International Electronic Journal of Geometry

Volume 8 No. 2 Pp. 147-153 (2015) © CIEJG

SEMI-PARALLEL MERIDIAN SURFACES IN \mathbb{E}^{4}

BETÜL BULCA AND KADRİ ARSLAN

(Communicated by Ion MIHAI)

Abstract

In the present article we study a special class of surfaces in the four-dimensional Euclidean space, which are one-parameter systems of meridians of the standard rotational hypersurface. They are called meridian surfaces. We classify semi-parallel meridian surfaces in 4-dimensional Euclidean space \mathbb{E}^{4}.

1. Introduction

Let M be a submanifold of a n-dimensional Euclidean space \mathbb{E}^{n}. Denote by \bar{R} the curvature tensor of the Vander Waerden-Bortoletti connection $\bar{\nabla}$ of M and by h the second fundamental form of M in \mathbb{E}^{n}. The submanifold M is called semiparallel (or semi-symmetric [15]) if $\bar{R} \cdot h=0$ [6]. This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which $R \cdot R=0$ and a direct generalization of parallel submanifolds, i.e. submanifolds for which $\bar{\nabla} h=0$. In [6] J. Deprez showed the fact that the submanifold $M \subset \mathbb{E}^{n}$ is semi-parallel implies that (M, g) is semi-symmetric. For references on semi-symmetric spaces, see [18]; for references on parallel immersions, see [8]. In [6] J. Deprez gave a local classification of semi-parallel hypersurfaces in Euclidean n-space \mathbb{E}^{n}.

Recently, the present authors considered the Wintgen ideal surfaces in Euclidean n-space \mathbb{E}^{n}. They showed that Wintgen ideal surfaces in \mathbb{E}^{n} satisfying the semiparallelity condition

$$
\begin{equation*}
\bar{R}(X, Y) \cdot h=0 \tag{1.1}
\end{equation*}
$$

are of flat normal connection [1]. Further, the same authors in [2] proved that the tensor product surfaces in \mathbb{E}^{4} satisfying the semi-parallelity condition (1.1) are totally umbilical.

In [13] Ganchev and Milousheva constructed special two dimensional surfaces which are one-parameter of meridians of the rotation hypersurfaces in \mathbb{E}^{4} and called these surfaces meridian surfaces. The geometric construction of the meridian surfaces is different from the construction of the standard rotational surfaces with two dimensional axis in $\mathbb{E}^{4}[9]$. The same authors classified the meridian surfaces with constant Gauss curvature $(K \neq 0)$ and constant mean curvature H [13]. Recently,

[^0]meridian surfaces with 1-type Gauss map were characterized by the present authors and Milousheva in [3]. Further, meridian surfaces were studied in [10] as surfaces in Minkowski 4-space. For more details see also [11], [12] and [17].

In the present study we consider the meridian surfaces in 4-dimensional Euclidean space \mathbb{E}^{4}. We give a classification of this surfaces satisfying the semiparallelity condition (1.1).

2. Basic Concepts

Let M be a smooth surface in n-dimensional Euclidean space \mathbb{E}^{n} given with the surface patch $X(u, v):(u, v) \in D \subset \mathbb{E}^{2}$. The tangent space to M at an arbitrary point $p=X(u, v)$ of M span $\left\{X_{u}, X_{v}\right\}$. In the chart (u, v) the coefficients of the first fundamental form of M are given by

$$
\begin{equation*}
E=\left\langle X_{u}, X_{u}\right\rangle, F=\left\langle X_{u}, X_{v}\right\rangle, G=\left\langle X_{v}, X_{v}\right\rangle \tag{2.1}
\end{equation*}
$$

where \langle,$\rangle is the Euclidean inner product. We assume that W^{2}=E G-F^{2} \neq 0$, i.e. the surface patch $X(u, v)$ is regular. For each $p \in M$, consider the decomposition $T_{p} \mathbb{E}^{n}=T_{p} M \oplus T_{p}^{\perp} M$ where $T_{p}^{\perp} M$ is the orthogonal component of the tangent plane $T_{p} M$ in \mathbb{E}^{n}, that is the normal space of M at p.

