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POSITION VECTORS OF ADMISSIBLE CURVES IN

3-DIMENSIONAL PSEUDO-GALILEAN SPACE G1
3

HANDAN ÖZTEKİN AND HÜLYA GÜN BOZOK

(Communicated by Yusuf YAYLI)

Abstract. In this paper, position vectors of admissible curves in pseudo-
Galilean space G1

3 is studied in terms of Frenet equations. We compute the

position vectors of admissible curves in pseudo-Galilean space G1
3.Then we give

some examples of position vectors for admissible curves.

1. Introduction

In the local differential geometry, curves are a geometric set of points, or locus.
Intuitively, one can think a curve as the path traced out by a particle moving in
Euclidean 3-space. So, to determine behaviour of the particle ( or the curve, i.e.)
we investigate position vectors of curves.

In the Euclidean space E3, for each unit speed curve α : I −→ E3 with minimum
four continuous derivatives, we can denote orthogonal unit vector fields t, n and b
called, respectively, the tangent, the principal normal and the binormal vector
fields. The planes spanned by {t, n} , {t, b} and {n, b} are called, respectively,
osculating plane, rectifying plane and normal plane of the curve α. If position
vector of α : I ⊂ R −→ E3 always lie in its rectifying plane, the curves α are called
rectifying curves. Similarly, the curves whose position vector α always lie in their
osculating plane and their normal plane, are called ,respectively, osculating curves
and normal curves. In [3] B.Y. Chen expressed characterization of rectifying curve
. Then, the characterization of rectifying curves in Minkowski space is given in [6].

In the Euclidean space E3 , the determination of parametric representation for
position vector of arbitrary space with respect to intrinsic equations is still unknown
[5,9]. Generally, to solve the above problem is difficult. But, the problem is solved
some special case for example the event of a plane curve and a helix. Ali give some
differential equation to solve the problem in the event of a general helix and slant
helix in Minkowski 3- space [1,2]. Also, in Minkowski space position vectors of a
spacelike W-curve is given in [8].

The aim of this study is to solve the problem for admissible curves in pseudo-
Galilean 3-space G1

3 . First of all, we define the position vector of an admissible
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curve according to the Frenet frame and then we obtain the position vector of an
admissible curve according to standart frame in the way of curvature and torsion
in pseudo-Galilean 3-space G1

3 .

2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries. As in
[4] , pseudo-Galilean inner product can be written as

〈v1, v2〉 =

{
x1x2 , if x1 6= 0 ∨ x2 6= 0,
y1y2 − z1z2, if x1 = 0 ∧ x2 = 0,

where v1 = (x1, y1, z1) and v2 = (x2, y2, z2) and the pseudo-Galilean norm of the
vector v = (x, y, z) defined by

‖v‖ =

{
x, x 6= 0,√
|y2 − z2|, x = 0.

A vector v = (x, y, z) is in G1
3 is said to be non-isotropic if x 6= 0 , otherwise it

is isotropic. All unit non-isotropic vectors are of the form (1, y, z) . There are four
types of isotropic vectors : spacelike

(
y2 − z2 > 0

)
, timelike

(
y2 − z2 < 0

)
and two

types of lightlike (y = ±z) vectors. A non-lightlike isotropic vector is unit vector if
y2 − z2 = ±1.

In pseudo-Galilean space a curve is given by

α : I −→ G1
3 , α (t) = (x (t) , y (t) , z (t))

where I ⊆ R and x (t) , y (t) , z (t) ∈ C3 . A curve α given above is called an
admissible curve if x (t) 6= 0 .

The curves in pseudo-Galilean space are characterized as follows:
Type I.
An admissible curve α : I ⊆ R −→ G1

3 can be parameterized by arc length t = s,
given in coordinate form

(2.1) α (s) = (s, y (s) , z (s)) .

Its curvature κ(s) and torsion τ(s) are defined by

(2.2) κ(s) =
√
|y2 − z2|

τ(s) =
det(α(s), α(s), α(s))

κ2(s)
,

The associated trihedron is given by

t(s) = α(s) = (1, y(s), z (s)),

(2.3) n(s) =
1

κ(s)
α(s) =

1

κ(s)
(0, y(s), z(s)),

b(s) =
1

κ(s)
(0, z(s), y(s)) .

