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Abstract. In the present article we study a special class of surfaces in the
four-dimensional Euclidean space, which are one-parameter systems of meridi-
ans of the standard rotational hypersurface. They are called meridian surfaces.
We classify semi-parallel meridian surfaces in 4-dimensional Euclidean space

E4.

1. Introduction

Let M be a submanifold of a n-dimensional Euclidean space En. Denote by R
the curvature tensor of the Vander Waerden-Bortoletti connection ∇ of M and by
h the second fundamental form of M in En. The submanifold M is called semi-
parallel (or semi-symmetric [15]) if R·h = 0 [6]. This notion is an extrinsic analogue
for semi-symmetric spaces, i.e. Riemannian manifolds for which R · R = 0 and a
direct generalization of parallel submanifolds, i.e. submanifolds for which ∇h = 0.
In [6] J. Deprez showed the fact that the submanifold M ⊂ En is semi-parallel
implies that (M, g) is semi-symmetric. For references on semi-symmetric spaces,
see [18]; for references on parallel immersions, see [8]. In [6] J. Deprez gave a local
classification of semi-parallel hypersurfaces in Euclidean n-space En.

Recently, the present authors considered the Wintgen ideal surfaces in Euclidean
n-space En. They showed that Wintgen ideal surfaces in En satisfying the semi-
parallelity condition

(1.1) R(X,Y ) · h = 0

are of flat normal connection [1]. Further, the same authors in [2] proved that
the tensor product surfaces in E4 satisfying the semi-parallelity condition (1.1) are
totally umbilical.

In [13] Ganchev and Milousheva constructed special two dimensional surfaces
which are one-parameter of meridians of the rotation hypersurfaces in E4 and called
these surfaces meridian surfaces. The geometric construction of the meridian sur-
faces is different from the construction of the standard rotational surfaces with two
dimensional axis in E4 [9]. The same authors classified the meridian surfaces with
constant Gauss curvature (K ̸= 0) and constant mean curvature H [13]. Recently,
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meridian surfaces with 1-type Gauss map were characterized by the present authors
and Milousheva in [3]. Further, meridian surfaces were studied in [10] as surfaces
in Minkowski 4-space. For more details see also [11], [12] and [17].

In the present study we consider the meridian surfaces in 4-dimensional Eu-
clidean space E4. We give a classification of this surfaces satisfying the semi-
parallelity condition (1.1).

2. Basic Concepts

Let M be a smooth surface in n-dimensional Euclidean space En given with the
surface patch X(u, v) : (u, v) ∈ D ⊂ E2. The tangent space to M at an arbitrary
point p = X(u, v) of M span {Xu, Xv}. In the chart (u, v) the coefficients of the
first fundamental form of M are given by

(2.1) E = ⟨Xu, Xu⟩ , F = ⟨Xu, Xv⟩ , G = ⟨Xv, Xv⟩ ,

where ⟨, ⟩ is the Euclidean inner product. We assume that W 2 = EG−F 2 ̸= 0, i.e.
the surface patch X(u, v) is regular. For each p ∈ M , consider the decomposition
TpEn = TpM ⊕ T⊥

p M where T⊥
p M is the orthogonal component of the tangent

plane TpM in En, that is the normal space of M at p.
Let χ(M) and χ⊥(M) be the space of the smooth vector fields tangent and

normal to M respectively. Denote by ∇ and ∇̃ the Levi-Civita connections on M
and En, respectively. Given any vector fields Xi and Xj tangent to M consider the
second fundamental map h : χ(M)× χ(M) → χ⊥(M);

(2.2) h(Xi, Xj) = ∇̃XiXj −∇XiXj ; 1 ≤ i, j ≤ 2.

For any normal vector field Nα, 1 ≤ α ≤ n− 2, of M , recall the shape operator
A : χ⊥(M)× χ(M) → χ(M);

(2.3) ANαXi = −∇̃NαXi +DXiNα; 1 ≤ i ≤ 2.

where D denotes the normal connection of M in En [4]. This operator is bilinear,
self-adjoint and satisfies the following equation:

(2.4) ⟨ANαXi, Xj⟩ = ⟨h(Xi, Xj), Nα⟩ , 1 ≤ i, j ≤ 2.