Let $\chi(M)$ and $\chi^{\perp}(M)$ be the space of the smooth vector fields tangent and normal to M respectively. Denote by ∇ and $\widetilde{\nabla}$ the Levi-Civita connections on M and \mathbb{E}^{n}, respectively. Given any vector fields X_{i} and X_{j} tangent to M consider the second fundamental map $h: \chi(M) \times \chi(M) \rightarrow \chi^{\perp}(M)$;

$$
\begin{equation*}
h\left(X_{i}, X_{j}\right)=\widetilde{\nabla}_{X_{i}} X_{j}-\nabla_{X_{i}} X_{j} ; 1 \leq i, j \leq 2 \tag{2.2}
\end{equation*}
$$

For any normal vector field $N_{\alpha}, 1 \leq \alpha \leq n-2$, of M, recall the shape operator $A: \chi^{\perp}(M) \times \chi(M) \rightarrow \chi(M)$;

$$
\begin{equation*}
A_{N_{\alpha}} X_{i}=-\widetilde{\nabla}_{N_{\alpha}} X_{i}+D_{X_{i}} N_{\alpha} ; \quad 1 \leq i \leq 2 \tag{2.3}
\end{equation*}
$$

where D denotes the normal connection of M in \mathbb{E}^{n} [4]. This operator is bilinear, self-adjoint and satisfies the following equation:

$$
\begin{equation*}
\left\langle A_{N_{\alpha}} X_{i}, X_{j}\right\rangle=\left\langle h\left(X_{i}, X_{j}\right), N_{\alpha}\right\rangle, 1 \leq i, j \leq 2 \tag{2.4}
\end{equation*}
$$

The equation (2.2) is called Gaussian formula, and

$$
\begin{equation*}
h\left(X_{i}, X_{j}\right)=\sum_{\alpha=1}^{n-2} h_{i j}^{\alpha} N_{\alpha}, \quad 1 \leq i, j \leq 2 \tag{2.5}
\end{equation*}
$$

where $h_{i j}^{\alpha}$ are the coefficients of the second fundamental form h [4]. If $h=0$ then M is called totally geodesic. M is totally umbilical if all shape operators are proportional to the identity map. M is an isotropic surface if for each p in M, $\|h(X, X)\|$ is independent of the choice of a unit vector X in $T_{p} M$.

If we define a covariant differentiation $\bar{\nabla} h$ of the second fundamental form h on the direct sum of the tangent bundle and normal bundle $T M \oplus T^{\perp} M$ of M by

$$
\begin{equation*}
\left(\bar{\nabla}_{X_{i}} h\right)\left(X_{j}, X_{k}\right)=D_{X_{i}} h\left(X_{j}, X_{k}\right)-h\left(\nabla_{X_{i}} X_{j}, X_{k}\right)-h\left(X_{j}, \nabla_{X_{i}} X_{k}\right) \tag{2.6}
\end{equation*}
$$

for any vector fields X_{i}, X_{j}, X_{k} tangent to M, then we have the Codazzi equation

$$
\begin{equation*}
\left(\bar{\nabla}_{X_{i}} h\right)\left(X_{j}, X_{k}\right)=\left(\bar{\nabla}_{X_{j}} h\right)\left(X_{i}, X_{k}\right), \tag{2.7}
\end{equation*}
$$

where $\bar{\nabla}$ is called the Vander Waerden-Bortoletti connection of M [4].

