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Abstract. Define a boundary point of a graph which is embedded in the Eu-
clidean plane a vertex which is incident to only one edge. In this paper we
consider graphs which are embedded in the Euclidean plane with a finite num-
ber of boundary points. The simple geometric condition we impose on them is

that the sum of unit vectors of edges extending from each non-boundary vertex
will be equal to zero. We call such a graph a critical graph and ask to maximise
the number of vertices of critical graphs with a given size of boundary. The

main results of this paper give a sharp upper bound for the maximum number
of vertices of planar critical graphs, where the degree of each non-boundary
vertex is 3 or 4.

1. Minimal and Critical Graphs

Let A be a finite number of points fixed on the Euclidean plane. We say that
graph G has the set A as a boundary and denote it by δG = A, if G contains
half-edges (i.e. edges that are incident with only one end vertex) and the set of
end vertices of all half-edges is A. The famous one-dimensional Plateau problem
concerns the following variational problem: Consider all planar graphs G such that
δG = A where δG denotes the vertices (points) on the boundary of G and define
the functional l : {G} → R+ by

l(G) = Σe∈E(G)L(e),

where E(G) stands for the set of edges in G and L(e) denotes the (Euclidean)
length of the edge e. Find the graph Gmin which minimises the functional l. Such
a graph is called a minimal graph. It turns out that the edges of such a graph are
straight lines (not very surprising) and the sum of unit vectors of edges extending
from each non-boundary vertex is equal to zero. See [3] and references within for
more discussions on the Plateau problem and see [7] for more details on minimal
graphs.
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In this paper we are not interested in the length of graphs. Our graphs contain
a boundary (i.e.the set of all end vertices of all the half-edges). The graphs are
drawn in the plane so that each edge is a straight line. Edges are allowed to cross
each other, and the intersecting point of two edges is a vertex of the graph. The
(only) geometric condition we impose on our graph, is that the sum of unit vectors
of edges extending from each non-boundary vertex must be equal to zero. We call
these graphs critical. Every minimal graph is critical-but the converse is not true.

The problem in which we are interested is the following :

Problem 1. Find the maximum number of vertices of a critical graph with a given
size of the boundary.

Note that there are considerable differences between our problem and the Plateau
problem. In our problem, we do not consider the length of the edges at any point
and we only require the size of the boundary to be fixed. In the Plateau problem,
the (actual) boundary points are considered to be fixed. Our question, simple as it
appears, is completely open. If we do not impose some conditions on our graphs,
this problem becomes completely pointless. For example, vertices with degree 2
are not allowed, since we can add as many of these vertices to our graph and the
resulting new graph remains critical. We also consider our graphs to be bounded,
i.e. they are entirely contained in a bounded open set of the plane. And last, we
impose that the graphs have countable vertices. From now on, the graphs studied in
this paper will satisfy all of these characteristics. Keeping this in mind, it is unclear
whether we can construct critical graphs with a finite number of boundary points
and infinite number of vertices. In Section 4 we shall formulate a few conjectures
regarding this problem.

Here we study a rather simplified version of this question. In Section 2 and 3, we
consider critical graphs for which the degree of each non-boundary vertex is equal
to 3 (resp to 4) and call them 3-boundary regular critical graphs (resp 4-boundary
regular critical graphs).

A few notations:
G will denote the graph under study, |G| denotes the number of vertices of G.

δG denotes the vertices of the boundary of G which we refer to as boundary points
all along this paper. The size of the boundary of G denoted by |δG| denotes the
number of boundary vertices of G. For n ≥ 3, we denote by f3(n) (resp. f4(n))
the supremum of the numbers of vertices of 3 (resp. 4)-boundary regular critical
graphs on the plane with n boundary points.

Here are the two main theorems of this paper:

Theorem 1.1. Let n be an integer and let k = ⌊n/6⌋ and l = n−6k. The maximum
number of vertices of a 3-boundary regular critical graph in the plane with boundary
of size n is equal to

f3(n) = 6k2 + 6k + 2l(k + 1)− r,

where r = 0 if n is a multiple of 6 and r = 2 otherwise. Furthermore, the combina-
torial structure of critical graphs which maximise the number of vertices is unique.