The equation (2.2) is called Gaussian formula, and

(2.5) h(Xi, Xj) =
n−2∑
α=1

hα
ijNα, 1 ≤ i, j ≤ 2

where hα
ij are the coefficients of the second fundamental form h [4]. If h = 0

then M is called totally geodesic. M is totally umbilical if all shape operators are
proportional to the identity map. M is an isotropic surface if for each p in M ,
∥h(X,X)∥ is independent of the choice of a unit vector X in TpM .

If we define a covariant differentiation ∇h of the second fundamental form h on
the direct sum of the tangent bundle and normal bundle TM ⊕ T⊥M of M by

(2.6) (∇Xi
h)(Xj , Xk) = DXi

h(Xj , Xk)− h(∇Xi
Xj , Xk)− h(Xj ,∇Xi

Xk),

for any vector fields Xi,Xj , Xk tangent to M , then we have the Codazzi equation

(2.7) (∇Xih)(Xj , Xk) = (∇Xjh)(Xi, Xk),

where ∇ is called the Vander Waerden-Bortoletti connection of M [4].
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We denote by R and R⊥ the curvature tensors associated with ∇ and D respec-
tively;

R(Xi, Xj)Xk = ∇Xi∇XjXk −∇Xj∇XiXk −∇[Xi,Xj ]Xk,(2.8)

R⊥(Xi, Xj)Nα = h(Xi, ANαXj)− h(Xj , ANαXi).(2.9)

The equations of Gauss and Ricci are given respectively by

(2.10) ⟨R(Xi, Xj)Xk, Xl⟩ = ⟨h(Xi, Xl), h(Xj , Xk)⟩ − ⟨h(Xi, Xk), h(Xj , Xl)⟩ ,

(2.11)
⟨
R⊥(Xi, Xj)Nα, Nβ

⟩
=
⟨
[ANα , ANβ

]Xi,Xj

⟩
,

for the vector fields Xi, Xj , Xk tangent to M and Nα, Nβ normal to M [4].
Let us Xi ∧ Xj denote the endomorphism Xk −→ ⟨Xj , Xk⟩Xi− ⟨Xi, Xk⟩Xj .

Then the curvature tensor R of M is given by the equation

(2.12) R(Xi, Xj)Xk =
n−2∑
α=1

(ANαXi ∧ANαXj)Xk.

It is easy to show that

(2.13) R(Xi, Xj)Xk = K (Xi ∧Xj)Xk,

where K is the Gaussian curvature of M defined by

(2.14) K = ⟨h(X1, X1), h(X2, X2)⟩ − ∥h(X1, X2)∥2

(see [14]).
The normal curvature KN of M is defined by (see [5])

(2.15) KN =


n−2∑

1=α<β

⟨
R⊥(X1, X2)Nα, Nβ

⟩2
1/2

.

We observe that the normal connection D of M is flat if and only if KN = 0,
and by a result of Cartan, this is equivalent to the diagonalisability of all shape
operators ANα of M , which means that M is a totally umbilical surface in En.

3. Semi-parallel Surfaces

Let M be a smooth surface in n-dimensional Euclidean space En. Let ∇ be the
connection of Vander Waerden-Bortoletti of M . The product tensor R · h of the
curvature tensor R with the second fundamental form h is defined by

(R(Xi, Xj) · h)(Xk, Xl) = ∇Xi(∇Xjh(Xk, Xl))−∇Xj (∇Xih(Xk, Xl))

−∇[Xi,Xj ]h(Xk, Xl),

for all Xi, Xj , Xk, Xl tangent to M.

The surface M is said to be semi-parallel if R ·h = 0, i.e. R(Xi, Xj) ·h = 0 ([15],
[6], [7], [16]). It is easy to see that

(R(Xi, Xj) · h)(Xk, Xl) = R⊥(Xi, Xj)h(Xk, Xl)(3.1)

-h(R(Xi, Xj)Xk, Xl)-h(Xk, R(Xi, Xj)Xl).