We denote by R and R^{\perp} the curvature tensors associated with ∇ and D respectively;

$$
\begin{align*}
R\left(X_{i}, X_{j}\right) X_{k} & =\nabla_{X_{i}} \nabla_{X_{j}} X_{k}-\nabla_{X_{j}} \nabla_{X_{i}} X_{k}-\nabla_{\left[X_{i}, X_{j}\right]} X_{k} \tag{2.8}\\
R^{\perp}\left(X_{i}, X_{j}\right) N_{\alpha} & =h\left(X_{i}, A_{N_{\alpha}} X_{j}\right)-h\left(X_{j}, A_{N_{\alpha}} X_{i}\right) . \tag{2.9}
\end{align*}
$$

The equations of Gauss and Ricci are given respectively by

$$
\begin{gather*}
\left\langle R\left(X_{i}, X_{j}\right) X_{k}, X_{l}\right\rangle=\left\langle h\left(X_{i}, X_{l}\right), h\left(X_{j}, X_{k}\right)\right\rangle-\left\langle h\left(X_{i}, X_{k}\right), h\left(X_{j}, X_{l}\right)\right\rangle \tag{2.10}\\
\left\langle R^{\perp}\left(X_{i}, X_{j}\right) N_{\alpha}, N_{\beta}\right\rangle=\left\langle\left[A_{N_{\alpha}}, A_{N_{\beta}}\right] X_{i,} X_{j}\right\rangle \tag{2.11}
\end{gather*}
$$

for the vector fields X_{i}, X_{j}, X_{k} tangent to M and N_{α}, N_{β} normal to M [4].
Let us $X_{i} \wedge X_{j}$ denote the endomorphism $X_{k} \longrightarrow\left\langle X_{j}, X_{k}\right\rangle X_{i}-\left\langle X_{i}, X_{k}\right\rangle X_{j}$.
Then the curvature tensor R of M is given by the equation

$$
\begin{equation*}
R\left(X_{i}, X_{j}\right) X_{k}=\sum_{\alpha=1}^{n-2}\left(A_{N_{\alpha}} X_{i} \wedge A_{N_{\alpha}} X_{j}\right) X_{k} \tag{2.12}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
R\left(X_{i}, X_{j}\right) X_{k}=K\left(X_{i} \wedge X_{j}\right) X_{k} \tag{2.13}
\end{equation*}
$$

where K is the Gaussian curvature of M defined by

$$
\begin{equation*}
K=\left\langle h\left(X_{1}, X_{1}\right), h\left(X_{2}, X_{2}\right)\right\rangle-\left\|h\left(X_{1}, X_{2}\right)\right\|^{2} \tag{2.14}
\end{equation*}
$$

(see [14]).
The normal curvature K_{N} of M is defined by (see [5])

$$
\begin{equation*}
K_{N}=\left\{\sum_{1=\alpha<\beta}^{n-2}\left\langle R^{\perp}\left(X_{1}, X_{2}\right) N_{\alpha}, N_{\beta}\right\rangle^{2}\right\}^{1 / 2} . \tag{2.15}
\end{equation*}
$$

We observe that the normal connection D of M is flat if and only if $K_{N}=0$, and by a result of Cartan, this is equivalent to the diagonalisability of all shape operators $A_{N_{\alpha}}$ of M, which means that M is a totally umbilical surface in \mathbb{E}^{n}.

3. Semi-Parallel Surfaces

Let M be a smooth surface in n-dimensional Euclidean space \mathbb{E}^{n}. Let $\bar{\nabla}$ be the connection of Vander Waerden-Bortoletti of M. The product tensor $\bar{R} \cdot h$ of the curvature tensor \bar{R} with the second fundamental form h is defined by

$$
\begin{aligned}
\left(\bar{R}\left(X_{i}, X_{j}\right) \cdot h\right)\left(X_{k}, X_{l}\right)= & \bar{\nabla}_{X_{i}}\left(\bar{\nabla}_{X_{j}} h\left(X_{k}, X_{l}\right)\right)-\bar{\nabla}_{X_{j}}\left(\bar{\nabla}_{X_{i}} h\left(X_{k}, X_{l}\right)\right) \\
& -\bar{\nabla}_{\left[X_{i}, X_{j}\right]} h\left(X_{k}, X_{l}\right),
\end{aligned}
$$