The vectors t(s) , n(s) and b(s) are called the vectors of tangent, principal normal
and binormal line of α , respectively. The curve α given by (2.1) is timelike, if n(s)
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is spacelike vector. For derivatives of tangent vector t(s) , principal normal vector
n(s) and binormal vector b(s) , respectively, the following Frenet formulas hold

t(s) = κ(s)n(s),

(2.4) n(s) = τ(s)b(s),

b(s) = τ(s)n(s) .

Type II.
An admissible curve β : I ⊆ R −→ G1

3 is given by β (x) = (x, y (x) , 0) and for
this admissible curve, the curvature κ(x) and the torsion τ(x) are defined by

(2.5) κ(x) = y(x),

τ(x) =
a2(x)

a3(x)
,

where a(x) = (0, a2(x), a3(x)) . The associated trihedron is given by

t(x) = (1, y(x), 0),

(2.6) n(x) = (0, a2(x), a3(x)),

b(x) = (0, a3(x), a2(x)).

For tangent vector t(x) , principal normal vector n(x) and binormal vector b(x) ,
the following Frenet formulas hold

t(x) = κ(x)(coshφ(x)n(x)− sinhφ(x)b(x)),

(2.7) n(x) = τ(x)b(x),

b(x) = τ(x)n(x) .

where φ is the angle between a(x) and the plane z = 0 [4].

3. Position vectors of admissible curves in pseudo-Galilean space G1
3

In this section, we give the position vectors of admissible curves according to
Frenet frame in pseudo-Galilean space G1

3 .
Theorem 3.1. Let α (x) = (x, y (x) , z (x)) be an admissible curve with curva-

ture κ(x) and torsion τ(x) 6= 0 in G1
3. Then its position vector is given by

(3.1) α(x) = (x+c1)t(x)+

[
c2 −

1

2
(x+ c1)κ(x)eτ(x)dxdx

] [
e−τ(x)dx(n(x) + b(x))

]
+

[
c3 +

1

2
(x+ c1)κ(x)e−τ(x)dxdx

] [
eτ(x)dx(b(x)− n(x)

]
where c1 , c2 and c3 are arbitrary constants.

Proof. Let α (x) = (x, y (x) , z (x)) be an admissible curve in G1
3. If λ(x) , µ(x)

and γ(x) are differentiable functions of xεI ⊂ R, then we can write the position
vector of α in the following form

(3.2) α(x) = λ(x)t(x) + µ(x)n(x) + γ(x)b(x).

Differentiating the equation (3.2) with respect to x and considering the Frenet
equations (2.4), we get

λ(x)− 1 = 0,
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(3.3) λ(x)κ(x) + µ(x) + γ(x)τ(x) = 0,

µ(x)τ(x) + γ(x) = 0 .

Using the first equation of (3.3), we find

(3.4) λ(x) = x+ c1,

where c1 is an arbitrary constant. We can consider the variable t = τ(x)dx . So,
all functions of x will turn into the functions of t . The dot is used to denote the
derivation with respect to t (prime is used to denote the derivative with respect to
x) . We can write the third equation of (3.3) as follows

(3.5) µ(t) = − ·γ(t)

Considering the equation (3.5) with the second equation of (3.3), we obtain

(3.6)
··
γ(t)− γ(t) =

λ(t)κ(t)

τ(t)
.

Then the solution for the above equation is written

(3.7) γ(t) =

(
c2 −

1

2

λ(t)κ(t)

τ(t)
etdt

)
e−t +

(
c3 +

1

2

λ(t)κ(t)

τ(t)
e−tdt

)
et,

where c2 and c3 are arbitrary constants. If we differentiate the equation (3.7) with
respect to t and substituting this in the equation (3.5), we have

(3.8) µ(t) =

(
c2 −

1

2

λ(t)κ(t)

τ(t)
etdt

)
e−t −

(
c3 +

1

2

λ(t)κ(t)

τ(t)
e−tdt

)
et.

So, the equations (3.7) and (3.8) can be written

(3.9) γ(x) =

(
c2 −

1

2
(x+ c1)κ(x)eτ(x)dxdx

)
e−τ(x)dx

+

(
c3 +

1

2
(x+ c1)κ(x)e−τ(x)dxdx

)
eτ(x)dx,

(3.10) µ(x) =

(
c2 −

1

2
(x+ c1)κ(x)eτ(x)dxdx

)
e−τ(x)dx

−
(
c3 +

1

2
(x+ c1)κ(x)e−τ(x)dxdx

)
eτ(x)dx.

