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METRIC GEOMETRY
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Abstract. This work has two purposes. The first purpose is to give a survey
on slant curves in 3-dimensional almost contact metric geometry. The second
purpose is to study slant curves in 3-dimensional solvable Lie groups equipped
with natural left invariant almost contact metric structure.

Introduction

In classical differential geometry of spatial curves, there are some nice classes of
curves. The most simplest and fundamental one is the class of helices.

A spatial curve is said to be a helix if it has constant curvature and constant
torsion.

Straight lines and circles are regarded as helices with curvature 0, and non-zero
constant curvature and zero torsion, respectively.

As a generalization of the class of helices, the class of curves of constant slope
have been paid much attention of classical differential geometers.

A spatial curve is said to be a curve of constant slope (also called a cylindrical
helix ) if its tangent vector field has a constant angle θ with a fixed direction called
the axis.

The second name is derived from the fact that there exists a cylinder in Euclidean
3-space on which the curve moves in such a way that it cuts each ruling at a constant
angle (see [60, pp. 72–73]).

These curves are classically characterized by Bertrand-Lancret-de Saint Venant
Theorem (see [60], [68]):
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A unit speed curve in Euclidean 3-space E3 with nonzero curvature
is of constant slope if and only if the ratio of the torsion τ and the
curvature κ is constant.

For a curve of constant slope with nonzero curvature, the ratio τ/κ is called the
Lancret invariant of the curve of constant slope.

Barros [3] generalized the above characterization due to Bertrand-Lancret-de
Saint Venant to curves in 3-dimensional space forms. Corresponding results for
3-dimensional Lorentzian space forms are obtained by Ferrández [11]. Moreover
Ferrández, Giménez and Lucas [12], [13] investigated Bertrand-Lancret-de Saint
Venant problem for null curves in Minkowski 3-space. (See also [14], [18]).

According to Thurston, there are eight simply connected model spaces in 3-
dimensional geometries:

• The Euclidean 3-space E3, the 3-sphere S3, the hyperbolic 3-space H3,
• the product spaces S2 × R, H2 × R,

• the Heisenberg group Nil3, the universal covering S̃L2R of SL2R,
• the space Sol3.

In recent years, differential geometry of surfaces in those model spaces has been
extensively studied.

It should be remarked that every orientable Riemannian 3-manifold admits al-
most contact structure compatible to the metric (cf. [9]).

These eight model spaces admit invariant almost contact structure compatible
to the metric . The resulting almost contact metric 3-manifolds are homogeneous
almost contact metric 3-manifolds. Moreover they are normal except Sol3. In par-

ticular, S3, Nil3 and S̃L2R are homogeneous normal contact metric 3-manifolds of
constant holomorphic sectional curvature, i.e., Sasakian space forms. The hyper-
bolic 3-space is the only Kenmotsu manifold in Thurston’s list.

Thus it would be interesting to study curves and surfaces in these seven model
spaces by using normal almost contact metric structure.

On the other hand, in 3-dimensional contact geometry and topology, Legendre
curves (curves tangent to the contact distribution) play a central role (cf. [65]).

As a generalization of Legendre curve, the notion of slant curves was introduced
in [17].

A unit speed curve γ in an almost contact metric manifold (M ;φ, ξ, η, g) is said
to be slant if its tangent vector field makes constant contact angle θ with ξ, i.e.,
cos θ := η(γ′) is constant along γ.

In our previous paper [17], we studied slant curves in Sasakian 3-manifols. In
[18], we have shown that biharmonic curves in Sasakian space forms are slant.

Since then slant curves have been paid much attention of differential geometers
of almost contact manifolds.

Slant curves in Sasakian 3-manifolds are of particular interest. In fact, Cabrerizo,
Fernández and Gómez,[10] showed that contact magnetic curves are slant helices.
In [45], Munteanu and the first named author of this paper studied periodicity of
magnetic curves in 3-dimensional Sasakian space forms of constant holomorphic
sectional curvature> −3.

We lyczko [78] studied almost Legendre curves, i.e., slant curves with contact
angle π/2 in normal almost contact metric 3-manifolds. See also Srivastava [67].
Călin, Crasmareanu and Munteanu [12] studied slant curves with proper mean
curvature vector field in normal almost contact metric 3-manifold of type (0, β). In
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particular they have given explicit parametrization of slant curves in the hyperbolic
3-space equipped with natural homogeneous normal almost contact metric structure
(Kenmotsu structure of constant curvature).

Next, Călin and Crasmareanu [11] studied slant curves in normal almost con-
tact metric 3-manifolds. The present authors studied almost Legendre curves in
normal almost contact metric 3-manifolds with proper mean curvature vector field
[39]. Suh, Lee and the second named author studied Legendre curves in Sasakian
3-manifolds whose mean curvature vector field satisfies C-parallel or C-proper con-
dition [53]. Güvenç and Özgür studied slant curves satisfying C-parallel or C-proper
conditions in trans-Sasakian manifolds of arbitrary dimension [32]. Hou and Sun
studied slant curves in the unit tangent sphere bundles equipped with standard
contact metric structures [33].

Here we would like to point out that in 1963, Tashiro and Tachibana have been
studied special kind of slant curves called C-loxodromes in Sasakian manifold [73].
For the precise definition of C-loxodrome, see Definition 5.1. It should be remarked
that the class of slant curves is larger than the class of C-loxodoromes in Sasakian
manifolds. See Section 5.3.

Moreover, in 1995, Blair, Dillen, Verstraelen and Vrancken gave a variational
characterization of slant curves in K-contact manifolds [8].

There is another viewpoint for slant curve geometry. Since on 3-dimensional
contact metric manifolds, the associated almost CR-structures are automatically
integrable, submanifold geometry of contact metric 3-manifolds with respect to
CR-structure (pseudo-Hermitian structure) is also an interesting subject. Here
the pseudo-Hermitain geometry of submanifolds in contact metric 3-manifolds is
formulated as submanifold geometry with respect to Tanaka-Webster connection
instead of Levi-Civita connection.

In [20], Cho and second named author of this paper started to investigate slant
curves in contact metric 3-manifolds with respect to Tanaka-Webster connection.
In [52] the second named author continued her study on slant curves of Sasakian

3-manifolds in pseudo-Hermitian geometry. Özgür and Güvenç studied slant curves
with proper mean curvature vector field of contact metric 3-manifolds in pseudo-
Hermitian geometry [61]. For other related works on pseudo-Hermitian geometry
of curves and surfaces, we refer to [19, 37, 38].

In addition in our previous paper [41], we extended pseudo-Hermitian geometry
of slant curves in contact metric 3-manifolds to those in normal almost contact
metric 3-manifolds.

In contrast to contact case, the Levi-form of almost contact metric manifolds may
be degenerate. In addition Tanaka-Webster connection is defined under contact con-
dition. Thus to develop submanifold geometry in almost contact metric 3-manifolds
analogues to pseudo-Hermitian geometry, we need to introduce appropriate linear
connections. For this purpose, in [40], we have introduced a linear connection on
almost contact metric manifolds. Our connection coincides with Tanaka-Webster
connection when the structure is (integrable) contact metric. In [41], the present au-
thors studied slant curves in normal almost contact metric 3-manifolds with proper
mean curvature vector field with respect to the linear connection mentioned above.

This paper has two purposes. The first purpose is to give a survey on slant
curves in 3-dimensional almost contact metric geometry. The second purpose is
to study slant curves in the space Sol3. More precisely, in the final section we
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study slant curves in certain 2-parameter family of solvable Lie groups equipped
with natural left invariant almost contact metric structure. This 2-parameter family
includes, Euclidean 3-space (cosymplectic manifold), hyperbolic 3-space (Kenmotsu
manifold) as well as the space Sol3.

Throughout this paper we denote by Γ (E) the space of all smooth sections of a
vector bundle E.

1. Preliminaries

1.1. Let (M, g) be a 3-dimensional Riemannian manifold with Levi-Civita connec-
tion ∇.We denote by O(M) the orthonormal frame bundle of M .

A unit speed curve γ : I → M is said to be a geodesic if it satisfies ∇γ′γ′ = 0.
More generally, γ is said to be a Frenet curve if there exists an orthonormal

frame field E = (E1, E2, E3) along γ such that

(1.1) ∇γ′E = E

 0 −κ1 0
κ1 0 −κ2

0 κ2 0


for some non-negative functions κ1 and κ2. Here the vector field E1 is the unit
tangent vector field γ′. For a unit speed curve with non-vanishing acceleration
∇γ′γ′, the first curvature κ1 is defined by the formula

κ1 = |∇γ′γ′|.

The second unit vector field E2 is thus obtained by

∇γ′γ′ = κ1E2.

The curve γ : I → M induces a principal bundle γ∗O(M) over I. One can see that
E is a section of γ∗O(M).

Next the second curvature κ2 and the third unit vector field E3 are defined by
the formula

κ2 = |∇γ′E2 + κ1E1| , ∇γ′E2 + κ1E1 = κ2E3.

From these one can check that E3 satisfies

∇γ′E3 = −κ2E2.

1.2. Next we assume that (M3, g) is oriented. Denote by dvg the volume element
induced by the metric g compatible to the orientation. Thus for every positively
oriented local coordinate system (x1, x2, x3), dvg is expressed as

dvg =
√

det(gij) dx1 ∧ dx2 ∧ dx3, gij = g(∂/∂xi, ∂/∂xj).

The volume element dvg defines a vector product operation × on each tangent space
TpM by the rule

dvg(X,Y, Z) = g(X × Y, Z), X, Y, Z ∈ TpM.

We can define an endomorphism field (X ∧ Y ) by

(X ∧ Y )Z = Z × (X × Y ).

Then by elementary linear algebra, we have

(X ∧ Y )Z = g(Y, Z)X − g(Z,X)Y.
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1.3. Now let γ(s) be a unit curve in the oriented Riemannian 3-manifold (M3, g,dvg)
with non-vanishing acceleration ∇γ′γ′. Then we put κ := |∇γ′γ′|. We can take a
unit normal vector field N by the formula ∇γ′γ′ = κN . Next define a unit vector
field B by B = T ×N . Here T = γ′. In this way we obtain an orthonormal frame
field F = (T,N,B) along γ which is positively oriented, that is, dvg(T,N,B) = 1.
The orthonormal frame field F is called the Frenet frame field and satisfies

(1.2) ∇γ′F = F

 0 −κ 0
κ 0 −τ
0 τ 0


for some function τ . The functions κ and τ are called the curvature and torsion of
γ, respectively. By definition F is a section of γ∗SO(M). Here SO(M) is a positive
orthonormal frame bundle of M .

The ordinary differential equation (1.2) is called the Frenet-Serret formula of
γ. The unit vector fields T , N and B are called the tangent vector field, principal
normal vector field and binormal vector field of γ, respectively.

Put E1 = T , E2 = N and κ1 = κ. Then we obtain an orthonormal frame
field E = (E1, E2, E3) as in Section 1.1. The Frenet frame field F is related to
E by E3 = ϵB and κ2 = ϵτ with ϵ = ±1. Here ϵ is determined by the formula
ϵ = dvg(E1, E2, E3).

Fundamental theorems of curve theory in (M3, g, dv) is formulated as follows.

Theorem 1.1 (uniqueness theorem). Let γ1, γ2 : I → M be unit speed curves
in an oriented Riemannian 3-manifold (M3, g,dvg) with curvatures and torsions
(κ1, τ1), (κ2, τ2), respectively. Then γ1 is congruent to γ2 under orientation pre-
serving isometries if and only if (κ1, τ1) = (κ2, τ2).

Theorem 1.2 (existence theorem). Let κ(s) > 0 and τ(s) be smooth functions
defined on an interval I. Then there exits a unit speed curve γ : I → M in an
oriented Riemannian 3-manifold (M, g, dvg) with curvature κ and torsion τ .

Based on these fundamental theorems, it is natural to take positive orthonormal
frame fields along unit speed curves in oriented Riemannian 3-manifolds.

Throughout this paper we take positive orthonormal frame field for unit speed
curves in oriented Riemannian 3-manifolds.

For more informations on Frenet curves, we refer to [66, Chapter 7, B.].

1.4. Here we recall some vector bundle calculus of curves for our later use.
Let γ(s) be a unit curve in an oriented Riemannian 3-manifold (M3, g). Then

the vector bundle γ∗TM is defined by

γ∗TM =
∪
s∈I

Tγ(s)M.

A section X ∈ Γ (γ∗TM) is called a vector field along γ. The Levi-Civita connection
∇ induces a connection ∇γ on γ∗TM by

∇γ
d
ds

X = ∇γ′X.

One can see that (γ∗TM, γ∗g,∇γ) is a Riemannian vector bundle over I, i.e.,
∇γ(γ∗g) = 0.