for all $X_{i}, X_{j}, X_{k}, X_{l}$ tangent to M.
The surface M is said to be semi-parallel if $\bar{R} \cdot h=0$, i.e. $\bar{R}\left(X_{i}, X_{j}\right) \cdot h=0$ ([15], [6], [7], [16]). It is easy to see that
(3.1) $\left(\bar{R}\left(X_{i}, X_{j}\right) \cdot h\right)\left(X_{k}, X_{l}\right)=R^{\perp}\left(X_{i}, X_{j}\right) h\left(X_{k}, X_{l}\right)$

$$
-h\left(R\left(X_{i}, X_{j}\right) X_{k}, X_{l}\right)-h\left(X_{k}, R\left(X_{i}, X_{j}\right) X_{l}\right)
$$

This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian manifolds for which $R \cdot R=0$ and a generalization of parallel surfaces, i.e. $\bar{\nabla} h=0$ [8].

Substituting (2.5) and (2.4) into (2.9) we get

$$
\begin{equation*}
R^{\perp}\left(X_{1}, X_{2}\right) N_{\alpha}=h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)+\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right) h\left(X_{1}, X_{2}\right) .\right. \tag{3.2}
\end{equation*}
$$

Further, by the use of (2.13) we get

$$
\begin{equation*}
R\left(X_{1}, X_{2}\right) X_{1}=-K X_{2}, R\left(X_{1}, X_{2}\right) X_{2}=K X_{1} \tag{3.3}
\end{equation*}
$$

So, substituting (3.2) and (3.3) into (3.1) we obtain

$$
\begin{align*}
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{11}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)+2 K\right) h\left(X_{1}, X_{2}\right) \\
& +\sum_{\alpha=1}^{n-2} h_{11}^{\alpha} h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) \\
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{12}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)\right) h\left(X_{1}, X_{2}\right) \tag{3.4}\\
& +\left(\sum_{\alpha=1}^{n-2} h_{12}^{\alpha} h_{12}^{\alpha}-K\right)\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) \\
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)= & \left(\sum_{\alpha=1}^{n-2} h_{22}^{\alpha}\left(h_{22}^{\alpha}-h_{11}^{\alpha}\right)-2 K\right) h\left(X_{1}, X_{2}\right) \\
& +\sum_{\alpha=1}^{n-2} h_{22}^{\alpha} h_{12}^{\alpha}\left(h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right)\right) .
\end{align*}
$$

Semi-parallel surfaces in \mathbb{E}^{n} are classified by J. Deprez [6]:
Theorem 3.1. [6] Let M a surface in n-dimensional Euclidean space \mathbb{E}^{n}. Then M is semi-parallel if and only if locally;
i) M is equivalent to a 2-sphere, or
ii) M has trivial normal connection, or
iii) M is an isotropic surface in $\mathbb{E}^{5} \subset \mathbb{E}^{n}$ satisfying $\|H\|^{2}=3 K$.

4. Meridian Surfaces in \mathbb{E}^{4}

In the following sections, we will consider the meridian surfaces in \mathbb{E}^{4} which were first defined by Ganchev and Milousheva [9]. The meridian surfaces are oneparameter systems of meridians of the standard rotational hypersurface in \mathbb{E}^{4}.

Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard orthonormal frame in \mathbb{E}^{4}, and $S^{2}(1)$ be a 2dimensional sphere in $\mathbb{E}^{3}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$, centered at the origin O. We consider a smooth curve $C: r=r(v), v \in J, J \subset \mathbb{R}$ on $S^{2}(1)$, parameterized by the arclength $\left(\left\|\left(r^{\prime}\right)^{2}(v)\right\|=1\right.$). We denote $t=r^{\prime}$ and consider the moving frame field $\{t(v), n(v), r(v)\}$ of the curve C on $S^{2}(1)$. With respect to this orthonormal frame field the following Frenet formulas hold good:

$$
\begin{align*}
& r^{\prime}=t \\
& t^{\prime}=\kappa n-r \tag{4.1}\\
& n^{\prime}=-\kappa t
\end{align*}
$$

where κ is the spherical curvature of C.

