√
2)/7,

dc(ρ(A1), ρ(A2)) = 2
√
2− 2 ⇔

max
{∣∣√2− 1

∣∣ , |cos θ| , |sin θ|}+
(√

2− 1
)

min
{∣∣√2-1

∣∣+ |cos θ| ,
∣∣√2-1

∣∣+ |sin θ| , |cos θ|+ |sin θ|
}

= 4− 2
√
2 ⇔ θ ∈ {π/2, π, 3π/2} .

dc(ρ(A2), ρ(A19)) =
9− 3

√
2

7
⇔

max
{√

2-1,
∣∣(1-√2) cos θ-

√
2 sin θ

∣∣ , ∣∣(1-√2) sin θ+
√
2 cos θ

∣∣}+(
√
2-1)

min
{√

2-1+
∣∣(1-√2) cos θ-

√
2 sin θ

∣∣ ,√2-1+
∣∣(1-√2) sin θ+

√
2 cos θ

∣∣∣∣(1-√2) cos θ-
√
2 sin θ

∣∣+ ∣∣(1-√2) sin θ+
√
2 cos θ

∣∣}
= 6− 3

√
2 ⇔ θ ∈ {π/2, π, 3π/2} .

Now it is easy to show that σOrθ is a rotary reflection or reflection, and therefore
there is no new rotary inversion in this case. Similarly, one can easily see that there
is no new rotary inversion using the rotations about y, z-axis.

If rθ stands for rotation about l parallel to (1, 1, 0), then
(
1/
√
2, 1/

√
2, 0

)
is unit

direction vector of rθ and

ρ(x, y, z) = σOrθ (x, y, z)

=
((−1−cos θ

2

)
x+

(
cos θ−1

2

)
y − sin θ√

2
z,(

cos θ−1
2

)
x+

(−1−cos θ
2

)
y + sin θ√

2
z,

sin θ√
2
x− sin θ√

2
y − cos θz

)
.

Obviously ρ(A1) = (−1
2 (1 + cos θ), 1

2 (cos θ − 1), 1√
2
sin θ), ρ(A2) = (−1√

2
, −1√

2
, 0),

ρ(A19) =
1

2
√
2−1

(−1− sin θ√
2
,−1 + sin θ√

2
,− cos θ) and

dc(ρ(A1), ρ(A2)) = 2
√
2− 2 ⇔

max
{∣∣cos θ +√

2− 1
∣∣ , ∣∣− cos θ +

√
2− 1

∣∣ ,√2 |sin θ|
}
+
(√

2− 1
)

min
{∣∣cos θ +√

2− 1
∣∣+ ∣∣− cos θ +

√
2− 1

∣∣ , ∣∣cos θ +√
2− 1

∣∣+√
2 |sin θ| ,∣∣− cos θ +

√
2− 1

∣∣+√
2 |sin θ|

}
= 4

√
2− 4 ⇔ θ = π

dc(ρ(A2), ρ(A19)) = (9− 3
√
2)/7 ⇔

max
{∣∣1-√2+ sin θ

∣∣ , ∣∣1-√2- sin θ
∣∣ , ∣∣√2 cos θ

∣∣}+
(√

2− 1
)

min
{∣∣1-√2+ sin θ

∣∣+ ∣∣1-√2- sin θ
∣∣ , ∣∣1-√2+ sin θ

∣∣+ ∣∣√2 cos θ
∣∣ ,∣∣1-√2- sin θ

∣∣+ ∣∣√2 cos θ
∣∣} = 6− 3

√
2 ⇔ θ = π

but ρ = σOrπ is a rotary reflection or reflection. That is, there is no new rotary
inversion in this case.

Similarly, it is easily see that there is no new rotary inversion if rθ any of the
remaining rotation axes parallel to (1,−1, 0) , (1, 0, 1) , (1, 0,−1) , (0, 1, 1), (0, 1,−1).
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If rθ denotes rotation about an axis parallel to (1, 1, 1), then(
1/
√
3, 1/

√
3, 1/

√
3
)
is unit direction vector of rθ and

ρ(x, y, z) = σOrθ (x, y, z)

=
((−2 cos θ−1

3

)
x+

(
cos θ+

√
3 sin θ−1
3

)
y +

(
cos θ−

√
3 sin θ−1
3

)
z,(

cos θ−
√
3 sin θ−1
3

)
x+

(−2 cos θ−1
3

)
y +

(
cos θ+

√
3 sin θ−1
3

)
z,(

cos θ+
√
3 sin θ−1
3

)
x+

(
cos θ−

√
3 sin θ−1
3

)
y +

(−2 cos θ−1
3

)
z
)
.