The mean curvature vector field H of γ is a section of γ∗TM defined by H =
∇γ′γ′ = κN . By definition, geodesics are unit speed curves with vanishing mean
curvature vector field.
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Lemma 1.1. Let (M, g) be an oriented Riemannian 3-manifold and γ a unit speed
curve. Then we have

∇γ′H = −κ2T + κ′N + κτB,

∇γ′∇γ′H = −3κκ′T + (κ′′ − κ3 − κτ2)N + (2κ′τ + κτ ′)B.

The Laplace-Beltrami operator ∆ of (γ∗TM,∇γ) is defined by

∆ = −∇γ
d
ds

∇γ
d
ds

= −∇γ′∇γ′ .

Thus for any X ∈ Γ (γ∗TM), we have

∆X = −∇γ′∇γ′X.

A vector field X along γ is said to be proper if it satisfies ∆X = λX for some
function λ. In particular, X is said to be harmonic if ∆X = 0. Thus Lemma 1.1
implies the following fundamental result.

Proposition 1.1. Let γ be a unit speed curve in an oriented Riemannian 3-
manifold (M, g). Then γ has proper mean curvature vector field (∆H = λH) if
and only if γ is a geodesic (λ = 0) or a helix satisfying κ2 + τ2 = λ.

1.5. The normal bundle T⊥γ of the curve γ is given by

T⊥γ =
∪
s∈I

T⊥
s γ, T⊥

s γ = RN(s) ⊕ RB(s).

The normal connection ∇⊥ is the connection in T⊥γ defined by

∇⊥
γ′X = ∇γ′X − g(∇γ′X,T )T

for any section X ∈ Γ (γ∗TM).
The Laplace-Beltrami operator ∆⊥ = −∇⊥

γ′∇⊥
γ′ of the vector bundle (T⊥γ,∇⊥)

is called the normal Laplacian.

1.6. During their studies on Euclidean submanifolds with pointwise k-planar nor-
mal sections, Arslan and West [2] introduced the notion of submanifold of AW (k)

type. Arslan and Özgür studied curves of AW (k)-type in Euclidean space.
Remarkably, the notion of “AW (k)-type submanifold” makes sense for subman-

ifolds in arbitrary Riemannian manifolds.

Definition 1.1 ([1]). A Frenet curve γ(s) in a Riemannian 3-manifold is said to
be of type:

(1) AW (1) if N (3)(s)⊥ = 0,
(2) AW (2) if ∥N (2)(s)⊥∥2N (3)(s)⊥ = g(N (3)(s)⊥, N (2)(s)⊥)N (2)(s)⊥,
(3) AW (3) if ∥N (1)(s)⊥∥2N (3)(s)⊥ = g(N (3)(s)⊥, N (1)(s)⊥)N (1)(s)⊥,

where

N (1)(s)⊥ = (∇γ′γ′)⊥,

N (2)(s)⊥ = (∇γ′∇γ′γ′)⊥

N (3)(s)⊥ = (∇γ′∇γ′∇γ′γ′)⊥.
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1.7. Let (M,D) be a manifold with a linear connection. A curve γ : I → M is said
to be a D-geodesic if Dγ′γ′ = 0. In case, M is a Riemannian manifold and D is
the Levi-Civita connection, then a unit speed curve γ is a D-geodesic if and only if
it is a geodesic in usual sense. We define the tension field τ(γ;D) of γ with respect
to D by τ(γ;D) := Dγ′γ′.

In [19] D-biharmonicity of curves was introduced. Denote by TD and RD the
torsion and curvature tensor field of D.

Definition 1.2. A curve γ : I → (M,D) is said to be D-biharmonic if it satisfies

Dγ′Dγ′τ(γ;D) − TD(γ′, Dγ′τ(γ;D)) − (Dγ′TD)(γ′, τ(γ;D))(1.3)

+ RD(τ(γ;D), γ′)γ′ = 0.

Short calculation shows that (1.3) is rewritten as

Dγ′Dγ′τ(γ;D) + Dγ′TD(τ(γ;D), γ′) + RD(τ(γ;D), γ′)γ′ = 0.

For biharmonic maps in Riemannian geometry we refer to a survey [54] by Montaldo
and Oniciuc.

2. Almost contact manifolds

2.1. Let M be a manifold of odd dimension m = 2n + 1. Then M is said to be an
almost contact manifold if its structure group GLmR of the linear frame bundle is
reducible to U(n) × {1}. This is equivalent to existence of a tensor field φ of type
(1, 1), a vector field ξ and a 1-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1.

From these conditions one can deduce that

φξ = 0, η ◦ φ = 0.

Moreover, since U(n) × {1} ⊂ SO(2n + 1), M admits a Riemannian metric g
satisfying

g(φX,φY ) = g(X,Y ) − η(X)η(Y )

for all X, Y ∈ X(M). Here X(M) = Γ (TM) denotes the Lie algebra of all smooth
vector fields on M . Such a metric is called an associated metric of the almost
contact manifold M = (M,φ, ξ, η). With respect to the associated metric g, η is
metrically dual to ξ, that is

g(X, ξ) = η(X)

for all X ∈ X(M). A structure (φ, ξ, η, g) on M is called an almost contact metric
structure, and a manifold M equipped with an almost contact metric structure is
said to be an almost contact metric manifold. A plane section Π at a point p of an
almost contact metric manifold M is said to be holomorphic if it is invariant under
φp. The sectional curvature function H of holomorphic plane sections are called
the holomorphic sectional curvature (also called φ-sectional curvature).

2.2. The fundamental 2-form Φ of (M,φ, ξ, η, g) is defined by

Φ(X,Y ) = g(X,φY ), X, Y ∈ X(M).

An almost contact metric manifold M is said to be a contact metric manifold if
Φ = dη. On a contact metric manifold, η is a contact form, i.e., (dη)n ∧ η ̸= 0.
Thus every contact metric manifold is orientable. Here we recall the followong
fundamental fact ([7, Theorem 4.6]).
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Proposition 2.1. On a contact metric manifold (M2n+1, φ, ξ, η, g), the volume
element dvg induced from the associated metric g is related to the contact form η
by

dvg =
(−1)n

2nn!
η ∧ (dη)n.

2.3. On the direct product manifold M × R of an almost contact metric mani-
fold and the real line R, any tangent vector field can be represented as the form
(X,λd/dt), where X ∈ X(M) and λ is a function on M ×R and t is the Cartesian
coordinate on the real line R.

Define an almost complex structure J on M × R by

J(X,λd/dt) = (φX − λξ, η(X)d/dt).

If J is integrable then M is said to be normal.
Equivalently, M is normal if and only if

[φ,φ](X,Y ) + 2dη(X,Y )ξ = 0,

where [φ,φ] is the Nijenhuis torsion of φ defined by

[φ,φ](X,Y ) = [φX,φY ] + φ2[X,Y ] − φ[φX, Y ] − φ[X,φY ]

for any X,Y ∈ X(M).
For more details on almost contact metric manifolds, we refer to Blair’s mono-

graph [7].

2.4. For an arbitrary almost contact metric 3-manifold M , we have ([57]):

(2.1) (∇Xφ)Y = g(φ∇Xξ, Y )ξ − η(Y )φ∇Xξ,

where ∇ is the Levi-Civita connection on M . Moreover, we have

dη = η ∧∇ξη + αΦ, dΦ = 2βη ∧ Φ,

where α and β are the functions defined by

(2.2) α =
1

2
Trace (φ∇ξ), β =

1

2
Trace (∇ξ) =

1

2
div ξ.

Olszak [57] showed that an almost contact metric 3-manifold M is normal if and
only if ∇ξ ◦ φ = φ ◦ ∇ξ or, equivalently,

(2.3) ∇Xξ = −αφX + β(X − η(X)ξ), X ∈ Γ (TM).

We call the pair (α, β) the type of a normal almost contact metric 3-manifold M .
Using (2.1) and (2.3) we note that the covariant derivative ∇φ of a 3-dimensional

normal almost contact metric manifold is given by

(2.4) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX).

Moreover M satisfies

2αβ + ξ(α) = 0.

Thus if α is a nonzero constant, then β = 0. In particular, a normal almost contact
metric 3-manifold is said to be

• cosymplectic (or coKähler) manifold if α = β = 0,
• quasi-Sasakian manifold if β = 0 and ξ(α) = 0.
• α-Sasakian manifold if α is a nonzero constant and β = 0,
• β-Kenmotsu manifold if α = 0 and β is a nonzero constant.
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1-Sasakian manifolds and 1-Kenmotsu manifolds are simply called Sasakian mani-
folds and Kenmotsu manifolds, respectively. Sasakian manifolds are characterized
as normal contact metric 3-manifolds.

Sasakian manifolds of constant holomorphic sectional curvature are called Sasakian
space forms. One can verify that every cosymplectic manifold satisfies

dη = 0, dΦ = 0.

More generally, almost contact metric manifolds with closed η and closed Φ are
called almost cosymplectic manifolds [31]. An almost cosymplectic manifold is
cosymplectic if and only if it is normal.

Remark 2.1. An almost contact metric manifold M is said to be a locally con-
formal almost cosymplectic manifold (resp. locally conformal cosymplectic man-
ifold) if there exists an open covering {Uλ}λ∈Λ together with smooth functions
σλ ∈ C∞(Uλ) such that the structure (φ, eσλξ, e−σλη, e−2σλg) is almost cosymplec-
tic (resp. cosymplectic) over Uλ. Olszak showed the following characterization for
normal almost contact metric manifolds satisfying (2.4) with α = 0.

Proposition 2.2 ([58]). An almost contact metric manifold M is normal locally
conformal almost cosymplectic manifold if and only if M satisfies (2.4) with function
β, dβ ∧ η = 0 and α = 0. In such a case the almost contact metric manifold is
locally conformal cosymplectic.

Remark 2.2 (f -Kenmotsu manifolds). Olszak and Roşca [59] showed that on almost
contact metric manifold M of dimension 2n + 1 > 3 satisfying (2.4) with α = 0
automatically satisfy the equation dβ ∧ η = 0. But this does not hold in general
when dimM = 3. Clearly when β is a constant, this condition holds. Based on
these observations, in 3-dimensional case, Olszak and Roşca introduced the notion
of f -Kenmotsu manifold as follows:

Definition 2.1 ([59]). An almost contact metric manifold M is said to be an
f -Kenmotsu manifold if it satisfies

(∇Xφ)Y = f(g(φX, Y )ξ − η(Y )φX),

where f is a function satisfying df ∧ η = 0.

2.5. As a generalization of the class of Kenmotsu manifold, the notion of almost
Kenmotsu manifold was introduced.

An almost contact metric manifold (M,φ, ξ, η, g) is said to be an almost β-
Kenmotsu manifold if it satiesfies

dη = 0, dΦ = 2βη ∧ Φ

for some constant β ̸= 0. Almost 1-Kenmotsu manifolds are refered as to almost
Kenmotsu manifolds. One can see that an almost β-Kenmotsu manifold is normal
if and only if it is a β-Kenmotsu manifold.

Remark 2.3. In [47], an almost contact metric manifold M is called an almost β-
cosymplectic manifold if it satisfies dη = 0 and there exist a real number β such
that dΦ = 2βη ∧ Φ.

Remark 2.4. An arbitrary almost contact metric 3-manifold M satisfies (cf. [57,
Proposition 1]):

dΦ = 2β η ∧ Φ.
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Here the function β is defined by β = div ξ/2 as before. Next η is closed if and only
if ∇ξ is self-adjoint with respect to g. Thus M is almost β-Kenmotsu if and only
if ∇ξ is self-adjoint and div ξ is non-zero constant.

Remark 2.5. An almost contact metric manifold M is said to be

• nearly Sasakian if

(∇Xφ)Y + (∇Y φ)X = 2g(X,Y )ξ − η(X)Y − η(Y )X

for all X, Y ∈ X(M).
• nearly cosymplectic if (∇Xφ)X = 0 for all X ∈ X(M).

In case dimM = 3, nearly Sasakian manifolds are automatically Sasakian. Analo-
gously, every nearly cosymplectic 3-manifold is cosymplectic (see [46]).

3. CR-manifolds

3.1. An almost CR-structure S of a smooth manifold M is a complex vector sub-
bundle S ⊂ TCM of the complexified tangent bundle of M satisfying S∩S = {0}. A
manifold M equipped with an almost CR-structure is called an almost CR-manifold.

An almost CR-structure S is said to be integrable if it satisfies the integrability
condition:

[Γ (S), Γ (S)] ⊂ Γ (S).

In such a case, (M,S) is called a CR-manifold.
Now let M = (M,φ, ξ, η, g) be an almost contact metric manifold. Then we

define an almost CR-structure S of M by

S = {X −
√
−1φX | X ∈ Γ (D)}

with

D = {X ∈ TM | η(X) = 0}.

We call S the almost CR-structure associated to (φ, ξ, η, g). Note that when
dimM = 3, the associated almost CR-structure S is automatically integrable.

One can easily check that the associated almost CR-structures of normal almost
contact metric manifolds are integrable.