The combinatorial structure of the 3-boundary regular critical graphs maximising
the number of vertices with a given boundary size will be described in Definition
2.7.
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Theorem 1.2. Let G be a 4-boundary regular critical graph on the plane with
boundary of size n. Then

f4(n) =

(
n/2

2

)
+ n if n is even

f4(n) = 0 otherwise.

Theorems 1.1 and 1.2 are proven in Sections 2 and 3. Both proofs are elementary.
In the last section we will generalise this problem for the case of Riemannian

manifolds and study a few examples. Finally, we will present a few open questions.

2. 3-Boundary Regular Critical Graphs

2.1. Preliminaries. Let G be a 3-boundary regular critical graph with n boundary
points. By the definition of critical graphs, we know that the angle between the
edges directing from every vertex is equal to 120 degrees. This is actually the
only geometric restriction put on the graph which will make the estimation of the
function f3(n) easy.

Lemma 2.1. f3(n) is an increasing function of n.

Proof of Lemma 2.1:
Let G be a 3-boundary regular graph with n boundary points. We choose one

vertex x ∈ δG. Since all boundary points have a degree equal to 1, there is only
one edge e directed from x (i.e. the half edge e with endvertex x). We add two
edges directing from x in a way that the angles between each of them and e are
equal to 120 degrees. The new graph G′ is 3- boundary regular and critical with
n+1 boundary points, and |G′| = |G|+2. This completes the proof of the lemma.

�
Definition 2.1 (Cycle, Interior). A cycle C in G is a 2-regular subgraph of G.
As a cycle is a simple closed curve in the plane, it separates the plane into two
components. The bounded one is called the interior of C, and denoted by Int(C).

Definition 2.2 (Incoming and Outgoing Vertices and Edges). Let C be a cycle in
G. If v ∈ V (C) is a vertex on C, let e be the edge incident with v that does not
belong to C. If e is embedded in Int(C), then we say that v and e are incoming
vertices and edges respectively. Otherwise, they are outgoing.

We denote by V C
out the number of outgoing vertices of the cycle C, and by V C

in

the number of incoming vertices of the cycle C.

We define a partial order on the set of cycles.

Definition 2.3 (Maximal cycles). Let C and C ′ be two cycles. We define C ≤ C ′

if Int(C) ⊆ Int(C ′). We call a cycle C of G maximal if C is maximal for this partial
order.

Lemma 2.2. Let C be a maximal cycle. For every outgoing vertex v of C the
outgoing edge attached to v does not belong to any cycle.

Proof of Lemma 2.2:
By contradiction, assume there is an outgoing edge e of C which belongs to

a cycle C ′. The cycles C and C ′ will have some edges in common. The outer
boundary component of Int(C)∪ Int(C ′) is a cycle. This new cycle contradicts the
maximality of C.
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�
Lemma 2.3. If a graph does not have any maximal cycle then this graph is a tree.

Proof of the Lemma 2.3:
The proof is obvious. Indeed, if the graph does not have any cycle then there is

nothing to prove, so we assume that the graph does have some cycles. In this case,
the set of cycles is non-empty so it must have a maximal element for the partial
order of definition 2.3. Thus the proof follows.

�
Lemma 2.4. Let C be any cycle, then:

(2.1) V C
out − V C

in = 6.

Proof of Lemma 2.4:
This is a simple consequence of the Gauss-Bonnet Theorem. Let us travel along

C, keeping the interior of C on our left hand side. The cycle C consist of finitely
many line segments with exterior angles equal to +60 degrees at outgoing vertices
and −60 degrees at incoming vertices. So

60V C
in − 60V C

out = 360.

�
Corollary 2.1. Let G be a critical graph which is not a tree. Then G has at least
6 boundary points.