Let $f=f(u), g=g(u)$ be smooth functions, defined in an interval $I \subset \mathbb{R}$, such that

$$
\begin{equation*}
\left(f^{\prime}\right)^{2}(u)+\left(g^{\prime}\right)^{2}(u)=1, u \in I \tag{4.2}
\end{equation*}
$$

In [9] Ganchev and Milousheva constructed a surface M^{2} in \mathbb{E}^{4} in the following way:

$$
\begin{equation*}
M^{2}: X(u, v)=f(u) r(v)+g(u) e_{4}, \quad u \in I, v \in J \tag{4.3}
\end{equation*}
$$

The surface M^{2} lies on the rotational hypersurface M^{3} in \mathbb{E}^{4} obtained by the rotation of the meridian curve $\alpha: u \rightarrow(f(u), g(u))$ around the $O e_{4}$-axis in \mathbb{E}^{4}. Since M^{2} consists of meridians of M^{3}, we call M^{2} a meridian surface [9]. We denote by κ_{α} the curvature of meridian curve α, i.e.,

$$
\begin{equation*}
\kappa_{\alpha}=f^{\prime}(u) g^{\prime \prime}(u)-f^{\prime \prime}(u) g(u)=\frac{-f^{\prime \prime}(u)}{\sqrt{1-f^{\prime 2}(u)}} \tag{4.4}
\end{equation*}
$$

We consider the following orthonormal moving frame fields, $X_{1}, X_{2}, N_{1}, N_{2}$ on the meridian surface M^{2} such that X_{1}, X_{2} are tangent to M^{2} and N_{1}, N_{2} are normal to M^{2}. The tangent space of M^{2} is spanned by the vector fields:

$$
\begin{align*}
& X_{1}=\frac{\partial X}{\partial u}, \quad X_{2}=\frac{1}{f} \frac{\partial X}{\partial v} \tag{4.5}\\
& N_{1}=n(v), \quad N_{2}=-g^{\prime}(u) r(v)+f^{\prime}(u) e_{4} .
\end{align*}
$$

By a direct computation we have the components of the second fundamental forms as;

$$
\begin{align*}
& h_{11}^{1}=h_{12}^{1}=h_{21}^{1}=0, \quad h_{22}^{1}=\frac{\kappa}{f}, \\
& h_{11}^{2}=\kappa_{\alpha} \quad h_{12}^{2}=h_{21}^{2}=0, \quad h_{22}^{2}=\frac{g^{\prime}}{f} . \tag{4.6}
\end{align*}
$$

Therefore the shape operator matrices of M^{2} are of the form

$$
A_{N_{1}}=\left[\begin{array}{cc}
0 & 0 \tag{4.7}\\
0 & \frac{\kappa}{f}
\end{array}\right], A_{N_{2}}=\left[\begin{array}{ll}
\kappa_{\alpha} & 0 \\
0 & \frac{g^{\prime}}{f}
\end{array}\right]
$$

and hence we have

$$
\begin{align*}
& K=\frac{\kappa_{\alpha} g^{\prime}}{f}, \tag{4.8}\\
& K_{N}=0,
\end{align*}
$$