Clearly ρ(A1) = (−2 cos θ−1
3 , cos θ−

√
3 sin θ−1
3 , cos θ+

√
3 sin θ−1
3 ),

ρ(A2) = (−2−cos θ+
√
3 sin θ

3
√
2

, −2−cos θ−
√
3 sin θ

3
√
2

, 2 cos θ−2
3
√
2

),

ρ(A19) = ( −1
2
√
2−1

, −1
2
√
2−1

, −1
2
√
2−1

) and

dc(ρ(A1), ρ(A2))=2
√
2− 2 ⇔ max

{∣∣−2+
√
2+(2

√
2− 1) cos θ+

√
3 sin θ

∣∣ ,∣∣(-1-√2) cos θ+(-
√
2+

√
3 sin θ)(

√
2-1)

∣∣ , ∣∣(2-√2)(cos θ-1)-
√
3 sin θ

∣∣}+(
√
2-1)

min
{∣∣-2+√

2+(2
√
2-1) cos θ+

√
3 sin θ

∣∣+ ∣∣(-1-√2) cos θ+(-
√
2+

√
3 sin θ)(

√
2-1)

∣∣ ,∣∣−2+
√
2+(2

√
2-1) cos θ+

√
3 sin θ

∣∣+ ∣∣(2-√2)(cos θ-1)-
√
3 sin θ

∣∣ ,∣∣(-1-√2) cos θ+(-
√
2+

√
3 sin θ)(

√
2-1)

∣∣+ ∣∣(2-√2)(cos θ-1)-
√
3 sin θ

∣∣}
= 12− 6

√
2 ⇔ θ ∈ {2π/3, 4π/3} .

dc(ρ(A2), ρ(A19))=(9− 3
√
2)/7 ⇔ max

{∣∣2-√2+(2
√
2-1)(- cos θ+

√
3 sin θ

∣∣ ,∣∣2-√2+(2
√
2-1)(- cos θ-

√
3 sin θ

∣∣ , ∣∣2-√2+2(2
√
2-1) cos θ

∣∣}+ (
√
2− 1)

min
{∣∣2-√2+(2

√
2-1)(- cos θ+

√
3 sin θ

∣∣+ ∣∣2-√2+(2
√
2-1)(- cos θ-

√
3 sin θ

∣∣∣∣2-√2+(2
√
2-1)(- cos θ+

√
3 sin θ

∣∣+ ∣∣2-√2+2(2
√
2-1) cos θ

∣∣ ,∣∣2-√2+(2
√
2-1)(- cos θ-

√
3 sin θ

∣∣+ ∣∣2-√2+2(2
√
2-1) cos θ

∣∣} = 18-9
√
2

⇔ θ ∈ {2π/3, 4π/3} .

Therefore there exactly two rotary inversions obtained using rotation about axis
parallel to (1, 1, 1).

Similarly, it is easily obtain that there are two new rotary inversion each of the
remaining rotation axes parallel to (−1, 1, 1) , (1,−1, 1) , (1, 1,−1). That is, there
are eight rotary inversions that preserve dc-distance. �

It can be easily check that σOσ∆ = rπ, rπ ∈ R1 ∪R3.

Thus we have the deltoidal icositetrahedron group, G(D), consisting of
nine reflections about planes, twenty-three rotations, six rotary reflections, eight
rotary inversions, one inversion and the identity. That is, the Euclidean symmetry
group of the deltoidal isocitetrahedron. Deltoidal icositetrahedron group G(D) is
isomorph to the cube group S(C) which is the (Euclidean) symmetry group of the
cube.

Now, let us show that all isometries of R3
c are in T (3).G(D).
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Definition 3.1. Let A = (a1, a2, a3), B = (b1, b2, b3) be two points in R3
c . The

minimum distance set of A, B is defined by

{X | dc(A,X) + dc(B,X) = dc(A,B)}

and denoted by [AB].

In general, [AB] represent a parallelepiped with diagonal AB as in Fig. 3.

Figure 3

In particular, if AB is parallel to any of the coordinate axes or AB is on a
plane which is the parallel to any coordinate plane and slope of AB is ±1, then
[AB] = AB.

Proposition 3.2. Let ϕ : R3
c → R3

c be an isometry and let [AB] be the paral-
lelepiped. Then

ϕ([AB]) = [ϕ(A)ϕ(B)] .