Assume that M is a contact metric manifold. Define a section L of Γ (D∗ ⊗D∗)
by

L(X,Y ) = −dη(X,φY ).

Then L is positive definite on D ⊗ D and called the Levi-form of M . When the
associated almost CR-structure S is integrable, the resulting CR-manifold (M,S)
is called a strongly pseudo-convex CR-manifold or strongly pseudo-convex pseudo-
Hermitian manifold.

Proposition 3.1 ([72]). Let M be a contact metric manifold. Then its associated
almost CR-structure is integrable if and only if Q = 0. Here the tensor field Q is
defined by

(3.1) Q(Y,X) := (∇Xφ)Y − g((I + h)X,Y )ξ − η(X)η(Y )ξ + η(Y )(I + h)X,

where h = £ξφ/2. The tensor field Q is called the Tanno tensor field.
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Thus on a strongly pseudo-convex CR-manifolds, the following formula holds:

(3.2) (∇Xφ)Y = g((I + h)X,Y )ξ − η(Y )(I + h)X

for all vector fields X and Y . The formula (3.2) implies

∇Xξ = −φ(I + h)X, X ∈ X(M).

Remark 3.1. A contact metric 3-manifold M is Sasakian if and only if h = 0.

Problem 1. Let M be a contact metric manifold. Then its associated CR-structure
is integrable if and only if M satisfies (3.2). Thus every contact metric 3-manifold
satisfies (3.2). In almost contact setting can we prove the following statement ?

Let M be an almost contact metric manifold. Then its associated
CR-structure is integrable if and only if M satisfies (2.1) ?

Note that Călin and Ispas [13] considered almost contact metric manifolds satisfying
the following condition (which is slightly different from (2.1)):

(∇Xφ)Y = φ(∇φXφ)Y − g(∇φXξ, Y )ξ.

3.2. In the study of strongly pseudo-convex CR-manifolds, the linear connection
∇̂ introduced by Tanaka and Webster is highly useful:

(3.3) ∇̂XY = ∇XY + η(X)φY + {(∇Xη)Y }ξ − η(Y )∇Xξ.

Here ∇ is the Levi-Civita connection of the associated metric. The linear connection
∇̂ is referred as the Tanaka-Webster connection ([71, 77]). It should be remarked

that the Tanaka-Webster connection has non-vanishing torsion T̂ :

T̂ (X,Y ) = 2g(X,φY )ξ + η(Y )φhX − η(X)φhY.

With respect to the Tanaka-Webster connection all the structure tensor fields
(φ, ξ, η, g) are parallel, i.e.,

∇̂φ = 0, ∇̂ξ = 0, ∇̂η = 0, ∇̂g = 0.

4. Curve theory in almost contact metric 3-manifolds

4.1. Let (M,φ, ξ, η, g) be a contact metric 3-manifold. Then as we have seen before,
the volume element dvg derived from the associated metric g is related to the contact
form η by

(4.1) dvg = −1

2
η ∧ Φ.

Here Φ is the fundamental 2-form. Even if M is non-contact, M is orientable by
the 3-form −η ∧Φ/2 and the volume element dvg coincides with this 3-form. Thus
hereafter we orient the almost contact metric 3-manifold M by dvg = −η ∧ Φ/2.
With respect to this orientation, the vector product × is computed as

(4.2) X × Y = −Φ(X,Y )ξ + η(X)φY − η(Y )φX.

With respect to this orientation, we have

dvg(X,φX, ξ) = 1

for any unit vector field X orthogonal to ξ (equivalently, X × φX = ξ). Camcı
called the vector product operation × given in (4.2) the new extended cross product.
However the operation × coincides with the vector product induced by dvg and
hence not a new operation.
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4.2. Let γ(s) be a unit speed curve in an almost contact metric 3-manifold M =
(M,φ, ξ, η, g). Denote by θ(s) the the angle function between the tangent vector
field γ′ and ξ, i.e., η(γ′(s)) = cos θ(s) with 0 ≤ θ ≤ π.

Definition 4.1. A unit speed curve γ in an almost contact metric 3-manifold is
said to be slant if its contact angle θ is constant.

By definition, slant curves with constant angle 0 are trajectories of ξ. Slant
curves with constant angle π/2 are called almost Legendre curves or almost contact
curves. J. We lyczko [78] studied almost contact curves in normal almost contact
metric 3-manifolds. See also [39].

When M is a contact metric 3-manifold, almost Legendre curves are traditionally
called Legendre curves(cf. [4]). Legendre curves play crucial roles in 3-dimensional
contact geometry and contact topology.

Slant curves appear naturally in differential geometry of Sasakian 3-manifolds.
For instance, biharmonic curves in 3-dimensional Sasakian space forms are slant
helices [19]. Moreover the normal flowlines of the magnetic field associated to the
Reeb vector field of Sasakian 3-manifolds are slant helices [9, 10] (see also section
5.3).

Example 4.1 (Euclidean helices). Let E3(x, y, z) be the Euclidean 3-space with
metric ⟨·, ·⟩ = dx2+dy2+dz2. Then the standard cosymplectic structure associated
to g is defined by

η = dz, ξ =
∂

∂z
, φ

∂

∂x
=

∂

∂y
, φ

∂

∂y
= − ∂

∂x
.

Now let γ(s) be a slant helix with constant contact angle θ. Then γ is congruent
to the following model helix :

γ(s) = (a cos(s/c), a sin(s/c), bs/c),

where a > 0, b ̸= 0 and c =
√
a2 + b2 > 0 are constants. The Frenet frame of γ is

given by

F = (T,N,B) =

−(a/c) sin(s/c) − cos(s/c) (b/c) sin(s/c)
(a/c) cos(s/c) − sin(s/c) −(b/c) cos(s/c)

b/c 0 a/c

 .

One can see that detF = 1. The curvature and torsion of γ are κ = a/c2 > 0 and
τ = b/c2 ̸= 0. One can see that γ has constant contact angle θ with cos θ = b/c. In
particular every almost Legendre helix is congruent to the circle

γ(s) = (c cos(s/c), c sin(s/c), 0)

of curvature 1/c > 0 and torsion 0.

5. Slant curves in Sasakian 3-manifolds

5.1. Let γ be a unit speed curve in a contact metric 3-manifold M . We have

ξ × T = φT, ξ ×N = φN, ξ ×B = φB.

Since ξ is expressed as

ξ = η(T )T + η(N)N + η(B)B
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along γ, we have

φT = −η(N)B + η(B)N, φN = −η(B)T + η(T )B, φB = −η(T )N + η(N)T.

Differentiating η(T ), η(N) and η(B) along γ, we have

η(T )′ = κη(N) − g(T, φhT ),

η(N)′ = −κη(T ) + (τ − 1)η(B) − g(N,φhT ),

η(B)′ = −(τ − 1)η(N) − g(B,φhT ).

For example, we compute

η(N)′ = g(N, ξ)′ = g(∇γ′N, ξ) + g(N,∇γ′ξ)

= g(−κT + τB, ξ) − g(N,φ(I + h)T )

= −κη(T ) + τη(B) − g(N,φ(I + h)T )

= −κη(T ) + τη(B) − g(N,φT ) − g(N,φhT )

= −κη(T ) + (τ − 1)η(B) − g(N,φhT ).

Now we assume that M is Sasakian. Then we have

η(T )′ = κη(N),

η(N)′ = −κη(T ) + (τ − 1)η(B),

η(B)′ = −(τ − 1)η(N).

Proposition 5.1 ([19]). A non-geodesic unit speed curve γ in a Sasakian 3-manifold
is a slant curve if and only if η(N) = 0.

Moreover the second equation shows that on a non-geodesic slant curve, κη(T ) =
(τ − 1)η(B). The third equation implies that η(B) is constant along γ. Hence we
obtain

Proposition 5.2 ([19]). The ratio of κ and τ − 1 is constant along a non-geodesic
slant curve in a Sasakian 3-manifold.

Conversely we have the following result.

Proposition 5.3 ([19], see also [53]). Let γ(s) be a unit speed curve in a Sasakian
3-manifold satisfying η(N) = 0 and the ratio of κ and τ − 1 is constant. Then γ is
a slant curve.

In [14] Camcı exhibited the following example.

Example 5.1. Define a function σ(s) by

σ(s) =
1

2
(1 − cos(2

√
2s))

and define a curve γ(s) by the ODE

x′(s) = −2
√

2 − σ(s)2 sin θ(s)

with

θ′(s) = −2σ(s) +
2

1 + σ(s)
.

Then the resulting curve satisfies (τ − 1)/κ = constant. However this curve is not
slant. In fact,

η(N)′ =
1

2
σ′′(s) = 2 cos(2

√
2s).
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Thus γ does not satisfy η(N) = 0. Hence his example is not a counterexample to
[19].

Remark 5.1 (Legendre curves). Let γ be a non-geodesic Legendre curve in a Sasakian
3-manifold. Then differentiating η(γ′) = 0 along γ, we have

0 = g(γ′, ξ)′ = g(κN, ξ) + g(T,∇γ′ξ) = κg(N, ξ) − g(T, φT ) = κη(N).

Thus we have η(N) = 0. Since N is ortogonal to both T and ξ, N is expressed as
N = ϵφT with ϵ = ±1. Then

∇γ′N = ϵ{(∇γ′φ)T + φ(∇γ′T )}
= ϵ{g(γ′, γ′)ξ + φ(κN)} = ϵ(ξ + κφN)

= −κT + ϵξ.

Since (T,N,B) is positively oriented, we have 1 = dvg(T,N,B) = dvg(T, ϵφT,B).
Namely, B = ϵT × φT . On the other hand, B is computed as

B = T ×N = −Φ(T,N)ξ + η(T )φN − η(N)φT

= −g(T, φN)ξ = −g(T, φ(ϵφT ))ξ = ϵξ.

Hence we obtain

∇γ′N = −κT + B.

This formula should coincides with

∇γ′N = −κT + τB.

Hence we have τ = 1.

Corollary 5.1 ([4]). Every Legendre curve in a Sasakian 3-manifold has constant
torsion 1.

Example 5.2 (Legendre helices in S3). Let C2 be the complex Euclidean 2-space
with complex structure J :

J(z1, z2) =
√
−1(z1, z2).

Identify C2 with Euclidean 4-space E4 via the isomorphism

(z1, z2) 7−→ (x1, y1, x2, y2), zj = xj +
√
−1yj , j = 1, 2.

Then J corresponds to the linear transformation

(x1, y1, x2, y2) 7−→ (−y1, x1,−y2, x2).

Now let us introduce a Sasakian structure on the unit 3-sphere S3 ⊂ C2 = E4. We
take the unit normal vector field n of S3 in C2 by n = x, where x is the position
vector field of C2. Then the Levi-Civita connections D of C2 and ∇ of S3 are
related by the Gauss formula:

DXY = ∇XY − ⟨X,Y ⟩n.
Define the vector field ξ on S3 by ξ = −Jn and set η = g(ξ, ·), where g is the
metric of S3. Then η is a contact form on S3 and ξ is the Reeb vector field. The
associated endomorphism field φ is the restriction of J to S3. It is well known that
S3 equipped with this structure is a Sasakian manifold of constant curvature 1.

Now let a, b and ϕ be constants such that

(5.1) a2 cos2 ϕ + b2 sin2 ϕ = 1.
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Then

γ(s) = (cosϕ cos(as), cosϕ sin(as), sinϕ cos(bs), sinϕ sin(bs))

is an arclength parametrized curve in S3(see [30]). One can see that γ lies in the flat
torus T2 of constant mean curvature cot(2ϕ) given by the equations x2

1+y21 = cos2 ϕ
and x2

2 + y22 = sin2 ϕ. The tangent vector field T is

T = (−a cosϕ sin(as), a cosϕ cos(as),−b sinϕ sin(bs), b sinϕ cos(bs)).

From this equation and the Gauss formula we get

∇γ′γ′ = γ′′ + γ =


(1 − a2) cosϕ cos(as)
(1 − a2) cosϕ sin(as)
(1 − b2) sinϕ cos(bs)
(1 − b2) sinϕ sin(bs)

 .

Thus the curvature κ is computed as

κ2 = |∇γ′γ′|2

= a4 cos2 ϕ + b4 sin2 ϕ− 1

= a2(1 − b2 sin2 ϕ) + b2(1 − a2 cos2 ϕ) − 1

= a2 + b2 − a2b2 − 1 = (a2 − 1)(1 − b2).

Hereafter we assume that κ ̸= 0. Then the principal normal N is given by

N =
1√

(a2 − 1)(1 − b2)


(1 − a2) cosϕ cos(as)
(1 − a2) cosϕ sin(as)
(1 − b2) sinϕ cos(bs)
(1 − b2) sinϕ sin(bs)

 .

On the other hand, the Reeb vector field along γ is given by

ξγ =


cosϕ sin(as)

− cosϕ cos(as)
sinϕ sin(bs)

− sinϕ cos(bs)

 .