Proof of Corollary 2.1:
By assumption, G contains a maximal cycle C. Let G′ = G with the edges of C

removed. Then no two outgoing vertices of C can be connected in G′. Otherwise,
let v1, v2 be outgoing vertices of C connected in G′ by a path σ of minimal length
(over all paths and all pairs v1, v2). Then σ ∩ C = {v1, v2}. Let δ be one of the
paths in C which connects v1 to v2. Then σ∪δ is a cycle, contradicting maximality
of C.

Each connected component of G′ sitting outside C is critical with boundary
points consisting of a subset of boundary points of G and exactly one outgoing
vertex of C. It must have at least 2 boundary points. Therefore

|δG| ≥ V C
out = 6 + V C

in ≥ 6.

�
Lemma 2.5. Let F be a disjoint union of k 3-boundary regular trees with a total
of n boundary points. Then

|F | = 2n− 2k.

Proof of Lemma 2.5:
For each component T of F with nT boundary points, |T | = 2nT − 2. Summing

over all components yields |F | = 2n− 2k.

�
Lemma 2.6. Let G be a 3-boundary regular critical graph with n boundary points.
If G is a tree, then

|G| ≤ 2n− 2.
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Proof of Lemma 2.6:
The number of vertices of the binary tree with n boundary points is equal to

2n− 2 (n boundary points plus n− 2 degree 3 vertices). Therefore

|G| ≤ 2n− 2.

�

Lemma 2.7. Let G be a critical graph with n boundary points. If G has only one
maximal cycle then |G| ≤ f3(n − 6) + 2n. Furtheremore, If |G| = f3(n − 6) + 2n,
then:

• Either n = 6 and G is the union of a 6-cycle and its 6 outgoing edges,
• or n > 6 and G is obtained from a critical graph G′′ attached to n − 6
boundary points by completing its n− 6 boundary points into a 2n− 6-cycle
and adding the n outgoing edges of this cycle.

Proof of Lemma 2.7:
G has exactly 1 maximal cycle C. Let m′ denote the number of outgoing vertices

of the cycle. From Lemma 2.4, the number of incoming vertices is equal to m′ − 6.
Let n′ be the number of boundary points outside the cycle. Of course the number
of boundary points inside the cycle is equal to n− n′.

If outside the cycle C, some (non maximal) cycle exists then the set of cycles
outside C must have a maximal element, hence a maximal cycle which is disjointed
from the cycle C. This contradicts the assumption. Hence, outside C the graph is
a forest (a disjointed union of trees).

Now we remove all the edges of C, and consider vertices of C as boundary points
for the remaining graph G′. G′ consists of a graph G′′ whose edges were inside C
and of a collection F of trees whose edges were outside C. F has m′+n′ boundary
points.

Each outgoing vertex of C is the root of one of the trees of the forest F . Thus the
number of components of F is m′. From Lemma 2.5, |F | = 2(m′+n′)− 2m′ = 2n′.

Each of these trees has at leat one boundary point, apart from its root, thus
n′ ≥ m′.

G′′ has at most n−n′+m′−6 boundary points. By the definition of the function
f3(n) we know that the number of the vertices of G′′ is at most f3(n+m′−n′−6).
Then

|G| ≤ f3(n+m′ − n′ − 6) + 2n′.

Thus a k ≤ n− 6 exists such that

|G| ≤ f3(k) + 2n′.

On the other hand, we showed that f3(n) is non-decreasing. We conclude that

(2.2) |G| ≤ f3(n− 6) + 2n.

Equality implies that n = n′ = m′ and that F is a disjoint union of n edges. Thus
F consists of the outgoing edges of C. If G′′ is nonempty, the boundary points of
G′′ are the incoming vertices of C. Otherwise, C has no incoming vertices, this
means that C is a 6-cycle. This completes the proof of Lemma 2.7.

�
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Lemma 2.8. Let G be a critical graph with n boundary points. If G has more than
one maximal cycle, then n′ exists such that 6 ≤ n′ ≤ n− 4 and

|G| ≤ f3(n
′) + f3(n− n′ + 2)− 2.