Proof. Let Y ∈ ϕ([AB]) . Then,

Y ∈ ϕ([AB]) ⇔ ∃X ∈ [AB] ∋ Y = ϕ(X)
⇔ dc(A,X) + dc(X,B) = dc(A,B)
⇔ dc(ϕ(A), ϕ(X)) + dc(ϕ(X), ϕ(B)) = dc(ϕ(A), ϕ(B))
⇔ Y = ϕ(X) ∈ [ϕ(A)ϕ(B)] .

�

Corollary 3.1. Let ϕ : R3
c → R3

c be an isometry and let [AB] be a parallelepiped.
Then ϕ maps vertices to vertices and preserves the lengths of edges of [AB] .

Proposition 3.3. Let f : R3
c → R3

c be an isometry such that f(O) = O. Then f is
in G(D).

Proof. Let A1 = (1, 0, 0), A2 = ( 1√
2
, 1√

2
, 0), A19 = ( 1

2
√
2−1

, 1
2
√
2−1

, 1
2
√
2−1

) and

D = ( 2
√
2+3

4−
√
2
, 3

√
2−1

4−
√
2
,

√
2

4−
√
2
). Consider [OD] which is the parallelepiped with diagonal

OD.
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Figure 4

It is clear from the Fig. 4 that f(Ak) ∈ AiAj , i ̸= j ̸= k, i, j, k ∈ {1, 2, . . . , 26}.
Since f is an isometry by Corollary 3.8, f(A1), f(A2) and f(A19) must be the
vertices of the parallelepiped with diagonal OD. Therefore, if f(A1) = Ai, then i ∈
{1, 3, 5, 7, 17, 18}. Similarly if f(A2) = Aj and f(A19) = Ak, then
j ∈ {2, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16} and k ∈ {19, 20, 21, 22, 23, 24, 25, 26}. Here
the points f(A1), f(A2) and f(A19) are not elements of the line with direction
vector D1, D2, D3 which is given in Lemma 3.3. Also these points are on the same
octant. Now the following six cases are possible:
1. If f(A1)=A1, then f(A2) ∈ {A2, A8, A9, A13} and f(A19) ∈ {A19, A22, A23, A26} .
2. If f(A1)=A3, then f(A2) ∈ {A2, A4, A10, A14} and f(A19) ∈ {A19, A20, A23, A24} .
3. If f(A1)=A5, then f(A2) ∈ {A4, A6, A11, A15} and f(A19) ∈ {A20, A21, A24, A25} .
4. If f(A1)=A7, then f(A2) ∈ {A6, A8, A12, A16} and f(A19) ∈ {A21, A22, A25, A26} .
5. If f(A1)=A17, then f(A2) ∈ {A9, A10, A11, A12} and f(A19) ∈ {A19, A20, A21, A22} .
6. If f(A1)=A18, then f(A2) ∈ {A13, A14, A15, A16} and f(A19) ∈ {A23, A24, A25, A26} .

In each case it is easy to show that f is unique and is in G(D). For instance in
the first case:

If f(A2)=A2 and f(A19)=A19, then f is the identity.
If f(A2)=A2 and f(A19)=A23, then f=σ∆ such that ∆ : z=0.
If f(A2)=A8 and f(A19)=A22, then f=σ∆ such that ∆ : y=0.
If f(A2)=A8 and f(A19)=A26, then f=rπ with rotation axis ∥ (1, 0, 0).
If f(A2)=A9 and f(A19)=A19, then f=σ∆ such that ∆ : y − z=0.
If f(A2)=A9 and f(A19)=A22, then f=rπ/2 with rotation axis ∥ (1, 0, 0).
If f(A2)=A13 and f(A19)=A23, then f=r3π/2 with rotation axis ∥ (1, 0, 0).
If f(A2)=A13 and f(A19)=A26, then f=σ∆ such that ∆ : y + z=0.
Proof of the remaining eases are quite similar to that of the first case. �

Theorem 3.1. Let f : R3
c → R3

c be an isometry. Then there exists a unique
TA ∈ T (3) and g ∈ G(D) such that f = TA ◦ g .

Proof. Let f(O) = A where A = (a1, a2, a3) . Define g = T−A ◦ f . We know that g
is an isometry and g(O) = O. Thus, g ∈ G(D) and f = TA ◦ g by Proposition 3.9.
The proof of uniqueness is trivial. �
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[8] Gelişgen, Ö. and Kaya, R., The Taxicab Space Group, Acta Math. Hungar. 122 (2009), no.

1-2, 187–200.
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