Hence the contact angle θ is computed as

(5.2) cos θ = η(T ) = −(a cos2 ϕ + b sin2 ϕ).

Hence γ is a slant curve. In particular, γ is a Legendre curve if and only if a cos2 ϕ+
b sin2 ϕ = 0.

Next we compute the torsion τ of γ. The square τ2 of the torsion is given by
τ2 = |∇γ′N + κT |2. Since κ is constant, we have

∇γ′N =
1

κ
(γ′′ + γ)′ =

1√
(a2 − 1)(1 − b2)


−a(1 − a2) cosϕ sin(as)
a(1 − a2) cosϕ cos(as)
−b(1 − b2) sinϕ sin(bs)
b(1 − b2) sinϕ cos(bs)

 .

Thus we get

τ2 =

(
(1 − a2)a

κ
+ aκ

)2

cos2 ϕ +

(
(1 − b2)b

κ
+ bκ

)2

sin2 ϕ = (ab)2.
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Thus B has the form

B =
ε

ab
√

(a2 − 1)(1 − b2)


−a(1 − a2)b2 cosϕ sin(as)
a(1 − a2)b2 cosϕ cos(as)
−b(1 − b2)a2 sinϕ sin(bs)
b(1 − b2)a2 sinϕ cos(bs)

 , ε = ±1.

Next computing the determinant of (T,N,B, γ), we get det(T,N,B, γ) = −ε.
Hence we have ε = −1. Thus we get

∇γ′B =
−1

ab
√

(a2 − 1)(1 − b2)


−a2(1 − a2)b2 cosϕ cos(as)
−a2(1 − a2)b2 cosϕ sin(as)
−b2(1 − b2)a2 sinϕ cos(bs)
−b2(1 − b2)a2 sinϕ sin(bs)

 = abN.

From the Frenet-Serret formula, we have τ = −ab.
Now we concentrate on Legendre helices. Assume that γ is Legendre, then from

the equation (5.2), we get

N =


a cosϕ cos(as)
a cosϕ sin(as)
b sinϕ cos(bs)
b sinϕ sin(bs)

 = −φT.

In this case, the binormal vector field is given by B = −ξγ . One can see that

det(T,N,B, γ)

=

∣∣∣∣∣∣∣
−a cosϕ sin(as) a cosϕ cos(as) − cosϕ sin(as) cosϕ cos(as)
a cosϕ cos(as) a cosϕ sin(as) cosϕ cos(as) cosϕ sin(as)
−b sinϕ sin(as) b sinϕ cos(bs) − sinϕ sin(bs) sinϕ cos(bs)
b sinϕ cos(bs) b sinϕ sin(bs) sinϕ cos(bs) sinϕ sin(bs)

∣∣∣∣∣∣∣ = 1.

From the equation (5.1), (5.2) and sin2 θ + cos2 θ = 1, we have ab = −1. Hence
F = (T,−φT,−ξγ) is a positive orthonormal frame field along γ. The torsion τ is
computed by τ = −ab = 1. This fact is confirmed also by the formula

−τN = ∇γ′B = −∇γ′ξ = φT = −N.

Note that in case τ = −ab = −1, η(T ) = 0 can not hold 1. In fact the Legendre
condition a cos2 ϕ + b sin2 ϕ = 0 is not compatible with (5.1) under the condition
ab = 1.

5.2. Variational characterization. Let M be a Sasakian 3-manifold. Denote
by ML the space of closed curves in M with length L. Blair, Dillen, Verstraelen
and Vrancken studied the variational problem for the length functional

L : ML → R+; L(γ) =

∫ L

0

√
g(γ′(s), γ′(s)) ds

under the variations γ(t) of the form:

(5.3) γ(t)(s) := expγ(s)(tf(s)ξγ(s)).

1Under the conditions a2 cos2 ϕ+ b2 sin2 ϕ = 1 and τ = −ab = −1, Legendre condition implies

cos2 ϕ = −1/(1 − a2) and sin2 ϕ = a2/(1 − a2). On the other hand, when τ = 1, we obtain
cos2 ϕ = 1/(1 + a2) and sin2 ϕ = a2/(1 + a2).
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Then the first variation formula for L is given by

d

dt

∣∣∣∣
t=0

L(γ(t)) = −
∫ L

0

f(s)
d

ds
cos θ(s) ds.

This first variational formula implies the following variational characterization for
slant curves:

Theorem 5.1 ([8]). A unit speed closed curve γ in a Sasakian 3-manifold M is a
critical point of the length functional under the variation of the form (5.3) if and
only if γ is a slant curve.

5.3. Magnetic curves. Magnetic curves represent, in physics, the trajectories
of the charged particles moving on a Riemannian manifold under the action of
magnetic fields. A magnetic field F on a Riemannian manifold (M, g) is a closed
2-form and the Lorentz force associated to F is an endomorphism field L defined
by

g(LX, Y ) = F (X,Y ), X, Y ∈ Γ (TM).

The magnetic trajectories of F are curves γ satisfying the Lorentz equation:

∇γ′γ′ = Lγ′.

One can see that every magnetic trajectory has constant speed. Unit speed mag-
netic curves are called normal magnetic curves.

Now let us consider magnetic curves in a Sasakian 3-manifold M with magnetic
field Fξ,q = −qΦ. Here q is a constant (and called the strength of Fξ,q). Then its
Lorentz force Lξ,q is qφ. This magnetic field is called the contact magnetic field of
strength q. The magnetic curve equation is

∇γ′γ′ = qφγ′.

Proposition 5.4. Let γ be a normal magnetic curve in a Sasakian 3-manifold M
with respect to the contact magnetic field Fξ. Then γ is a slant curve.

(Proof.) Direct computation shows that

g(γ′, ξ)′ = g(∇γ′γ′, ξ) + g(γ′,∇γ′ξ)

= qg(φγ′, ξ) + g(γ′,−φγ′) = 0.

Hence γ is a slant curve. �
Now let us study curvature and torsion of a non-geodesic normal magnetic curve

γ with respect to Fξ,q. Then as we have seen above, γ is a slant curve with constant
contact angle θ.

By the vector product operation, the magnetic curve equation can be rewritten
as

∇γ′γ′ = (qξ) × γ′.

Thus we have

qξ × γ′ = κN.

Hence

κ2 = q2g(ξ × γ′, ξ × γ′) = q2(1 − cos2 θ) = q2 sin2 θ.

Thus γ has constant curvature κ = |q sin θ| > 0. Since η(N) = 0, we have

N =
ε

| sin θ|
φγ′,
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where ε = q/|q| is the signature of q. The binormal B is computed as

B = γ′ ×N =
ε

| sin θ|
γ′ × φγ′ =

ε

| sin θ|
(ξ − cos θγ′).

Inserting this into the equation ∇γ′B = −τN , we have

τ = 1 + q cos θ.

Hence γ is a slant helix. Note that the ratio of κ and τ − 1 is computed as

τ − 1

κ
= ε

cos θ

| sin θ|
.

Theorem 5.2 ([9, 10]). The normal flowlines of contact magnetic field Fξ,1 in a
Sasakian 3-manifold are slant helices with curvature κ = | sin θ| and torsion τ =
1 + cos θ.

Conversely let γ be a non-geodesic slant helix with constant curvature κ and
torsion τ . Since γ is a slant curve, we have η(N) = 0. So N is orthogonal to both
γ′ and ξ. Thus N has the form N = λξ × γ′. This implies

1 = |N | = |λ|| sin θ|.
Hence λ is a constant. Note that since we assumed that γ is non-geodesic, sin θ ̸= 0.
Thus N has the form

N =
ε

| sin θ|
φγ′.

This formula implies that
∇γ′γ′ = qφγ′

with
q =

ε

| sin θ|
κ.

Hence γ is a normal magnetic curve with respect to the contact magnetic field of
strength q.

The binormal B is given by

B = γ′ ×N =
ε

| sin θ|
(ξ − cos θ γ′).

The torison of γ is computed as

τ = 1 +
εκ

| sin θ|
cos θ.

Theorem 5.3. Let γ be a non-geodesic slant helix in a Sasakian 3-manifold. Then
γ is a normal magnetic curve with respect to the contact magnetic field Fξ,q with
strength q = εκ/| sin θ|.

Periodicity of contact magnetic trajectories in 3-dimensional Sasakian space form
of constant holomorphic sectional curvature ≥ 1 was investigated in [45]. For
contact magnetic trajectories in Sasakian space forms of general dimension, we
refer to [26].

In [73], Tashiro and Tachibana introduced the notion of C-loxodrome.

Definition 5.1. A unit speed curve γ in a Sasakian manifold is said to be a C-
loxodrome if it satisfies

∇γ′γ′ = rη(γ′)φγ′.

Here r is a constant.
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Clearly, every C-loxodrome has constant contact angle cos θ = η(γ′). Thus a C-
loxodrome is a normal magnetic curve with respect to Fξ,q with strength q = r cos θ.
It should be remarked that the notion of C-loxodrome is not equivalent to that of
contact magnetic curve or slant curve. In fact, if a C-loxodrome γ has constant
contact angle π/2, namely, γ is a Legendre curve, then γ should be a Legendre
geodesic.

Yanamoto [80] investigated C-loxodromes in the unit 3-sphere S3 equipped with
canonical Sasakian structure.

A differomorphism f on a Sasakian manifold is said to be a CL-transformation
if it carries C-loxodromes to C-loxodromes [73]. Takamatsu and Mizusawa stud-
ied infinitesimal CL-transformations on compact Sasakian manifolds [69]. As an
analogue of Wely’s conformal curvature tensor field, Koto and Nagao introduced
CL-curvature tensor field for Sasakian manifolds. The CL-curvature tensor field is
invariant under CL-transformations. Koto and Nagao showed that Sasakian space
forms are characterized as Sasakian manifolds with vanishing CL-curvature tensor
fields [50].

Remark 5.2. Every proper biharmonic curve in a 3-dimensional Sasakian space
form of constant holomorphic sectional curvature H are slant helices satisfying

κ2 + τ2 = 1 + (H − 1) sin2 θ.

Inserting κ = sin θ and τ = 1 + cos θ in the left hand side of this ODE, we have

κ2 + τ2 = sin2 θ + (1 + cos θ)2 = 2(1 + cos θ).

Hence we get
(H − 1) cos2 θ + 2 cos θ + (2 −H) = 0.

In case H = 1, we have cos θ = −1/2.
Assume that H ̸= 1, t = cos θ is a solution to (H−1)t2 +2t+(2−H) = 0. Since

1 − (2 −H)(H − 1) = (H − 3
2 )2 + 3

4 > 0, this quadratic equation has real roots if
and only if

−1 ≤ −1 ±
√
H2 − 3H + 3

H − 1
≤ 1.

One can check that for any H ∈ R \ {1}, we have

−1 <
−1 +

√
H2 − 3H + 3

H − 1
< 1.

Note that

lim
H→1

−1 +
√
H2 − 3H + 3

H − 1
= −1

2
.

On the other hand, for any H ∈ R \ {1}, we have∣∣∣∣∣−1 −
√
H2 − 3H + 3

H − 1

∣∣∣∣∣ > 1.

Thus we notice the following fact.

Proposition 5.5. For any real number H different from 1, there exist normal
magnetic helix which is proper biharmonic in the 3-dimensional Sasakian space
form of constant holomorphic sectional curvature H with constant contact angle

θ = cos−1 −1 +
√
H2 − 3H + 3

H − 1
.
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6. C-parallel conditions

Let γ be a unit speed curve in an almost contact metric 3-manifold. Then γ is
said to have η-parallel (or C-parallel) mean curvature vector field if

g(∇γ′H,X) = 0

for all X ∈ Γ (γ∗TM) orthogonal to ξ. One can see that γ has η-parallel mean
curvature vector field if and only if there exists a function λ along γ such that
∇γ′H = λξ.

Theorem 6.1 ([53]). Let γ be a slant curve in a Sasakian 3-manifold. Then γ has
a η-parallel mean curvature vector field if and only if γ is a geodesic (λ = 0) or a
helix with κ =

√
−λ cos θ and τ = λ sin θ/

√
−λ cos θ.

Corollary 6.1 ([53]). Let γ be a Legendre curve in a Sasakian 3-manifold. Then
γ satisfies ∇γ′H = λξ if and only if γ is a Legendre geodesic.

7. Canonical connections

7.1. Let M = (M,φ, ξ, η, g) be an almost contact metric manifold. Define a tensor
field A = At of type (1, 2) by

(7.1) At
XY = −1

2
φ(∇Xφ)Y − 1

2
η(Y )∇Xξ − tη(X)φY + (∇Xη)(Y )ξ,

for all vector fields X and Y . Here t is a real constant. We define a linear connection
∇̃t on M by

∇̃t
XY = ∇XY + At

XY.

We call the connection ∇̃t the canonical connection of M . Note that the connec-
tion ∇0 is the (φ, ξ, η)-connection introduced by Sasaki and Hatakeyama in [64].