Proof of Lemma 2.8:
We shall use the following terminology:

Definition 2.4. Let C and D be two maximal cycles in a critical 3-boundary
regular graph. A connecting set for C and D is a triple (vC , vD, σ) such that vC
(resp. vD) is an outgoing vertex of C (resp. D) and σ a path which joins these
vertices outside C ∪D.

Let C and D be two maximal cycles. Let σ be a path connecting C to D with
a minimum number of edges. Let e be the first edge traversed by σ. Then e
disconnects C from D. Indeed, otherwise, there would exist a path connecting C
to D away from e. Let γ be the shortest path in G \ {e} joining the endpoints of
e. Then γ ∪ e is a cycle touching C and thus contradicting maximality of C. So
cutting the edge e will disconnect C from D.

Let e′ ⊂ e be a proper interval. Let G′(resp. G′′) be the connected component
of G\{e} containing C (resp. D). Let n′ = |δG′|. Then G′′ has n−n′+2 boundary
points (the cut through e′ produces two extra boundary points). By Lemma 2.4,
we conclude that n′ ≥ 6 and n− n′ + 2 ≥ 6.

When computing the total number of vertices in G, the two extra boundary
points created by cutting e can be substracted off again. And so in final for an n′

such that 6 ≤ n′ ≤ n− 4, we have

(2.3) |G| ≤ f3(n
′) + f3(n− n′ + 2)− 2.

This completes the proof of Lemma 2.8.

�

Definition 2.5 (Simple critical graphs). Let G be a critically embedded graph in
the plane. Say that G is simple if

• Either G is a tree with the following property : it does not contain paths
consisting of 5 edges turning on the same side (like 5 consecutive edges of
a convex hexagon).

Forbidden configuration in a simple critical tree.

• OrG has a unique maximal cycle which surrounds all vertices except bound-
ary points. Furthermore, no two consecutive vertices in the maximal cycle
are both incoming vertices.
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Forbidden configuration in the maximal cycle of a simple critical graph

The pictures in section 5 all feature simple critical graphs. Note that on the set
of boundary points of a simple critical graph, there is a natural anticlockwise order.

Definition 2.6 (Padding of a simple critical graph). Let G be a simple critically
embedded graph in the plane. The padding of G, denoted by P (G) is the critical
graph obtained as follows.

We number δG in anticlockwise order a1, · · · , an where an+1 = a1. From each
boundary point ai we draw two half-lines, α+

i and α−
i obtained by turning the edge

which connects ai to G by respectively 120 and 240 degrees. Next, one considers
the portion of the cycle between ai and ai+1, and completes this set of edges into
an hexagon having two edges carried by α+

i and α−
i+1. For this, one is led to place

between 1 and 4 new vertices, depending on the configuration.

• If the angle ∠(α+
i , α

−
i+1) =

−2π
3 , we cut the half-lines α+

i and α−
i+1 on their

intersection point bi. We obtain two edges making an angle equal to 120
degrees at bi.

!

a

a

i

i+1

i+1

i

b
i+

!
!

Adding one vertex

• If the angle ∠(α+
i , α

−
i+1) =

−π
3 , we place on α+

i (resp α−
i+1), two points b−i

(resp b+i ) such that the vector
−−−→
b+i b

−
i makes an angle equal to π

3 with α+
i (i.e

∠(α+
i , b

+
i b

−
i ) =

π
3 and ∠(b+i b−i , α−

i+1) =
π
3 ).
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i+1

i
+

a
i

a i+1

b
i

b
i

+

!

!

!

!

Adding two vertices

• If the angle ∠(α+
i , α

−
i+1) = 0, we add a point b−i on α+

i , a point b+i on α−
i+1

and a point i such that aib
−
i cib

+
i ai+1γi is a hexagon with interior angles all

equal to 120 degree and where γi is the vertex connected to ai and ai+1 by
two edges of G.

i
i
a

i+1
a

i

+

i+1

!

i
b
!

b
i

+

i
c

! !