which implies that the meridian surface M^{2} is totally umbilical surface in \mathbb{E}^{4}.
In [13] Ganchev and Milousheva constructed three main classes of meridian surfaces:
I. $\kappa=0$; i.e. the curve C is a great circle on $S^{2}(1)$. In this case $N_{1}=$ const. and M^{2} is a planar surface lying in the constant 3 -dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$. Particularly, if in addition $\kappa_{\alpha}=0$, i.e. the meridian curve is a part of a straight line, then M^{2} is a developable surface in the 3 -dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$.
II. $\kappa_{\alpha}=0$, i.e. the meridian curve is a part of a straight line. In such a case M^{2} is a developable ruled surface. If in addition $\kappa=$ const., i.e. C is a circle on $S^{2}(1)$, then M^{2} is a developable ruled surface in a 3 -dimensional space. If $\kappa \neq$ const.,i.e. C is not a circle on $S^{2}(1)$, then M^{2} is a developable ruled surface in \mathbb{E}^{4}.
III. $\kappa_{\alpha} \kappa \neq 0$, i.e. C is not a circle on $S^{2}(1)$ and α is not a straight line. In this general case the parametric lines of M^{2} given by (4.3) are orthogonal and asymptotic.

We prove the following Theorem.
Theorem 4.1. Let M^{2} be a meridian surface in \mathbb{E}^{4} given with the parametrization (4.3). Then M^{2} is semi-parallel if and only if one of the following holds:
i) M^{2} is a developable ruled surface in \mathbb{E}^{3} or \mathbb{E}^{4},
ii) the curve C is a circle on $S^{2}(1)$ with non-zero constant spherical curvature and the meridian curve is determined by

$$
f(u)= \pm \sqrt{u^{2}-2 a u+2 b} ; g(u)=-\sqrt{2 b-a^{2}} \ln \left(u-a-\sqrt{u^{2}-2 a u+2 b}\right)
$$

where $a=$ const, $b=$ const. In this case M^{2} is a planar surface lying in 3dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$.
Proof. Let M^{2} be a meridian surface in \mathbb{E}^{4} given with the parametrization (4.3). Then by the use of (2.5) with (4.6) we see that

$$
\begin{align*}
h\left(X_{1}, X_{2}\right) & =0 \tag{4.9}\\
h\left(X_{1}, X_{1}\right)-h\left(X_{2}, X_{2}\right) & =-\frac{\kappa}{f} N_{1}+\left(\kappa_{\alpha}-\frac{g^{\prime}}{f}\right) N_{2} .
\end{align*}
$$

Further, substituting (4.9) and (4.6) into (3.4) and after some computation one can get

$$
\begin{aligned}
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{1}\right)=0 \\
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{1}, X_{2}\right)=-K\left(-\frac{\kappa}{f} N_{1}+\left(\kappa_{\alpha}-\frac{g^{\prime}}{f}\right) N_{2}\right), \\
& \left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{2}, X_{2}\right)=0 .
\end{aligned}
$$

Suppose that M^{2} is semi-parallel. Then by definition

$$
\left(\bar{R}\left(X_{1}, X_{2}\right) \cdot h\right)\left(X_{i}, X_{j}\right)=0,1 \leq i, j \leq 2
$$

is satisfied. So, we get

$$
K\left(-\frac{\kappa}{f} N_{1}+\left(\kappa_{\alpha}-\frac{g^{\prime}}{f}\right) N_{2}\right)=0
$$

Hence, two possible cases occur: $K=0$ or $\kappa=0$ and $\kappa_{\alpha}-\frac{g^{\prime}}{f}=0$. For the first case $\kappa_{\alpha}=0$, i.e. the meridian curve is a part of a straight line. In such a case M^{2} is a developable ruled surface given in the Case II. For the second case $\kappa=0$ means that the curve c is a great circle on $S^{2}(1)$. In this case M^{2} lies in the 3-dimensional space spanned by $\left\{X_{1}, X_{2}, N_{2}\right\}$. Further, using (4.4) the equation $\kappa_{\alpha}-\frac{g^{\prime}}{f}=0$ can be rewritten in the form

$$
f(u) f^{\prime \prime}(u)-\left(f^{\prime}(u)\right)^{2}+1=0
$$

which has the solution

$$
\begin{equation*}
f(u)= \pm \sqrt{u^{2}-2 a u+2 b} . \tag{4.10}
\end{equation*}
$$

Consequently, by substituting (4.10) into (4.2) one can get

$$
g(u)=-\sqrt{2 b-a^{2}} \ln \left(u-a-\sqrt{u^{2}-2 a u+2 b}\right) .
$$

This completes the proof of the theorem.