If we use the equations (3.4) ,(3.9) and (3.10) in (3.2) we obtain equation (3.1). �

Theorem 3.2. Let β (x) = (x, y (x) , 0) be an admissible curve with constant φ
angle and constant torsion τ(x) in G1

3. Then its position vector is given by

(3.11) β(x) = (x+ c1)t(x) + c2e
−τ cothφn(x)

where c1 , c2 and c3 are arbitrary constants.

Proof. Let β (x) = (x, y (x) , 0) be an admissible curve in G1
3. Then we write its

position vector in the following form

(3.12) β(x) = λ(x)t(x) + µ(x)n(x)
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where λ(x) and µ(x) are differentiable functions of xεI ⊂ R .We can suppose τ, φ are
constants. If we differentiate the above equation with respect to x and considering
Frenet equations (2.7), we get

λ(x)− 1 = 0,

(3.13) λ(x)κ coshφ+ µ(x) = 0,

−λ(x)κ sinhφ+ µ(x)τ = 0.

Using the first equation of (3.13), we find

(3.14) λ(x) = x+ c1,

where c1 is an arbitrary constant. If we use the second and third equation of (3.13),
we have

(3.15) µ′(x) + τ cothφµ = 0.

The general solution of these equation is

(3.16) µ(x) = c2e
−τ cothφx

Substituting equations (3.14), (3.16) to (3.12), we obtain equation (3.11) . �

4. Position vectors of admissible curves with respect to standart frame
of G1

3

Theorem 4.1. Let α (x) = (x, y (x) , z (x))be an admissible curve with curvature
κ(x) and torsion τ(x) in the pseudo-Galilean space G1

3.

i) if α is an admissible curve with spacelike normal, then the position vector of
α is given

(4.1)

α(x) =

(
x,

∫ (∫
κ(x) cosh(

∫
τ(x)dx)dx

)
dx,

(
κ(x) sinh(

∫
τ(x)dx)dx

)
dx

)
.

ii) if α is an admissible curve with timelike normal, then the position vector of
α is given

(4.2)

α(x) =

(
x,

∫ (∫
κ(x) sinh(

∫
τ(x)dx)dx

)
dx,

(
κ(x) cosh(

∫
τ(x)dx)dx

)
dx

)
.

Proof. If α (x) is an admissible curve in G1
3 , then from the second equation of (2.4)

we obtain

b(x) =
1

τ
n(x).

Using the third equation of (2.4) we have(
1

τ
n(x)

)
− τ(x)n(x) = 0.

We can write the above equation by the form

(4.3)
d2n

dt2
− n = 0,

where t =
∫
τ(x)dx .
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i) Let α be an admissible curve with spacelike normal. The principal normal
vector can be written

n = (0, cosh θ (t) , sinh θ (t)) .

Considering the vector n in the equation (4.3) we have(
·
θ
2

(t)− 1

)
cosh θ (t) +

··
θ(t) sinh θ (t) = 0,(

·
θ
2

(t)− 1

)
sinh θ (t) +

··
θ(t) cosh θ (t) = 0.

Using above equations we get

·
θ(t) = ±1 ,

··
θ(t) = 0,

and from above equation we have θ(t) = ±t = ±
∫
τ(x)dx. We can take the positive

sign for θ(t). Then the principal normal vector can be written

n(x) =

(
0, cosh(

∫
τ(x)dx)dx, sinh(

∫
τ(x)dx)dx

)
.

Using the principal normal vector we have

t(x) =

∫
κ(x)

(
0, cosh(

∫
τ(x)dx), sinh(

∫
τ(x)dx)

)
+ c,

where c is a constant vector. We can take c = (1, 0, 0) because of the first component
of tangent vector and then

t(x) =

(
1,

∫
κ(x) cosh(

∫
τ(x)dx)dx,

∫
κ(x) sinh(

∫
τ(x)dx)dx

)
.