This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian
manifolds for which R ·R = 0 and a generalization of parallel surfaces, i.e. ∇h = 0
[8].
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Substituting (2.5) and (2.4) into (2.9) we get

(3.2) R⊥(X1, X2)Nα = hα
12(h(X1, X1)− h(X2, X2) + (hα

22 − hα
11)h(X1, X2).

Further, by the use of (2.13) we get

(3.3) R(X1, X2)X1 = −KX2, R(X1, X2)X2 = KX1.

So, substituting (3.2) and (3.3) into (3.1) we obtain

(R(X1, X2) · h)(X1, X1) =

(
n−2∑
α=1

hα
11(h

α
22 − hα

11) + 2K

)
h(X1, X2)

+

n−2∑
α=1

hα
11h

α
12(h(X1, X1)− h(X2, X2)),

(R(X1, X2) · h)(X1, X2) =

(
n−2∑
α=1

hα
12(h

α
22 − hα

11)

)
h(X1, X2)(3.4)

+(

n−2∑
α=1

hα
12h

α
12-K)(h(X1, X1)-h(X2, X2)),

(R(X1, X2) · h)(X2, X2) =

(
n−2∑
α=1

hα
22(h

α
22 − hα

11)− 2K

)
h(X1, X2)

+
n−2∑
α=1

hα
22h

α
12(h(X1, X1)− h(X2, X2)).

Semi-parallel surfaces in En are classified by J. Deprez [6]:

Theorem 3.1. [6] Let M a surface in n-dimensional Euclidean space En. Then M
is semi-parallel if and only if locally;

i) M is equivalent to a 2-sphere, or
ii) M has trivial normal connection, or

iii) M is an isotropic surface in E5 ⊂ En satisfying ∥H∥2 = 3K.

4. Meridian Surfaces in E4

In the following sections, we will consider the meridian surfaces in E4 which
were first defined by Ganchev and Milousheva [9]. The meridian surfaces are one-
parameter systems of meridians of the standard rotational hypersurface in E4.

Let {e1, e2, e3, e4} be the standard orthonormal frame in E4, and S2(1) be a 2-
dimensional sphere in E3 = span{e1, e2, e3}, centered at the origin O. We consider
a smooth curve C : r = r(v), v ∈ J, J ⊂ R on S2(1), parameterized by the arc-
length (

∥∥(r′)2(v)∥∥ = 1). We denote t = r′ and consider the moving frame field

{t(v), n(v), r(v)} of the curve C on S2(1). With respect to this orthonormal frame
field the following Frenet formulas hold good:

(4.1)

r′ = t;

t′ = κn− r;

n′ = −κ t,

where κ is the spherical curvature of C.
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Let f = f(u), g = g(u) be smooth functions, defined in an interval I ⊂ R, such
that

(4.2) (f ′)2(u) + (g′)2(u) = 1, u ∈ I.

In [9] Ganchev and Milousheva constructed a surface M2 in E4 in the following
way:

(4.3) M2 : X(u, v) = f(u) r(v) + g(u) e4, u ∈ I, v ∈ J.

The surface M2 lies on the rotational hypersurface M3 in E4 obtained by the
rotation of the meridian curve α : u → (f(u), g(u)) around the Oe4-axis in E4.
Since M2 consists of meridians of M3, we call M2 a meridian surface [9]. We
denote by κα the curvature of meridian curve α, i.e.,

(4.4) κα = f ′(u)g′′(u)− f ′′(u)g(u) =
−f ′′(u)√
1− f ′2(u)

.

We consider the following orthonormal moving frame fields, X1, X2, N1, N2 on
the meridian surfaceM2 such thatX1, X2 are tangent toM

2 and N1, N2 are normal
to M2. The tangent space of M2 is spanned by the vector fields:

(4.5)
X1 = ∂X

∂u , X2 = 1
f

∂X
∂v ,

N1 = n(v), N2 = −g′(u) r(v) + f ′(u) e4.