Moreover ∇̃1 was introduced by Cho [16]. When M is a strongly pseudo-convex
CR-manifold, (3.2) implies that

∇̃t
XY = ∇XY − tη(X)φY + η(Y )φ(I + h)X − g(φ(I + h)X,Y )ξ.

This formula shows that when M is a strongly pseudo-convex CR-manifold, ∇̃t|t=−1

is the Tanaka-Webster connection. The canonical connection ∇̃t on an almost
contact metric manifold satisfies the following conditions:

∇̃φ = 0, ∇̃ξ = 0, ∇̃η = 0, ∇̃g = 0.

Remark 7.1 (Generalized Tanaka-Webster connection). Let M be a contact metric
manifold. Tanno introduced the following linear connection on M ([72]):

T∇XY := ∇XY + η(X)φY + η(Y )φ(I + h)X − g(φ(I + h)X,Y )ξ.

This linear connection is called the generalized Tanaka-Webster connection. In case,
the associated almost CR-structure S is integrable, generalized Tanaka-Webster

connection coincides with our canonical connection ∇̃t|t=−1. The generalized Tanaka-

Webster connection does not coincide with ∇̃t|t=−1 if S is non-integrable. In fact,
ξ, η and g are parallel with respect to T∇ but for φ, T∇ satisfies

(T∇Xφ)Y = Q(Y,X)

holds. Here Q is the Tanno tensor field. Hence we notice that on a contact metric
manifold M , T∇ = ∇̃t|t=−1 if and only if its associated CR-structure is integrable.
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7.2. Normal almost contact metric 3-manifolds. In this subsection we as-
sume that M is a normal almost contact metric 3-manifold (or more generally,
trans-Sasakian manifold of general dimension) of type (α, β). Then (7.1) is reduced
to

At
XY = α{g(X,φY )ξ + η(Y )φX}(7.2)

+β{g(X,Y )ξ − η(Y )X} − tη(X)φY.

The torsion tensor field Tt of ∇̃t is given by

T̃t(X,Y ) = α{2g(X,φY )ξ − η(X)φY + η(Y )φX}(7.3)

+η(X)(βY − tφY ) − η(Y )(βX − tφX).

In particular, for a Kenmotsu manifold (α = 0 and β = 1) the above equation
reduce as follows:

At
XY = −η(Y )X − tη(X)φY + g(X,Y )ξ,(7.4)

T̃t(X,Y ) = η(X)(Y − tφY ) − η(Y )(X − tφX).

For a Sasakian manifold (α = 1 and β = 0) we get

At
XY = g(X,φY )ξ + η(Y )φX − tη(X)φY,(7.5)

T̃t(X,Y ) = 2g(X,φY )ξ − (1 + t)η(X)φY + (1 + t)η(Y )φX.

On a Sasakian 3-manifolds, canonical connection ∇̃t coincides with the linear

connection introduced by Okumura. In particular, ∇̃1 is called the Okumura con-
nection [55].

8. Slant curves in pseudo-Hermitian geometry

8.1. Let γ = γ(s) : I → M3 be a curve parameterized by arc-length in normal

almost contact metric 3-manifold M3. We may define the Frenet frame fields F̃ =

(T̃ , Ñ , B̃) along γ with respect to the canonical connection ∇̃t, since ∇̃t is a metrical

connection. Then F̃ satisfies the following Frenet-Serret equations with respect to

∇̃t:

(8.1)


∇̃t

γ′ T̃ = κ̃Ñ

∇̃t
γ′Ñ = − κ̃T̃ + τ̃ B̃

∇̃t
γ′B̃ = − τ̃ Ñ

where κ̃ = |∇̃t
γ′ T̃ | is the pseudo-Hermitian curvature of γ and τ̃ its pseudo-Hermitian

torsion for the canonical connection ∇̃t. A non-geodesic curve γ is said to be a
pseudo-Hermitian circle if κ̃ is nonzero constant and τ̃ = 0. A pseudo-Hermitian
helix is a non-geodesic curve with nonzero constant pseudo-Hermitian curvature κ̃

and pseudo-Hermitian torsion τ̃ . The vector field H̃ = ∇̃t
γ′γ′ is called the pseudo-

Hermitian mean curvature vector field of γ.

8.2. Contact metric 3-manifolds. In [61], Özgür and Güvenç studied slant

curves in contact metric 3-manifold in terms of Tanaka-Webster connection ∇̂ =
∇̃t|t=−1. In this subsection we generalize results in [61] to slant curves in a contact

metric 3-manifold M equipped with ∇̃t.
We start with the following result which is a slight modification of [61].
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Proposition 8.1 (cf. [20],[61]). Let γ be a non-geodesic unit speed curve in a

contact metric 3-manifold (M, ∇̃t). Then γ is a Legendre curve if and only if
τ̃ = 0.

Lemma 8.1. Let γ be a curve in an almost contact metric 3-manifold M . Then

∇̃t⊥
γ′ ∇̃t⊥

γ′ γ′ = κ̃′Ñ + κ̃τ̃ B̃,(8.2)

∇̃t⊥
γ′ ∇̃t⊥

γ′ ∇̃t⊥
γ′ γ′ = (κ̃′′ − κ̃τ̃2)Ñ + (2κ̃′τ̃ + κ̃τ̃ ′)B̃.(8.3)

In pseudo-Hermitian geometry, we introduce the following notion.

Definition 8.1. In a contact metric 3-manifold (M3, ∇̃t), a vector field X normal

to a unit speed curve γ is said to be pseudo-Hermitian parallel if ∇̃t⊥
γ̇ X = 0.

By using the equation (8.2) we get

Proposition 8.2. Let γ be a non-geodesic unit speed curve in a contact metric

3-manifold (M, ∇̃t). Then γ has pseudo-Hermitian parallel mean curvature vector
field if and only if γ is a pseudo-Hermitian circle.

8.3. Normal almost contact metric 3-manifolds. In this subsection, we as-
sume that M is a normal almost contact metric 3-manifold.

Proposition 8.3 ([11]). A Frenet curve γ is a slant curve in a normal almost
contact metric 3-manifold M of type (α, β) if and only if γ satisfies

(8.4) η(N) = −β

κ
sin2 θ.

If β > 0 then a necessary condition for γ to be slant is

(8.5) | sin θ |≤ min

{√
κ

β
,
κ

β
, 1

}
.

We suppose that γ is a non-geodesic slant curve in a normal almost contact
metric 3-manifold M of type (α, β). Then γ can not be an integral curve of ξ.
We find the following orthonormal frame field in normal almost contact metric
3-manifold M along γ:

(8.6) ϵ1 = T = γ′, ϵ2 =
φγ′

| sin θ |
, ϵ3 =

ξ − cos θγ′

| sin θ |
.

Note that ξ = cos θϵ1+ | sin θ | ϵ3.
Then for a slant curve γ in normal almost contact metric 3-manifold M we have

(8.7)


∇γ′ϵ1 =δ | sin θ | ϵ2 − β | sin θ | ϵ3,
∇γ′ϵ2 = − δ | sin θ | ϵ1 + (α + δ cos θ)ϵ3,

∇γ′ϵ3 =β | sin θ | ϵ1 − (α + δ cos θ)ϵ2,

where δ = g(∇γ′γ′, φγ′)/ sin2 θ.

We define T̃ = T then from the definition of ∇̃t we get

∇̃t
γ′ T̃ = ∇̃t

γ′γ′ = ∇γ′γ′+ | sin θ | ((α− t) cos θϵ2 + βϵ3)(8.8)

= | sin θ | (δ + (α− t) cos θ)ϵ2.

Thus we can write

(8.9) ∇̃t
γ′ T̃ = κ̃Ñ ,
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with κ̃ =| sin θ(δ+(α−t) cos θ) |, Ñ = ϵ2, where Ñ is a ∇̃t-principal normal vector
field.

Differentiation Ñ along γ

(8.10) ∇̃t
γ′Ñ = −κ̃T̃ + cos θ(δ + (α− t) cos θ)ϵ3,

which implies τ̃ = cos θ(δ+(α−t) cos θ) and B̃ = ϵ3. The Frenet frame field satisfies

(8.11) φT̃ = | sin θ|Ñ , φÑ = −| sin θ|T̃ + cos θB̃, φB̃ = − cos θÑ .

From (8.8) we get

Proposition 8.4. Let γ be a slant curve in a normal almost contact metric 3-

manifold M of type (α, β). Then γ is ∇̃t-geodesic if and only if γ satisfies

∇γ′γ′ = β cos θγ′ − (α− t) cos θφγ′ − βξ.

In particular, for an almost Legendre curve we have ([40])

Proposition 8.5. Let γ be an almost Legendre curve in a normal almost contact

metric 3-manifold M of type (α, β). Then γ is ∇̃t-geodesic if and only if γ satisfies
∇γ′γ′ = −βξ.

Corollary 8.1. Let γ be an almost Legendre curve in a quasi-Sasakian 3-manifold

M . Then γ is ∇̃t-geodesic if and only if γ it is an almost Legendre geodesic with
respect to the Levi-Civita connection.

9. Bianchi-Cartan-Vranceanu spaces

Let µ be a real number and set

D =
{

(x, y, z) ∈ R3(x, y, z) | 1 + µ(x2 + y2) > 0
}
.

Note that D is the whole R3(x, y, z) for µ ≥ 0. On the region D, we equip the
following Riemannian metric:

(9.1) gλ,µ =
dx2 + dy2

{1 + µ(x2 + y2)}2
+

(
dz +

λ

2

ydx− xdy

1 + µ(x2 + y2)

)2

.

Take the following orthonormal frame field on (D, gc):

u1 = {1 + µ(x2 + y2)} ∂

∂x
− λy

2

∂

∂z
,

u2 = {1 + µ(x2 + y2)} ∂

∂y
+

λx

2

∂

∂z
,

u3 =
∂

∂z
.

Then the Levi-Civita connection ∇ of this Riemannian 3-manifold is described as

∇u1u1 = 2µ yu2, ∇u1u2 = −2µ yu1 +
λ

2
u3, ∇u1u3 = −λ

2
u2,

(9.2) ∇u2u1 = −2µ xu2 −
λ

2
u3, ∇u2u2 = 2µ xu1, ∇u2u3 =

λ

2
u1,

∇u3u1 = −λ

2
u2, ∇u3u2 =

λ

2
u1, ∇u3u3 = 0.

(9.3) [u1, u2] = −2µ yu1 + 2µ xu2 + λu3, [u2, u3] = [u3, u1] = 0.
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Define the endomorphism field φ by

φu1 = u2, φu2 = −u1, φu3 = 0.

The dual one-form η of the vector field ξ = u3 is a contact form on D and satisfies

dη(X,Y ) =
λ

2
g(X,φY ), X, Y ∈ X(D).

Moreover the structure (φ, ξ, η, g) is a normal almost contact metric 3-manifold of
type (λ/2, 0). The normal almost contact metric 3-manifold (D, gc) is of constant
holomorphic sectional curvature H = 4µ − 3λ2/4. (cf. [5], [70]). In particular, if
we choose λ = 2, then M3(2, µ) is a Sasakian manifold of constant holomorphic
sectional curvature H = 4µ− 3.

Hereafter we denote this Riemannian 3-manifold (D, gλ,µ) by M3(λ, µ). The
2-parameter family of Riemannian 3-manifolds {M3(λ, µ) |λ, µ ∈ R} is classi-
cally known by L. Bianchi [6], E. Cartan [15] and G. Vranceanu [76] (See also
Kobayashi [48]). The Riemannian manifolds M3(λ, µ) are called the Bianchi-
Cartan-Vranceanu spaces. This 2-parameter family includes all the Riemannian
metric with 4 or 6-dimensional isometry group other than constant negative curva-
ture metrics. More precisely M3(λ, µ) is (locally) isometric to one of the following
spaces.

• µ = λ = 0: Euclidean 3-space R3,
• µ = 0, λ ̸= 0: The Heisenberg group Nil,
• µ > 0, λ ̸= 0: The special unitary group SU(2),
• µ < 0, λ ̸= 0: The universal covering of SL2R,
• µ > 0, λ = 0: Product space S2(4µ) × R,
• µ < 0, λ = 0: Product space H2(4µ) × R,
• 4µ = λ2: The 3-sphere S3(µ) of curvature µ.

9.1. From (7.5), the canonical connection ∇̃t of the Bianchi-Cartan-Vranceanu
space is described as

∇̃u1u1 = 2µ yu2, ∇̃u1u2 = −2µ yu1, ∇̃u1u3 = 0,

(9.4) ∇̃u2u1 = −2µ xu2, ∇̃u2u2 = 2µ xu1, ∇̃u2u3 = 0,

∇̃u3u1 = −(t + λ/2)u2, ∇̃u3u2 = (t + λ/2)u1, ∇̃u3u3 = 0.