!

"

Adding three vertices

• If the angle ∠(α+
i , α

−
i+1) = π/3 (this happens only if G is the one-edge

graph), we place a point b−i on α+
i , a point b+i on α−

i+1 and points c−i , c
+
i

such that aib
−
i c

−
i c

+
i b

+
i ai+1 is a hexagon with interior angles all equal to 120

degrees.

!

i
a

i

+
i
b
!

c

i+1
a

i

+
b

i+1

!

c i
+ !

i

!

Adding four vertices

The edges · · ·α+
i (b

+
i , γi, b

−
i )α

−
i+1 · · · form a cycle for which the vertices ai are in-

coming vertices and the bi,b
+
i ,b

−
i ,γi are outgoing vertices. We add to G these edges

with segments (and vertices) attached to each outgoing vertices which will form the
boundary points of the new critical graph P (G).

The padded graph P (G) is a simple critical graph. Indeed, by construction,
it has a cycle which surrounds all vertices except boundary points. In this cycle,
the ai’s are incoming vertices, and between two consecutive ai’s, outgoing vertices
(b±i ’s and c±i ’s) are inserted. Therefore, the padding operation can be iterated. Of
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course one can give a much shorter definition for padding but we find our illustrative
definition quite useful.

For every n ≥ 2 we define a graph Hn which is a subgraph of the standard tiling
of the plane by regular hexagons.

Definition 2.7 (Graphs Hn). • H2 consists of two vertices joined by a single
edge.

• For 2 ≤ n ≤ 5, Hn consists of a 3-boundary regular tree with n boundary
points and N(n) vertices.

• H6 is a critical graph consisting of a maximal cycle of length 6 (a hexagon)
and the outgoing edges and vertices attached to the hexagon.

• H7 is the critical graph which consists of adding a critical tree of length 3
to a vertex of the hexagon of H6.

• For every n ≥ 8, define Hn inductively as the graph obtained by padding
Hn−6, i.e Hn = P (Hn−6).

Section 5 shows the first 19 Hn.

Remark 2.1. For every n ≥ 6, Hn has n boundary points and only one maximal
cycle of length 2n− 6. The n boundary points correspond to the outgoing vertices
of the cycle.

2.2. Proof of Theorem 1.1. For every n ≥ 2, let

N(n) = 6k2 + 6k + 2l(k + 1)− r,

where r = 0 if n is a multiple of 6 and r = 2 otherwise (N(n) is the expression
given in Theorem 1.1).

We prove Theorem 1.1 by showing that for every n ≥ 2, f3(n) = N(n). First we
list a few easy but important properties of N(n).

Lemma 2.9. • For every n ≥ 2, N(n) ≥ 2n − 2 and for every n ≥ 6,
N(n) > 2n− 2.

• For all n ≥ 8, N(n) = N(n− 6) + 2n.
• If n ≥ 2 and 2 ≤ k ≤ n, N(n) ≥ N(k)+N(n−k+2)−2 and more strongly
if n ≥ 6 and 3 ≤ k ≤ n − 1, N(n) > N(k) + N(n − k + 2) − 2 except the
cases (n, k) = (7, 3) or (7, 6).

• For every n ≥ 2, the number of vertices of Hn equals N(n).

Proof of the first two parts are straightforward. For the third part one can use
the following easily-verified inequalities:

1

6
n2 + n− 7

6
≤ N(n) ≤ 1

6
n2 + n.

For the final part, the proof is settled using the recursive definition of Hn.

�
We prove Theorem 1.1 by induction. We show that for every n ≥ 2, f3(n) =

N(n).
Basis of the Induction:
Corollary 2.1 and Lemma 2.3 imply that for 2 ≤ n ≤ 5 the extremal graph is a

tree. It is then straightforward that the maximum number of vertices of such a tree
equals N(n). Morever, the isomorphism classes of such trees are unique. For n = 6
the required equality follows from the Lemma 2.7 and for n = 7 the next Lemma
provides the desired equality.