Using above equation we find

α(x) =

∫ (
1,

∫
κ(x) cosh(

∫
τ(x)dx)dx,

∫
κ(x) sinh(

∫
τ(x)dx)dx

)
dx

So the equation (4.1) is obtained.
ii) Let α be an admissible curve with timelike normal. The principal normal

vector can be written

n = (0, sinh(θ (t)), cosh(θ (t)) .

Considering n in the equation (4.3) we obtain(
·
θ
2

(t)− 1

)
sinh (θ (t)) +

··
θ(t) cosh (θ (t)) = 0,(

·
θ
2

(t)− 1

)
cosh (θ (t)) +

··
θ(t) sinh (θ (t)) = 0.

Using above equations we get

·
θ(t) = ±1 ,

··
θ(t) = 0,

and from above equation we have θ(t) = ±t = ±
∫
τ(x)dx. We can take the positive

sign for θ(t). Then the principal normal vector can be written

n(x) =

(
0, sinh

(∫
τ(x)dx

)
dx, cosh

(∫
τ(x)dx

)
dx

)
.
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Using above equation we have

t(x) =

∫
κ(x)

(
0, sinh

(∫
τ(x)dx

)
, cosh

(∫
τ(x)dx

))
+ c,

where c is a constant vector. We can take c = (1, 0, 0) because of the first component
of tangent vector and then

t(x) =

(
1,

∫
κ(x) sinh

(∫
τ(x)dx

)
dx,

∫
κ(x) cosh

(∫
τ(x)dx

)
dx

)
.

Using above equation we obtain

α(x) =

∫ (
1,

∫
κ(x) sinh

(∫
τ(x)dx

)
dx,

∫
κ(x) cosh

(∫
τ(x)dx

)
dx

)
dx.

�

Theorem 4.2. Let β (x) = (x, y (x) , 0) be an admissible curve with curvature κ(x)
and torsion τ(x) in the pseudo-Galilean space G1

3.

i) if β be an admissible curve with spacelike normal, then the position vector of
β is given

β(x) =

(
x,

∫ [∫
κ(x)

(
coshφ cosh

(∫
τ(x)dx

)
− sinhφ sinh

(∫
τ(x)dx

))
dx

]
dx,

(4.4)

∫ [∫
κ(x)

(
coshφ sinh

(∫
τ(x)dx

)
− sinhφ cosh

(∫
τ(x)dx

))
dx

]
dx

)
ii) if β be an admissible curve with timelike normal, then the position vector of

β is given

β(x) =

(
x,

∫ [∫
κ(x)

(
coshφ sinh

(∫
τ(x)dx

)
− sinhφ cosh

(∫
τ(x)dx

))
dx

]
dx,

(4.5)

∫ [∫
κ(x)

(
coshφ cosh

(∫
τ(x)dx

)
− sinhφ sinh

(∫
τ(x)dx

))
dx

]
dx

)
Proof. i) Let β be an admissible curve with spacelike normal. If β (x) is an ad-
missible curve in G1

3 , then the Frenet equations (2.7 ) are hold. From the second
equation of (2.7), we have

b(x) =
1

τ
n(x) .

Using the third equation of (2.7), we have(
1

τ
n(x)

)
− τ(x)n(x) = 0 .

So the above equation can be written

(4.6)
d2n

dt2
− n = 0,

where t =
∫
τ(x)dx .The principal normal vector can be written as follows

n = (0, cosh θ (t) , sinh θ (t)) .
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If we use the vector n in the equation (4.6) we obtain(
·
θ
2

(t)− 1

)
cosh θ (t) +

··
θ(t) sinh θ (t) = 0.(

·
θ
2

(t)− 1

)
sinh θ (t) +

··
θ(t) cosh θ (t) = 0.

Then we get
·
θ(t) = ±1 ,

··
θ(t) = 0,

and from above equation we have θ(t) = ±t = ±
∫
τ(x)dx. We can take the positive

sign for θ(t) . Then

n(x) = (0, cosh

(∫
τ(x)dx

)
dx, sinh

(∫
τ(x)dx

)
dx).

Since β (x) is an admissible curve in G1
3 , the Frenet equations (2.7) are hold. From

the third equation (2.7), we have

n(x) =
1

τ
b(x).

If we put the above equation in the second equation of (2.7) we obtain the differential
equation with respect to principal normal vector n(

1

τ
b(x)

)
− τ(x)b(x) = 0.