By using the above data, we calculate the curvature tensor R̃(X,Y ) = [∇̃X , ∇̃Y ]−
∇̃[X,Y ]. Then we find that

R̃t(u1, u2)u1 =

{
−4µ + λ(t +

λ

2
)

}
u2,(9.5)

R̃(u1, u2)u2 = −
{
−4µ + λ(t +

λ

2
)

}
u1,(9.6)

all others are zero. Hence the holomorphic sectional curvature H̃t with respect to

∇̃t is given by

H̃t = g(R̃t(u1, u2)u2, u1) = 4µ− λ(t +
λ

2
).
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9.2. Now we compute the biharmonicity equation:

(9.7)

{
H̃ = ∇̃t

γ′γ′,

∇̃t
γ′∇̃t

γ′H̃ + ∇̃t
γ′T̃(H̃, γ′) + R̃t(H̃, γ′)γ′ = 0.

of a slant curve γ in a normal almost contact metric 3-manifold with respect to the

canonical connection ∇̃t.
First, the pseudo-Hermitain mean curvature vector field H̃ is given by H̃ = κ̃Ñ .
By using (8.1), (8.11) and (9.5) we calculate

∇̃t
γ′∇̃t

γ′H̃ + R̃t(H̃, γ′)γ′(9.8)

= −3κ̃κ̃′T̃ +
{
κ̃′′ − κ̃

(
κ̃2 + τ̃2 − H̃t sin2 θ

)}
Ñ + (2κ̃′τ̃ + κ̃τ̃ ′)B̃.

We compute the torsion terms of the biharmonic equation. By using (7.3), we get
the following formulas:

T̃t(H̃, γ′) = κ̃ T̃t(Ñ , T̃ ),

T̃t(Ñ , T̃ ) = 2αg(Ñ , φT̃ )ξ − cos θβÑ + (α + t) cos θ φT̃ .

Next, by using (8.11), we have

T̃t(Ñ , T̃ ) = −(α + t) cos θ | sin θ| T̃ + (2α| sin θ| − β cos θ)Ñ + (α + t) cos2 θ B̃.

Thus we obtain

Tt(Ñ , T̃ ) + κ̃ ∇̃t
γ′T̃t(Ñ , T̃ )

= − (α + t) cos θ | sin θ| κ̃′ T̃ + (2α| sin θ| − β cos θ) κ̃′ Ñ + (α + t) cos2 θ κ̃′ B̃

+ κ {−(α + t) cos θ | sin θ|} (κ̃ Ñ) + (2α| sin θ| − β cos θ)(−κ̃T̃ + τ̃ B̃)

+ (α + t) cos2 θ (−τ̃ Ñ)

= cos θ{(α− t)| sin θ|κ̃′ + βκ̃2 }T̃

+ {−βκ̃′ + | sin θ| cos θ(α− t)κ̃2 − (2α sin2 θ + (α + t) cos2 θ)κ̃τ̃}Ñ

+ {(2α sin2 θ + (α + t) cos2 θ)κ̃′ − cos θβκ̃τ̃}B̃.

Using the relation

2α sin2 θ + (α + t) cos2 θ = 2α− (α− t) cos2 θ,

we get

∇̃t
γ′ T̃t(H̃, γ′)

= cos θ{(α− t)| sin θ|κ̃′ + βκ̃2 }T̃

+ [− cos θ {βκ̃′ − (α− t)κ̃(| sin θ| κ̃ + cos θ τ̃)} − 2ακ̃τ̃ ] Ñ

+ [2α κ̃′ − cos θ {(α− t) cos θ κ̃′ + β κ̃τ̃}] B̃.

Since γ is slant, we have cos θκ̃ = | sin θ|τ̃ , by using this relation

2ακ̃τ̃ = 2α(cos2 θ + sin2 θ)κ̃τ̃ = 2α cos θκ̃(| sin θ|κ̃ + cos θτ̃).
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Hence we get

∇̃t
γ′T̃(τ̃ t(γ), γ′) = cos θ{| sin θ | (α− t)κ̃′ + βκ̃2}T̃

− cos θ{βκ̃′ + (α− t)κ̃(κ̃ | sin θ | +τ̃ cos θ)}Ñ

+ {2ακ̃′ − cos θ((α− t)κ̃′ cos θ + βκ̃τ̃)}B̃.

Proposition 9.1. Let γ be a slant curve in a normal almost contact metric 3-

manifold. Then γ is ∇̃t-biharmonic if and only if its curvature and torsion satisfies
the following system of ODE’s:

(9.9) −3κ̃κ̃′ + cos θ{(α− t)| sin θ|κ̃′ + βκ̃2} = 0,

(9.10) κ̃′′ − κ̃(κ̃2 + τ̃2 − H̃t sin2 θ) − cos θ{βκ̃′ + (α + t)κ̃(| sin θ|κ̃ + cos θτ̃)} = 0,

(9.11) 2κ̃′τ̃ + κ̃τ̃ ′ + 2ακ̃′ − cos θ{(α− t) cos θ(κ̃′ + βκ̃τ̃)} = 0.

Now let us consider non-geodesic slant curves in the Bianchi-Cartan-Vranceanu
space. Since α = λ

2 and β = 0, (9.9) reduces to

κ̃′ = 0 or κ̃ =
1

3
(λ/2 − t) cos θ| sin θ|.

In both cases, κ̃ is a nonzero constant. Then (9.11) implies that τ̃ is constant. The
equation (9.10) reduces to

κ̃2 + τ̃2 − H̃t sin2 θ + (λ/2 + t) cos θ(| sin θ|κ̃ + cos θτ̃) = 0.

Using the slant condition again, this equation is rewritten as

(9.12) κ̃2 + τ̃2 = H̃t sin2 θ − (λ/2 + t)τ̃ .

Remark 9.1. From (8.10), we have

τ̃ = cos θ(δ + (λ/2 − t) cos θ)

with δ = g(∇γ′γ′, φγ′)/ sin2 θ. Thus (9.12) can be rewritten as

κ̃2 + τ̃2 = H̃t − (λ/2 + t) cos θ (δ + (λ/2 − t) cos θ).

By using the slant condition cos θκ̃ = | sin θ|τ̃ again, (9.12) can be rewritten as

(9.13) κ̃2 − (λ/2 + t) cos θ| sin θ|κ̃− H̃t sin4 θ = 0.

Thus κ̃ is a positive solution to this equation. The discriminant of this equation is
given by

D = sin2 θ{(λ/2 − t)2 cos2 θ + 4H̃t sin2 θ}
= sin2 θ{(λ/2 + t)2 cos2 θ − 4λ(λ/2 + t) + 16µ}.

Thus if (λ/2 + t)2 cos2 θ− 4λ(λ/2 + t) + 16µ ≥ 0, κ̃ is a positive function which has
the form:

κ̃ =
1

2
| sin θ|

{
cos θ(λ/2 + t) ±

√
(λ/2 + t)2 cos2 θ + 4H̃t

}
.

Now we consider the case

κ̃ =
1

3
(λ/2 − t) cos θ| sin θ|.
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Inserting this into (9.13), we have

(9.14) sin2 θ{2 cos2 θ(λ/2 − t)2 + 9H̃4 sin2 θ} = 0.

Theorem 9.1. If γ is a slant curve in Bianchi-Cartan-Vranceanu space, then γ is

∇̃t-biharmonic if and only if γ is ∇̃t-geodesic or a ∇̃t-helix satisfying (9.12).

If we choose t = λ/2 in (9.13), we have

κ̃ = H̃t sin4 θ = 4µ sin4 θ.

On the other hand, if t = λ/2 in (9.14), we get κ̃ = 0. In addition, sin θ = 0 or

H̃ = 0. Thus we obtain

Corollary 9.1. Let γ be a slant curve in a Sasakian space form M3(2, µ) of con-
stant holomorphic sectional curvature 4µ− 3. Then γ is biharmonic with respect to

Tanaka-Webster connection ∇̂ = ∇̃t|t=−1 if and only if it is a geodesic with respect

to ∇̂ or a ∇̂-helix whose pseudo-Hermitian curvature and torsion are given by

κ̃ = 2
√
µ sin2 θ, τ̃ = 2

√
µ cos θ.

In case µ ≤ 0, ∇̂-biharmonic slant curves are slant ∇̂-geodesics.

Corollary 9.2. Let γ be a slant curve in a Bianchi-Cartan-Vranceanu space M3(0, µ).

Then γ is biharmonic with respect to ∇̃0 if and only if it is a geodesic with respect

to ∇̃0-geodesic or a ∇̃0-helix with

κ̃ = 2
√
µ sin2 θ, τ̃ = 2

√
µ cos θ.

In case µ ≤ 0, ∇̂-biharmonic slant curves are slant ∇̂-geodesics.

In particular, if γ is an almost Legendre curve, then we have

Theorem 9.2 ([40]). If γ is an almost contact curve in Bianchi-Cartan-Vranceanu

space, then γ is ∇̃t-biharmonic if and only if γ is a geodesic or a ∇̃t-circle satisfying

κ̃2 = H̃t.

For explicit parametrizations of ∇̃t-biharmonic almost Legendre curves in the
Bianchi-Cartan-Vranceanu space, we refer to [40].

9.3. In [52], the second named author introduced the notion of “AW (k)-type” for
Frenet curves in 3-dimensional strongly pseudo-convex CR-manifolds equipped with
Tanaka-Webster connection. Moreover Özgür and Güvenç [61] studied slant curves
of AW (k)-type in 3-dimensional strongly pseudo-convex CR-manifolds.

Definition 9.1. A Frenet curve γ(s) in an almost contact metric 3-manifold

(M, ∇̃t) equipped with ∇̃t is said to be of type:

(1) AW (1) if (∇̃t
γ′∇̃γ′∇̃t

γ′γ′)⊥ = 0,

(2) AW (2) if (∇̃t
γ′∇̃t

γ′∇̃t
γ′γ′)⊥ is parallel to (∇̃t

γ′∇̃t
γ′γ′)⊥,

(3) AW (3) if (∇̃t
γ′∇̃t

γ′∇̃t
γ′γ′)⊥ is parallel to (∇̃t

γ′γ′)⊥.

The following results were obtained.

Proposition 9.2 ([41]). Let γ(s) be a non-geodesic slant curve in an almost contact

metric 3-manifold M equipped with canonical connection ∇̃ = ∇̃t. Then γ is of type

AW (1) with respect to ∇̃ if and only if it is an almost Legendre curve whose ∇̃-
curvature is one of the following natural equations:
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(1)

κ̃(s) = ∓
√

2

s + c
,

(2)

κ̃(s) = ±
√
a

(
1 + cn(ν(s); 1/

√
2)

1 − cn(ν(s); 1/
√

2)

) 1
2

,

with ν(s) = ∓
√

2a(s + c) + 2K(1/
√

2), or
(3)

κ̃(s) =

√
a

cn
(√

a(s + c); 1/
√

2
) .

Here a is a positive constant and K(k) is the complete elliptic integral of the first
kind defined by

K(1/
√

2) =

∫ π
2

0

dθ√
1 − 1

2 sin2 θ
.

Proposition 9.3 ([41]). Let γ be a non-geodesic slant curve in an almost contact
metric 3-manifold. Then γ is of type AW (2) with respect to the canonical connection

∇̃ if and only if it has ∇̃-torsion

τ̃ =
cos θ√

−s2 + as + b
.

In case, γ satisfies cos θ ̸= 0, then γ has ∇̃-curvature

κ̃ =
| sin θ|√

−s2 + as + b
.

Proposition 9.4 ([41]). Let γ be a non-geodesic slant curve in an almost contact
metric 3-manifold. Then γ is of type AW (3) with respect to the canonical connection

∇̃ if and only if it has constant ∇̃-torsion.

10. Solvable Lie groups

10.1. In this section we study the following two-parameter family
{G(c1, c2) | (c1, c2) ∈ R2} of Lie groups:

G(c1, c2) :=




1 0 0 z
0 ec1z 0 x
0 0 ec2z y
0 0 0 1

 ∣∣∣∣ x, y, z ∈ R

 ⊂ GL4R

equipped with the left invariant metric

g = e−2c1zdx2 + e−2c2zdy2 + dz2.

The group operation of G(c1, c2) is given explicitly by

(10.1) (x, y, z) ∗ (x̃, ỹ, z̃) = (x + ec1zx̃, y + ec2z ỹ, z + z̃).
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Remark 10.1. One can see that G(c1, c2) is a Lie subgroup of the affine transfor-
mation group A(3) := GL3R n R3 ⊂ GL4R. Moreover, if (c1, c2) ̸= (0, 0), then
G(c1, c2) is isomorphic to the following Lie subgroup

G(c1, c2) :=


 ec1z 0 x

0 ec2z y
0 0 1

 ∣∣∣∣ x, y, z ∈ R

 ⊂ GL3R

of the affine transformation group A(2) = GL2Rn R2. This 2-parameter family of
homogeneous spaces can be seen in [75]. Minimal surfaces in G(c1, c2) have been
studied in [34, 36, 43].