ON THE MAXIMUM NUMBER OF VERTICES OF CRITICALLY EMBEDDED GRAPHS 177

Lemma 2.10. The maximum number of vertices of a 3-boundary regular critical
graph with 7 boundary points is equal to N(7) = 14. Furthermore, every 3-boundary
regular critical graph with 7 boundary points and 14 vertices is isomorphic to H7.

Proof of Lemma 2.10
H7 can be presented in the tiled plane by a hexagon with 5 segments attached

to 5 vertices of the hexagon and a tree with 4 vertices having one boundary point
in the 6th vertex of the hexagon.

We need to prove that this graph has the maximum number of vertices among
all 3-boundary regular critical graphs with 7 boundary points.

Let’s suppose that a graph H exists having more vertices than H7. According to
Corollary 2.1, H has only one maximal cycle and the length of the maximal cycle is
equal to 6. Then each vertex of the maximal cycle can be considered as a boundary
point for a critical tree (attached to the vertex). If there exist two vertices of the
maximal cycle such that the two critical trees attached to them are not segments,
then the number of boundary points of H will be more than 7 and this is not
possible. So to 5 vertices of the maximal cycle are attached to 5 segments, and the
proof of the Lemma follows.

�
The above discussion together with the Lemma 2.10 shows that for 2 ≤ n ≤ 7

we have f3(n) = N(n) and the unique extremal example is Hn.
We now prove Theorem 1.1 for n ≥ 8 with the inductive assumption including

the fact that the unique extremal example showing f3(n
′) = N(n′) isHn′ for n′ < n.

The graph maximising the number of vertices with n boundary points is either a
tree or has one and only one maximal cycle or has more than one maximal cycle.

From the reasoning of Lemma 2.7 and Lemma 2.8 together with the inequalities
involvingN(n) in the Lemma 2.9 it follows that for n ≥ 8 we have f3(n) ≤ N(n) and
if f3(n) = N(n) then the extremal example must arise when there is one maximal
cycle by padding the extremal example for n− 6, so it must be Hn. This finalises
the Proof of Theorem 1.1.

�

3. 4-Boundary Regular Critical Graphs

Here we prove Theorem 1.2.
Let G be a 4-boundary regular critical graph with n boundary points. Then G

is made up of line segments intersecting each other in a way that when any two
segments intersect at a point (vertex of G), there are no other segments passing
through the intersecting point. Thus every intersection point will be a vertex of G
and the critical condition is verified. Every line segment joins two of the boundary
points. Then the problem of estimating f4(n) is equivalent to finding the maximum
number of intersection points of n/2 line segments in the plane such that only two
lines pass through the intersecting points.

For n odd it is impossible to attach a critical graph of degree 4 to n points, and
f4(n) = 0 in this case. For n even, the number of intersecting points will not exceed(
n/2
2

)
.

To complete the proof of the theorem, we show that for every even n, there exists

a collection of n/2 line segments intersecting at exactly
(
n/2
2

)
points. We prove the

existence of such a collection by induction on n. For n = 1, 2 it is obvious. We
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suppose that such a collection is constructed for n and we need to add a single
line L to this collection such that L does not pass through the intersection points,
and such that L intersects all the lines of the collection. As the number of lines
and their intersections is finite, it is always possible to add such a line L with the
required property. From the existence of such a collection the proof of Theorem 1.2
follows.

�

4. Remarks and Open Questions

The problem of estimating the maximum number of vertices of a critical graph
attached to some boundary points in the plane for the case of 3 and 4-boundary
regular graphs turned out to be very elementary. We saw that without any dif-
ficulties, we could even classify maximising graphs. But the same question for a
non-necessarily boundary regular graph is more complicated. Indeed, for vertices
of degree 3 the angle between any two outgoing edges is equal to 120 degrees. This
simple fact allows us to have a Gauss-Bonnet type lemma, and makes our esti-
mates possible. But for degrees greater than 4, there are infinite possible geometric
configurations of outgoing edges.