The above equation can be written as follows

(4.7)
d2b

dt2
− b = 0,

where t =
∫
τ(x)dx .We can write the binormal vector in the following form

b = (0, sinh θ (t) , cosh θ (t)) .

Considering the second and the third components from the vector n in the equation
(4.7) we obtain (

·
θ
2

(t)− 1

)
sinh θ (t) +

··
θ(t) cosh θ (t) = 0,(

·
θ
2

(t)− 1

)
cosh θ (t) +

··
θ(t) sinh θ (t) = 0.

So, using the above equations we get

·
θ(t) = ±1 ,

··
θ(t) = 0,

and from above equation we have θ(t) = ±t = ±
∫
τ(x)dx . We can take the

positive sign for θ(t) . Then the principal normal vector is written as follows

b(x) =

(
0, sinh

(∫
τ(x)dx

)
dx, cosh

(∫
τ(x)dx

)
dx

)
.
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Using first equation of (2.7), we can write

t(x) = κ(x) coshφ

(
0, cosh

(∫
τ(x)dx

)
dx, sinh

(∫
τ(x)dx

)
dx

)
−κ(x) sinhφ

(
0, sinh

(∫
τ(x)dx

)
dx, cosh

(∫
τ(x)dx

)
dx

)
.

If we integrate the above equation with respect to x , we have the equation (4.4).
ii) Let β be an admissible curve with timelike normal. If β (x) is an admissible

curve in G1
3 , then the Frenet equations (2.7) are hold. From the second equation

of (2.7), we obtain

b(x) =
1

τ
n(x) .

Considering the above equation to the third equation of (2.7) we obtain(
1

τ
n(x)

)
− τ(x)n(x) = 0.

We can write the above equation in the following form

(4.8)
d2n

dt2
− n = 0,

where t =
∫
τ(x)dx . The principal normal vector can be written

n = (0, sinh θ (t) , cosh θ (t)) .

Using the equation (4.8) we have(
·
θ
2

(t)− 1

)
sinh θ (t) +

··
θ(t) cosh θ (t) = 0,(

·
θ
2

(t)− 1

)
cosh θ (t) +

··
θ(t) sinh θ (t) = 0.

So,
·
θ(t) = ±1 ,

··
θ(t) = 0,

and from above equation we have θ(t) = ±t = ±
∫
τ(x)dx. We can take the positive

sign for θ(t). Then

n(x) =

(
0, sinh

(∫
τ(x)dx

)
dx, cosh

(∫
τ(x)dx

)
dx

)
.

Since β (x) is an admissible curve in G1
3 . From the third equation (2.7), we have

n(x) =
1

τ
b(x).

Considering the second equation of (2.7) we have(
1

τ
b(x)

)
− τ(x)b(x) = 0.

The above equation can be written

(4.9)
d2b

dt2
− b = 0,

where t =
∫
τ(x)dx .Thus

b = (0, cosh θ (t) , sinh θ (t)) .
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Using the equation (4.9) we have(
·
θ
2

(t)− 1

)
cosh θ (t) +

··
θ(t) sinh θ (t) = 0,(

·
θ
2

(t)− 1

)
sinh θ (t) +

··
θ(t) cosh θ (t) = 0.

Then
·
θ(t) = ±1 ,

··
θ(t) = 0,

and from above equation we have θ(t) = ±t = ±
∫
τ(x)dx. We can take the positive

sign for θ(t). Then

b(x) =

(
0, cosh

(∫
τ(x)dx

)
dx, sinh

(∫
τ(x)dx

)
dx

)
.

Using first equation of (2.7), we can write

t(x) = κ(x) coshφ

(
0, sinh

(∫
τ(x)dx

)
dx, cosh

(∫
τ(x)dx

)
dx

)
−κ(x) sinhφ

(
0, cosh

(∫
τ(x)dx

)
dx, sinh

(∫
τ(x)dx

)
dx

)
.

If we integrate the above equation with respect to x , we get the equation (4.5)
. �

Example 4.1. Let α be a straight line with respect to the Frenet frame in G1
3. If

we take κ(x) = 0 and consider this in the equation (4.1) and (4.4), then its position
vector can be written

α1(x) = (x, c1x+ c2, c3x+ c4)

and

α1(x) = (x, c1x− c2x+ c3, c4x+ c5x+ c6),

respectively, where ci , i = 1, 2, 3, 4,5, 6 are arbitrary constants.