The Lie algebra g(c1, c2) of G(c1, c2) is


0 0 0 w
0 c1w 0 u
0 0 c2w v
0 0 0 0

 ∣∣∣∣ u, v, w ∈ R

 .

Take an orthonormal basis

E1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , E3 =


0 0 0 1
0 c1 0 0
0 0 c2 0
0 0 0 0

 .

We denote by ei the left invariant vector field on G(c1, c2) which is obtained by left
translation of Ei. Then we have

(10.2) e1 = ec1z
∂

∂x
, e2 = ec2z

∂

∂y
, e3 =

∂

∂z
,

(10.3) [e1, e2] = 0, [e2, e3] = −c2 e2, [e3, e1] = c1 e1.

Hence G(c1, c2) is solvable. Indeed, the derived series {Di} of g(c1, c2) is

D1 =


RE1 ⊕ RE2, c1 ̸= 0, c2 ̸= 0,

RE1, c1 ̸= 0, c2 = 0,
RE2, c1 = 0, c2 ̸= 0,
{0}, c1 = c2 = 0,

D2 = {0}.

Remark 10.2. The derived series {Di} of a real Lie algebra g is a decreasing se-
quence of ideals defined by

D0 = g, Di+1 = [Di,Di].

A Lie algebra g is said to be solvable if Di = {0} for some i > 0.

The Levi-Civita connection ∇ of G(c1, c2) is described as

∇e1e1 = c1 e3, ∇e1e2 = 0, ∇e1e3 = −c1 e1,

(10.4) ∇e2e1 = 0, ∇e2e2 = c2 e3, ∇e2e3 = −c2 e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

These formulas show that the Lie algebra g(c1, c2) is unimodular when and only
when c1 + c2 = 0.
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The Riemannian curvature tensor R of G(c1, c2). is given by

R(e1, e2)e1 = c1c2e2, R(e1, e2)e2 = −c1c2e1,

R(e2, e3)e2 = c22e3, R(e2, e3)e3 = −c22e2,(10.5)

R(e3, e1)e3 = c21e1, R(e3, e1)e1 = −c21e3,

the others are zero.
Define the endomorphism field φ by

φe1 = e2, φe2 = −e1, φe3 = 0.

Next we put ξ = e3 and η = dz. Then (φ, ξ, η, g) is an almost contact metric
structure on G(c1, c2) which is left invariant.

The holomorphic sectional curvature H with respect to the Levi-Civita connec-
tion ∇ is given by

H = g(R(e1, e2)e2, e1) = −c1c2.

One can check that (G(c1, c2), φ, ξ, η, g) satisfies

dη = 0, dΦ = 2βη ∧ Φ, β = −1

2
(c1 + c2).

Thus for c1 + c2 ̸= 0, G(c1, c2) is almost β-Kenmotsu. In case c1 + c2 = 0, G(c1, c2)
is almost cosymplectic.

The operator h = £ξφ/2 is computed as

he1 =
1

2
(c2 − c1)e2, he2 =

1

2
(c2 − c1)e1, he3 = 0.

Here we introduce the operator ĥ by ĥ = h ◦ φ. Then we get

ĥe1 =
c2 − c1

2
e1, ĥe2 = −c2 − c1

2
e2, ĥe3 = 0.

One can check the following fact.

Proposition 10.1. The Lie group G(c1, c2) is normal if and only if ĥ = 0, that is,
c1 = c2.

The covariant derivative ∇ξ is computed as

(10.6) ∇Xξ = β(X − η(X)ξ) + ĥX = −1

2
(c1 + c2)(X − η(X)ξ) + hφX.

From this equation we have

φ∇Xξ = βφX + φĥX.

Inserting this into (2.1), we get

(10.7) (∇Xφ)Y = g(φ(βI + ĥ)X,Y )ξ − η(Y )φ(βI + ĥ)X.

In case c1 + c2 ̸= 0, we can introduce a new operator h′ by

h′ := − 2

c1 + c2
h ◦ φ.

The covariant derivatives ∇ξ and ∇φ are rewritten as

∇Xξ = β{(I + h′)X − η(X)ξ},
(∇Xφ)Y = β{g(φ(I + h′)X,Y )ξ − η(Y )(I + h′)X}.
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In case β = −(c1 + c2)/2 = 0, we have

∇Xξ = ĥX, (∇Xφ)Y = g(φĥX, Y )ξ − η(Y )φĥX.

Example 10.1 (G(0, 0)). The Lie group G(0, 0) is the Euclidean 3-space (R3,+)
equipped with usual abelian group structure. In this case the almost contact metric
structure is cosymplectic.

Example 10.2 (G(c, c)). For c1 = c2 = c ̸= 0, then G(c, c) is the warped product
model R(z) ×e−cz E2(x, y);

(R3(x, y, z), e−2cz(dx2 + dy2) + dz2)

of the hyperbolic 3-space H3(−c2) of constant curvature −c2. The almost contact
metric structure satisfies

(∇Xφ)Y = −c(g(φX, Y )ξ − η(Y )φX)

for all vector fields X and Y on G(c, c). Hence G(c, c) is a (−c)-Kenmotsu manifold.
In particular, hyperbolic 3-space H3(−1) = G(−1,−1) is a Kenmotsu manifold.
Note that hyperbolic 3-space does not admit contact metric structure. In addition,
hyperbolic 3-space does not admit any other Lie group structure.

Example 10.3 (c1c2 = 0). Choose c1 = 0 and c2 = c ̸= 0. Then G(0, c) is the
Riemannian product of R(x) and the warped product model R(z)×e−cz R(y) of the
hyperbolic plane H2(−c2). The structure is non-normal almost (−c/2)-Kenmotsu.

Example 10.4 (G(c,−c)). Choose c1 = −c2 = c ̸= 0. Then G(c,−c) is isomorphic
to the identity component SE(1, 1) of the isometry group of the Minkowski plane
(R2(u, v), dudv). In this case the almost contact metric structure is almost cosym-
plectic but not cosymplectic. This group provides an example of almost cosymplec-
tic manifold that is not a (locally) Riemannian product. The Lie group G(1,−1)
is referred as the model space Sol3 of solvgeometry in the sense of Thurston [74].
The almost cosymplectic structure on G(c,−c) was investigated by Olszak [58].

Remark 10.3. Let (M,φ, ξ, η, g) be an almost contact metric manifold. Then M
satisfies the (κ, µ)-nullity condition provided there exist constants κ and µ such
that

R(X,Y )ξ = (κI + µh)(X ∧ Y )ξ

for all X, Y ∈ X(M). In case M is almost β-Kenmotsu manifold, then κ = −β2

and h = 0. In particular, if dimM = 3, M is a β-Kenmotsu manifold. Note that
(κ, 0)-nullity condition for almost cosymplectic manifolds was studied by Dacko
[21]. Instead of (κ, µ)-nullity condition, the following condition have been studied
by Dileo and Pastore [22], [24, 25].

Definition 10.1. An almost β-Kenmotsu manifold (M,φ, ξ, η, g) satisfies the (κ, µ)′-
nullity condition provided there exist constants κ and µ such that

R(X,Y )ξ = (κI + µh′)(X ∧ Y )ξ

for all X, Y ∈ X(M). Here the operator h′ is defined by h′ = ĥ/β. If M satisfies
the (κ, µ)′-nullity condition we have

• κ ≤ −β2.

• κ = −β2, then h′ = 0 (and hence ĥ = 0).
• κ < −β2, then µ = −2β2.
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More generally, almost Kenmotsu 3-manifolds satisfying

R(X,Y )ξ = (κI + µh′)(X ∧ Y )ξ, X, Y ∈ X(M)

for some functions κ and µ are investigated by Saltarelli [62].

The Riemannian curvature of G(c1, c2) satisfies the following formulas:

• c1 = c2 = 0: In this case R = 0.
• c1 + c2 ̸= 0 and c21 + c22 ̸= 0: In this case M satisfies the (κ, µ)′-nullity

condition with κ = −(c21 + c22)/4 and µ = −(c1 + c2)2/2.
(1) In particular G(c, c) = H3(−c2) is (−c)-Kenmotsu manifold of constant

curvature −c2. Thus the curvature R satisfies R(X,Y )ξ = −c2(X ∧
Y )ξ for all vector fields X and Y .

(2) In case (c1, c2) = (0, c) or (c1, c2) = (c, 0) with c ̸= 0, then κ = −c2/4
and µ = −c2/2.

• c1 = −c2 = c ̸= 0: In this case M satisfies R(X,Y )ξ = −c2(X ∧ Y )ξ for all
vector fields X and Y .

Remark 10.4. Every almost β-Kenmotsu Lie group G(c1, c2) with β = (c1+c2)/2 ̸=
0 is pseudo-conformal to almost cosymplectic Lie group G(c1, c2) for some (c̃1, c̃2).

(φ, ξ, η, g) 7−→ (φ, ξ, η, g̃),

with

g̃ := e(c1+c2)zg + (1 − e(c1+c2)z)η ⊗ η,

the resulting almost contact Lie group with structure (φ, ξ, η, g̃) is G(c̃1, c̃2) with
c̃1 = −c̃2 = (c1 − c2)/2.

10.2. Slant curves in G(c1, c2). Let γ be a slant curve in the solvable Lie group
G(c1, c2) with sin θ ̸= 0 and take the orthonormal frame field

ϵ1 = γ′, ϵ2 =
φγ′

| sin θ|
, ϵ3 =

ξ − cos θ

| sin θ|

along γ (see (8.6)).
Using (10.6) and (10.7) we have

(10.8)



∇γ′ϵ1 =
b

| sin θ|
ϵ2 +

1

| sin θ|
(a− β sin2 θ)ϵ3,

∇γ′ϵ2 = − b

| sin θ|
ϵ1 +

1

sin2 θ
(σ + b cos θ)ϵ3,

∇γ′ϵ3 = − 1

| sin θ|
(a− β sin2 θ)ϵ1 −

1

sin2 θ
(σ + b cos θ)ϵ2,

where a = g(γ′, φhγ′), b = g(∇γ′γ′, φγ′), σ = g(γ′, hγ′), β = −(c1 + c2)/2.
From the first equation, we get

(10.9) κ =
1

| sin θ|

√
(a− β sin2 θ)2 + b2.

Proposition 10.2. Let γ be a slant curve in the solvable Lie group G(c1, c2). Then
γ is a geodesic if and only if (a− β sin2 θ)2 + b2 = 0.
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Assume that γ is non-geodesic, then the principal normal is given by N =
{ b
| sin θ|ϵ2 + 1

| sin θ| (a− β sin2 θ)ϵ3}/κ. Differentiating N by using (10.7) we get

∇γ′N = − 1

κ
{ (a− β sin2 θ)2 + b2

sin2 θ
}ϵ1

+
1

κ| sin θ|
{−κ′b

κ
+ b′ − (a− β sin2 θ)(σ + b cos θ)

sin2 θ
}ϵ2(10.10)

+
1

κ| sin θ|
{−κ′(a− β sin2 θ)

κ
+ a′ +

b(σ + b cos θ)

sin2 θ
ϵ3.

Since hγ′ is orthogonal to ξ, we have hγ′ = σγ′ +νφγ′. Applying φ we note that
a = −ν. From (10.10) we get

τB =
1

κ| sin θ|

[
{−κ′b

κ
+ b′ − (a− β sin2 θ)(σ + b cos θ)

sin2 θ
}ϵ2

+ {−κ′(a− β sin2 θ)

κ
+ a′ +

b(σ + b cos θ)

sin2 θ
}ϵ3
]
.(10.11)

From κ2 = (a−β sin2 θ)2+b2

sin2 θ
, we obtain

τ =
1

sin2 θ

{
a′b− (a− β sin2 θ)b′

κ2
+ (σ + b cos θ)

}
,

thus we have binormal vector field is B = 1
κ| sin θ|{bϵ3 − (a− β sin2 θ)ϵ2}. The ratio

cos θ/| sin θ| is computed as

cos θ

| sin θ|
=

κ2(τ sin2 θ − σ) − {a′b− (a− β sin2 θ)b′}

κb
√

(a− β sin2 θ)2 + b2
.

Now we consider almost Legendre curves in G(c1, c2). In this case, the orthonormal
frame field {ϵ1, ϵ2, ϵ3} is simplified as ϵ1 = γ′, ϵ2 = φγ′ and ϵ3 = ξ. The Frenet-
Serret formula is reduced to

(10.12)


∇γ′γ′ =(a− β)ξ + bφγ′,

∇γ′φγ′ =σξ − bγ′,

∇γ′ξ =βγ′ + hφγ′.

The curvature is given by

(10.13) κ =
√

(a− β)2 + b2.

From this formula, we obtain

Proposition 10.3. Let γ be a Legendre curve in the solvable Lie group G(c1, c2).
Then γ is a geodesic if and only if (a− β)2 + b2 = 0.