Notation:
Let d be a natural number, we denote by gd(n) the supremum of the number of

vertices of critical graphs with n boundary points and degree bounded by d.
The general questions are

• for d = 4, find a better upper bound for g4(n).
• for d > 4, is gd(n) finite ?

An initial guess would be that gd(n) = f3(n) and that the class of 3-boundary
regular critical graphs have the largest gd(n) for all the value of n and among all
the critical graphs with bounded degrees. Indeed one can imagine that locally,
every critical graph having a vertex of degree greater than 3 can be mapped by a
homotopy to a 3-boundary regular critical graph, such that the number of vertices
of the image by the homotopy increase. The non-obvious part is that these local
homotopies will move the position of the boundary points and that we can’t re-
assemble the local part of the graph correctly together and get a new 3-boundary
regular critical graph. Thus the initial guess may be misleading.

In the introduction, we briefly discussed graphs which minimise the length func-
tional. It is interesting to note that all of the edges of the 3-boundary regular graphs
maximising the number of vertices with n boundary points have length equal to 1.
The question which is not clear is the following : Is it true that every edge of a
general critical graph with n boundary points maximising the number of vertices
has a length equal to 1? Of course, it’s easy to construct critical graphs with a
finite number of boundary points with different lengths of edges- but what about
the ones maximising the number of vertices?

In order to study the variational Plateau problem mentioned in the introduction,
it is important to define a topology in the space of graphs with fixed boundary
points. This variational problem is best formulated in the language of geometric
measure theory, where for instance, one defines the space of currents or varifolds.
Every planar graph can be considered as a 1-current or a 1-varifold. One could study
different interesting functionals on such spaces and seek out graphs minimising
those functionals. Allard and Almgren gave an example of a family of 3-boundary
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regular (weighted) minimal graphs with 16 boundary points and with arbitrarily
large numbers of vertices. The minimality condition is with regards to a functional
different from the one defined in the introduction. These examples are known as the
spiderweb-like varifolds, see [1], [2] and [3]. They motivate the following conjecture:

Conjecture 1. There exist critical graphs in the plane with a finite number of
boundary points and arbitrarily large number of vertices.

If this conjecture is true, it will be interesting to study infinite critical graphs.
This could also motivate the study of Morse theory in the space of 1-cycles with
infinitely many edges.

However, paradoxically:

Conjecture 2. For all d ≥ 3, the number of vertices of a d-boundary regular critical
graph with n boundary points is ≤ f3(n).

One can begin with the case in which all of the angles of the d-boundary regular
critical graphs are equal to 2π

d and try to obtain an intermediate result like Lemma
2.4.

The problem of estimating the maximum number of vertices in a critical graph
with some fixed conditions can also be asked in a more general context. One may
also ask the same questions about the graphs embedded in Riemannian manifolds.
We shall generalise the definition of critical planar graphs to :

Definition 4.1 (Critical graphs in Riemannian manifolds). LetM be a Riemannian
manifold and let A be a finite subset of M . A critical graph with boundary points A
is a finite embedded graph G in M such that the following conditions are satisfied:

(1) Each edge of the graph is a geodesic segment.
(2) Every a ∈ A represents a vertex of degree 1 in G.
(3) The sum of unit vectors of edges outgoing from each vertex of degree greater

than 1 is equal to zero.

The known results concern mostly the 2-sphere with a non necessarily canonical
metric (see [5] and [6]). In [6], the author studies the critical graphs on the 2-sphere
and shows that the 2-sphere contains critical graphs with arbitrarily large number
of vertices. The same question is interesting if one imposes that all the vertices
and boundary points have to lie on a hemi-sphere (this is equivalent to studying
the same problem for the plane with a different Riemannian metric). The case
of a flat cylinder is also interesting, since a flat cylinder contains arbitrarily large
d-boundary regular graphs with at most 6 attaching points. It is interesting to give
a value for gd(n) in the Hyperbolic plane and compare the result to the case of
plane or (hemi-)sphere (at least for d = 3, 4).
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