Example 4.2. Let β be a planar curve with respect to the Frenet frame in G1
3. If

we take τ(x) = 0 and consider this in the equation (4.1) and (4.2), then its position
vector can be written

β3(x) =

(
x, cosh η

∫ (∫
κ (x) dx

)
dx, sinh η

∫ (∫
κ (x) dx

)
dx

)
and

β4(x) = (x, sinh η

∫ (∫
κ (x) dx

)
dx, cosh η

∫ (∫
κ (x) dx

)
dx),

respectively, where η is arbitrary constant. If we take τ(x) = 0 and consider this
in the equation (4.4) and (4.5), then its position vector can be written

β5(x) =

(
x, ν

∫ (∫
κ (x) coshφ(x)dx

)
dx− δ

∫ (∫
κ (x) sinhφ(x)dx

)
dx,

δ

∫ (∫
κ (x) coshφ(x)dx

)
dx− ν

∫ (∫
κ (x) sinhφ(x)dx

)
dx

)
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and

β6(x) =

(
x, δ

∫ (∫
κ (x) coshφ(x)dx

)
dx− ν

∫ (∫
κ (x) sinhφ(x)dx

)
dx,

ν

∫ (∫
κ (x) coshφ(x)dx

)
dx− δ

∫ (∫
κ (x) sinhφ(x)dx

)
dx

)
,

respectively, where η, ν and δ are arbitrary constants, cosh [η] = ν and sinh [η] = δ.

Example 4.3. Let γ be an admissible curve with κ(x) = const. and τ(x) = const.in
pseudo-Galilean space G1

3 . If we take κ(x) and τ(x) are constants and put it in
the equation (4.1) and (4.2), we obtain

γ
1

=
(
x,

κ

τ2
cosh (τx) ,

κ

τ2
sinh (τx)

)
and

γ
2

=
(
x,

κ

τ2
sinh (τx) ,

κ

τ2
cosh (τx)

)
,

respectively.
If we take κ(x) and τ(x) are constants and consider this in the equation (4.4)

and (4.5), we get

γ3 =

(
x, κ

∫ (∫
(coshφ(x) cosh (τx)− sinhφ(x) sinh (τx)) dx

)
dx,

κ

∫ (∫
(coshφ(x) sinh (τx)− sinhφ(x) cosh (τx)) dx

)
dx)

)
and

γ4 =

(
x, κ

∫ (∫
(coshφ(x) sinh (τx)− sinhφ(x) cosh (τx)) dx

)
dx ,

κ

∫ (∫
(coshφ(x) cosh (τx)− sinhφ(x) sinh (τx)) dx

)
dx

)
,

respectively.

Example 4.4. Let ψbe an admissible general helix in pseudo-Galilean space G1
3.

Then if we take τ (x) = mκ (x), where m is arbitrary constant and consider this in
the equation (4.1) and (4.2), we get

ψ1 =

(
x,

∫ [∫
κ(x)

(
cosh

(
m

∫
κ(x)dx

)
, sinh

(
m

∫
κ(x)dx

))
dx

]
dx

)
and

ψ2 =

(
x,

∫ [∫
κ(x)

(
sinh

(
m

∫
κ(x)dx

)
, cosh

(
m

∫
κ(x)dx

))
dx

]
dx

)
,

respectively.
If we take τ (x) = mκ (x), where m is arbitrary constant and consider this in the

equation (4.4) and (4.5), we get

ψ3 = (x,

∫ [∫
κ(x) (coshφ cosh [ξ(x)]− sinh θ sinh [ξ(x)]) dx

]
dx,∫ [∫

κ(x) (coshφ sinh [ξ(x)]− sinh θ cosh [ξ(x)]) dx

]
dx)
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and

ψ4 = (x,

∫ [∫
κ(x) (coshφ sinh [ξ(x)]− sinh θ cosh [ξ(x)]) dx

]
dx,∫ [∫

κ(x) (coshφ cosh [ξ(x)]− sinh θ sinh [ξ(x)]) dx

]
dx),

respectively, where m
∫
κ(x)dx = ξ(x).
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