By a direct computation we have the components of the second fundamental
forms as;

(4.6)
h1
11 = h1

12 = h1
21 = 0, h1

22 = κ
f ,

h2
11 = κα h2

12 = h2
21 = 0, h2

22 = g′

f .

Therefore the shape operator matrices of M2 are of the form

(4.7) AN1
=

[
0 0
0 κ

f

]
, AN2

=

[
κα 0

0 g′

f

]
and hence we have

(4.8)
K = καg′

f ,

KN = 0,

which implies that the meridian surface M2 is totally umbilical surface in E4.
In [13] Ganchev and Milousheva constructed three main classes of meridian sur-

faces:
I. κ = 0; i.e. the curve C is a great circle on S2(1). In this case N1 = const.

and M2 is a planar surface lying in the constant 3-dimensional space spanned by
{X1, X2, N2}. Particularly, if in addition κα = 0, i.e. the meridian curve is a part of
a straight line, then M2 is a developable surface in the 3-dimensional space spanned
by {X1, X2, N2}.

II. κα = 0, i.e. the meridian curve is a part of a straight line. In such a case M2

is a developable ruled surface. If in addition κ = const., i.e. C is a circle on S2(1),
then M2 is a developable ruled surface in a 3-dimensional space. If κ ̸= const.,i.e.
C is not a circle on S2(1), then M2 is a developable ruled surface in E4.
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III. κακ ̸= 0, i.e. C is not a circle on S2(1) and α is not a straight line. In
this general case the parametric lines of M2 given by (4.3) are orthogonal and
asymptotic.

We prove the following Theorem.

Theorem 4.1. Let M2 be a meridian surface in E4 given with the parametrization
(4.3). Then M2 is semi-parallel if and only if one of the following holds:

i) M2 is a developable ruled surface in E3 or E4,
ii) the curve C is a circle on S2(1) with non-zero constant spherical curvature

and the meridian curve is determined by

f(u) = ±
√
u2 − 2au+ 2b; g(u) = −

√
2b− a2 ln

(
u− a−

√
u2 − 2au+ 2b

)
,

where a = const, b = const. In this case M2 is a planar surface lying in 3-
dimensional space spanned by {X1, X2, N2}.
Proof. Let M2 be a meridian surface in E4 given with the parametrization (4.3).
Then by the use of (2.5) with (4.6) we see that

h(X1, X2) = 0,(4.9)

h(X1, X1)− h(X2, X2) = −κ

f
N1 +

(
κα − g′

f

)
N2.

Further, substituting (4.9) and (4.6) into (3.4) and after some computation one can
get

(R(X1, X2) · h)(X1, X1) = 0,

(R(X1, X2) · h)(X1, X2) = −K

(
−κ

f
N1 +

(
κα − g′

f

)
N2

)
,

(R(X1, X2) · h)(X2, X2) = 0.

Suppose that M2 is semi-parallel. Then by definition

(R(X1, X2) · h)(Xi, Xj) = 0, 1 ≤ i, j ≤ 2,

is satisfied. So, we get

K

(
−κ

f
N1 +

(
κα − g′

f

)
N2

)
= 0.

Hence, two possible cases occur: K = 0 or κ = 0 and κα− g′

f = 0. For the first case

κα = 0, i.e. the meridian curve is a part of a straight line. In such a case M2 is
a developable ruled surface given in the Case II. For the second case κ = 0 means
that the curve c is a great circle on S2(1). In this case M2 lies in the 3-dimensional

space spanned by {X1, X2, N2} . Further, using (4.4) the equation κα − g′

f = 0 can

be rewritten in the form

f(u)f ′′(u)− (f ′(u))2 + 1 = 0,

which has the solution

(4.10) f(u) = ±
√
u2 − 2au+ 2b.

Consequently, by substituting (4.10) into (4.2) one can get

g(u) = −
√
2b− a2 ln

(
u− a−

√
u2 − 2au+ 2b

)
.

This completes the proof of the theorem. �
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