References

[1] Bulca, B. and Arslan, K., Semi-parallel Wintgen Ideal Surfaces in \mathbb{E}^{n}. Compt. Rend. del Acad. Bulgare des Sci., 67(2014), 613-622.
[2] Bulca, B. and Arslan, K., Semi-parallel Tensor Product Surfaces in \mathbb{E}^{4}. Int. Elect. J. Geom., 7(2014), 36-43.
[3] Bulca, B., Arslan, K. and Milousheva, V., Meridian Surfaces in \mathbb{E}^{4} with 1-type Gauss Map. Bull. Korean Math. Soc., 51(2014), 911-922.
[4] Chen,B. Y., Geometry of Submanifolds. Dekker, New York(1973).
[5] Decruyenaere, F., Dillen, F., Verstraelen, L., Vrancken, L, The semiring of immersions of manifolds. Beitrage Algebra Geom. 34(1993), 209-215.
[6] Deprez, J., Semi-parallel surfaces in Euclidean space. J. Geom. 25(1985), 192-200.
[7] Deszcz, R., On pseudosymmetric spaces. Bull. Soc. Math. Belg., 44 ser. A (1992), 1-34.
[8] Ferus, D., Symmetric submanifolds of Euclidean space. Math. Ann. 247(1980), 81-93.
[9] Ganchev, G. and Milousheva, V., Invariants and Bonnet-type theorem for surfaces in \mathbb{R}^{4}. Cent. Eur. J. Math. 8(2010), No.6, 993-1008.
[10] Ganchev, G. and Milousheva, V., Marginally trapped meridian surfaces of parabolic type in the four-dimensional Minkowski space. Int. J. Geom. Meth. in Modern Physics, 10:10(2013), 1-17.
[11] Ganchev, G. and Milousheva, V., Meridian Surfaces of Elliptic or Hyperbolic Type in the four dimensional Minkowski space. ArXiv: 1402.6112v1 (2014).
[12] Ganchev, G. and Milousheva, V., Special class of Meridian surfaces in the four dimensional Euclidean space. ArXiv: 1402.5848v1 (2014).
[13] Ganchev, G. and Milousheva, V., Geometric Interpretation of the Invariants of a Surface in \mathbb{R}^{4} via the tangent indicatrix and the normal curvature ellipse. ArXiv:0905.4453v1(2009).
[14] Guadalupe, I.V., Rodriguez, L., Normal curvature of surfaces in space forms. Pacific J. Math. 106(1983), 95-103.
[15] Lumiste, Ü., Classification of two-codimensional semi-symmetric submanifolds. TRÜ Toimetised 803(1988), 79-84.
[16] Özgür, C., Arslan, K., Murathan, C., On a class of surfaces in Euclidean spaces. Commun. Fac. Sci. Univ. Ank. series A1 51(2002), 47-54.
[17] Öztürk, G., Bulca, B., Bayram, B.K. and Arslan, K., Meridian surfaces of Weingarten type in 4-dimensional Euclidean space \mathbb{E}^{4}. ArXiv:1305.3155v1 (2013).
[18] Szabo, Z.I., Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$. I. The local version, J. Differential Geometry 17(1982), 531-582.

Department of Mathematics, University of Uludag-TURKEY
E-mail address: bbulca@uludag.edu.tr, arslan@uludag.edu.tr

[^0]: Date: Received March 30, 2015 and Accepted: August 12, 2015.
 2010 Mathematics Subject Classification. 53C15, 53C40.
 Key words and phrases. Gaussian curvature, Meridian surface, Semi-parallel surface.