Assume that γ is non-geodesic, then we have

N =
1

κ
{(a− β)ξ + bφγ′},

τ =
a′b− (a− β)b′

κ2
+ σ,

B =
1

κ
{bξ − (a− β)φγ′}.
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10.3. Legendre biharmonic curves in G(c1, c2). Let γ : I → G(c1, c2) be a
curve parametrized by arc-length with Frenet frame (T,N,B). Expand T ,N , B as
T = T1e1 + T2e2 + T3e3, N = N1e1 + N2e2 + N3e3, B = B1e1 + B2e2 + B3e3 with
respect to the basis {e1, e2, e3}. Since (T,N,B) is positively oriented,

(10.14) B1 = T2N3 − T3N2, B2 = T3N1 − T1N3, B3 = T1N2 − T2N1.

From these we get

R(N,T )T = −{B1R(e2, e3) + B2R(e3, e1) + B3R(e1, e2)}T.

Using the table of Riemannian curvature, we have

R(e2, e3)T = T2R(e2, e3)e2 + T3R(e2, e3)e3 = c22(T2e3 − T3e2),

R(e3, e1)T = T1R(e3, e1)e1 + T3R(e3, e1)e3 = −c21(T1e3 − T3e1),

R(e1, e2)T = T1R(e1, e2)e1 + T2R(e1, e2)e2 = c1c2(T1e2 − T2e1).

Direct computation shows

R(N,T )T

= −B1c
2
2(T2e3 − T3e2) + B2c

2
1(T1e3 − T3e1) −B3c1c2(T1e2 − T2e1)

= −B1c
2
2(B1N −N1B) + B2c

2
1(−B2N + N2B) −B3c1c2(B3N −N3B)

= −(B2
1c

2
2 + B2

2c
2
1 + B2

3c1c2)N + (N1B1c
2
2 + N2B2c

2
1 + N3B3c1c2)B.

Hence, the biharmonic equation for γ becomes

T2(γ) = ∇3
TT + R(κN, T )T

= (−3κκ′)T + {(κ′′ − κ3 − κτ2) − κ(B2
1c

2
2 + B2

2c
2
1 + B2

3c1c2)}N
+{(2τκ′ + κτ ′) + κ(N1B1c

2
2 + N2B2c

2
1 + N3B3c1c2)}B

Theorem 10.1. Let γ : I → G(c1, c2) be a curve parametrized by arc-length in the
solvable Lie group G(c1, c2). Then γ is a proper biharmonic curve if and only if

(10.15)

 κ = constant ̸= 0,
κ2 + τ2 = −B2

1c
2
2 −B2

2c
2
1 −B2

3c1c2,
τ ′ = −N1B1c

2
2 −N2B2c

2
1 −N3B3c1c2.

In particular, If c1 = −c2 = c, then γ is a proper biharmonic curve if and only if

(10.16)


κ = constant ̸= 0,

κ2 + τ2 = c2(2η(B)
2 − 1),

τ ′ = 2c2η(B)η(N).

where η(B) ̸= 0.

Remark 10.5. If c1c2 = 0, then κ2 + τ2 = −B2
1c

2
2 or κ2 + τ2 = −B2

2c
2
1. Hence there

does not exist biharmonic curve in G(0, c).
If c1 = c2 = c, then κ2 + τ2 = −(B2

1 + B2
2 + B2

3)c2 = −c2. Hence there does not
exist biharmonic curve in G(c, c).

Next, we compute the principal normal N .

κN = ∇γ′T = ∇γ′(T1e1 + T2e2 + T3e3)

= (T ′
1 − c1T1T3)e1 + (T ′

2 − c2T2T3)e2 + (T ′
3 + c1T

2
1 + c2T

2
2 )e3.
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Hence

κN1 = T ′
1 − c1T1T3,

κN2 = T ′
2 − c2T2T3,(10.17)

κN3 = T ′
3 + c1T

2
1 + c2T

2
2 .

Differentiating N along γ

∇TN = ∇T (N1e1 + N2e2 + N3e3)

= (N ′
1 − c1T1N3)e1 + (N ′

2 − c2T2N3)e2 + (N ′
3 + c1T1N1 + c2T2N2)e3.

From this, we have

g(∇TN, e3) = N ′
3 + c1T1N1 + c2T2N2.

We assume that γ is an almost Legendre curve, i.e., T = T1e1 +T2e2 = cosαe1 +
sinαe2 for some function α. Then we have T1N1 + T2N2 = 0 and hence

(10.18) g(∇TN, e3) = N ′
3 + (c1 − c2)T1N1.

On the other hand, using the Frenet-Serret equation,

(10.19) g(∇TN, e3) = g(−κT + τB, e3) = −κT3 + τB3.

From the equation (10.18) and (10.19), for an almost Legendre curve γ we have

(10.20) N ′
3 + (c1 − c2)T1N1 = τB3.

Now we look for biharmonic almost Legendre curves. From (10.15), γ has constant
curvature. By using (10.14), (10.17) and (10.20), we get

(10.21) τ = −3(c1 − c2) sinα cosα.

Differentiating (10.21), we get

(10.22) τ ′ = −3(c1 − c2)(cos2 α− sin2 α)α′.

From the third equation of (10.15), (10.14) and (10.17), we have

(10.23) τ ′ =
1

κ2
(c1 − c2)(c21 cos4 α− c22 sin4 α)α′.

From the equation (10.22) and (10.23), one can deduce that c1 = c2 or α is a
constant.

For the case c1 = c2, as we have shown before, there does not exist biharmonic
curve in G(c, c). When α is a constant then the second equation of (10.15) is
rewritten as

κ2 + τ2 = − 1

κ2
(c1 cos2 α + c2 sin2 α)2(c21 cos2 α + c22 sin2 α) ≤ 0.

Thus γ cannot be proper biharmonic. Hence, there does not exist non-geodesic
almost Legendre curve satisfying biharmonic condition (10.15) in the solvable Lie
group G(c1, c2).

Theorem 10.2. There does not exist proper biharmonic almost Legendre curve in
the solvable Lie group G(c1, c2).
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10.4. Biharmonicity with respect to canonical connection. On the solvable

Lie group G(c1, c2), the canonical connection ∇̃t is given by

∇̃t
e3e1 = −te2, ∇̃t

e3e2 = te1,

for other pair of i and j, we have ∇̃t
eiej = 0.

By using the above data, the curvature tensor R̃t is computed as

(10.24) R̃t(ei, ej)ek = 0, i, j, k = 1, 2, 3.

Thus the affine homogeneous space (G(c1, c2), ∇̃t) is flat for any (c1, c2) ∈ R2.
Moreover we have

T̃t(X,Y ) = −[X,Y ] − t(η(X)φY − η(Y )φX), ∇̃tT̃t = 0

for all X, Y ∈ g(µ1, µ2). In particular we have

(10.25) T̃t(e1, e3) = c1e1 + te2, T̃t(e2, e3) = c2e2 − te1.

Remark 10.6. Dileo introduced the following linear connection on almost β-Kenmotsu
manifolds of arbitrary odd dimension with integrable associated CR-structure [22].

∇′
XY = ∇XY + β{g((I + h′)X,Y )ξ − η(Y )(I + h′)X}.

One can easily check that ∇′ coincides with our connection ∇̃0 on almost β-
Kenmotsu manifolds with integrable associated CR-structure.

In particular the canonical connection ∇′ = ∇̃0 on G(c1, c2) with c1 + c2 ̸= 0
satisfies

R̃0 = 0, ∇̃0T̃0 = 0, T̃0(X,Y ) = −[X,Y ]

for all X, Y ∈ g(µ1, µ2). These formulas imply that the canonical connection ∇̃0

coincides with the so-called Cartan-Schouten’s (−)-connection [49].
Dileo showed the following classification.

Theorem 10.3 ([22]). Let M be an almost β-Kenmotsu 3-manifold. Then M

satisfies ∇̃0T̃0 = 0 and ∇̃0R̃0 = 0 if and only if M is locally isomomorphic to
G(µ1, µ2) as an almost contact metric manifold with β = −(µ1 + µ2)/2 ̸= 0.

The biharmonicity equation with respect to ∇̃t is given as follows.

Proposition 10.4. A unit speed curve γ in the solvable Lie group G(c1, c2) is

biharmonic with respect to the canonical connection ∇̃t if and only if it satifies:

(10.26)

{
H̃ = ∇̃t

γ′γ′,

∇̃t
γ′∇̃t

γ′H̃ + ∇̃t
γ′ T̃(H̃, γ′) = 0.

Let us express the tangent vector field as T (s) = γ′(s) = T1(s)e1 + T2(s)e2 +

T3(s)e3 as before. Then the pseudo-Hermitian mean curvature vector field H̃ with

respect to ∇̃t is computed as

H̃ = (T ′
1 + tT2T3)e1 + (T ′

2 − tT1T3)e2 + T ′
3e3.

In case γ is an almost Legendre curve, then its tangent vector field is expressed as
γ′(s) = T1(s)e1 + T2(s)e2 = cosα(s)e1 + sinα(s)e2 as before. Hence we obtain

Proposition 10.5. If γ is an almost Legendre curve in G(c1, c2), then γ is ∇̃t-
geodesic if and only if the tangent vector field has the form γ′(s) = T1e1 + T2e2,
where T1 and T2 are constants satisfying T 2

1 + T 2
2 = 1.
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Note that the ∇̃t-harmonicity of almost Legendre curves in G(c1, c2) does not
depend on t.

We obtain explicit parametric equations of almost Legendre ∇̃t-geodesics. Let
γ(s) = (x(s), y(s), z(s)) be a Frenet curve in G(c1, c2). Then the tangent vector
field T (s) = γ′(s) of γ is represented by

(10.27) T (s) =

(
dx

ds
,

dy

ds
,

dz

ds

)
=

dx

ds

∂

∂x
+

dy

ds

∂

∂y
+

dz

ds

∂

∂z
.

From (10.2), we have

dx

ds
= ec1zT1,

dy

ds
= ec1zT2,

dz

ds
= 0.

Therefore we obtain

Theorem 10.4. If an almost Legendre curve γ(s) in G(c1, c2) starting at γ(0) =

(x0, y0, z0) is a ∇̃t-geodesic, then γ is given explicitly by

(10.28) x(s) = (ec1z0T1)s + x0, y(s) = (ec2z0T2)s + y0, z(s) = z0,

where T1 and T2 are constants such that T 2
1 + T 2

2 = 1.

Here we give a group theoretic interpretation of (10.28). Let us define a 1-
parameter subgroup {a(s) | s ∈ R} of G(c1, c2) by

a(s) = (T1s, T2s, 0) = exp

s

 0 0 T1

0 0 T2

0 0 0

 .

Then one can see that a(s) is an almost Legendre curve with initial condition

a(0) = (0, 0, 0) and a′(0) = T1e1 + T2e2. Moreover a(s) is a ∇̃t-geodesic. The
formula (10.28) can be rewritten as γ(s) = (x0, y0, z0) ∗ a(s) by using the group
multiplication of G(c1, c2).

Corollary 10.1. Every almost Legendre ∇̃t-geodesic in G(c1, c2) is obtained by as

a left translation of an almost Legendre ∇̃t-geodesic starting at the origin.

These results were obtained for the case H3(−1) = G(−1,−1) in [40].

Next we study ∇̃t-biharmonic almost Legendre curves in G(c1, c2).
By using (8.1) we calculate

(10.29) ∇̃t∇̃tH̃ = −3κ̃(κ̃)′γ′ + {(κ̃)′′ − (κ̃)3}Ñ .

From (10.25) we get ∇̃t
γ′T̃t(H̃, γ′) = 0. Therefore we obtain

Theorem 10.5. If γ is an almost Legendre curve in G(c1, c2), then γ is ∇̃t-

biharmonic if and only if γ is a ∇̃t-geodesic.

We have studied slant curves in the model space Sol3 of solv-geometry in the
sense of Thurston equipped with left invariant almost cosymplectic structure. On
the other hand, Sol3 admits also a natural left invariant contact metric struc-
ture. In a separate publication, we shall study slant curves in Sol3 equipped with
natural contact metric structure. Moreover in [42], slant curves in 3-dimensional
f -Kenmotsu manifolds are studied.
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Beiträge Algebra Geom. 55(2014), no. 2, 603-620.

[42] Inoguchi, J. and Lee, J.-E., Slant curves in 3-dimensional almost f -Kenmotsu manifolds,
in preparation.

[43] Inoguchi, J., and Lee, S., A Weierstrass representation for minimal surfaces in Sol., Proc.
Amer. Math. Soc. 136(2008), 2209-2216.

[44] Inoguchi, J., and Lee, S., Null curves in Minkowski 3-space, Internat. Electr. J. Geom.
1(2008), no. 2, 40-83.

[45] Inoguchi, J., and Munteanu, M. I., Periodic magnetic curves in Berger spheres, Tôhoku
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