POSITION VECTORS OF ADMISSIBLE CURVES IN 3-DIMENSIONAL PSEUDO-GALILEAN SPACE G_{3}^{1}

HANDAN ÖZTEKi̇N AND HÜLYA GÜN BOZOK
(Communicated by Yusuf YAYLI)

Abstract

In this paper, position vectors of admissible curves in pseudoGalilean space G_{3}^{1} is studied in terms of Frenet equations. We compute the position vectors of admissible curves in pseudo-Galilean space G_{3}^{1}. Then we give some examples of position vectors for admissible curves.

1. Introduction

In the local differential geometry, curves are a geometric set of points, or locus. Intuitively, one can think a curve as the path traced out by a particle moving in Euclidean 3-space. So, to determine behaviour of the particle (or the curve, i.e.) we investigate position vectors of curves.

In the Euclidean space E^{3}, for each unit speed curve $\alpha: I \longrightarrow E^{3}$ with minimum four continuous derivatives, we can denote orthogonal unit vector fields t, n and b called, respectively, the tangent, the principal normal and the binormal vector fields. The planes spanned by $\{t, n\},\{t, b\}$ and $\{n, b\}$ are called, respectively, osculating plane, rectifying plane and normal plane of the curve α. If position vector of $\alpha: I \subset \mathbb{R} \longrightarrow E^{3}$ always lie in its rectifying plane, the curves α are called rectifying curves. Similarly, the curves whose position vector α always lie in their osculating plane and their normal plane, are called ,respectively, osculating curves and normal curves. In [3] B.Y. Chen expressed characterization of rectifying curve . Then, the characterization of rectifying curves in Minkowski space is given in [6].

In the Euclidean space E^{3}, the determination of parametric representation for position vector of arbitrary space with respect to intrinsic equations is still unknown $[5,9]$. Generally, to solve the above problem is difficult. But, the problem is solved some special case for example the event of a plane curve and a helix. Ali give some differential equation to solve the problem in the event of a general helix and slant helix in Minkowski 3- space [1,2]. Also, in Minkowski space position vectors of a spacelike W-curve is given in [8].

The aim of this study is to solve the problem for admissible curves in pseudoGalilean 3-space G_{3}^{1}. First of all, we define the position vector of an admissible

[^0]curve according to the Frenet frame and then we obtain the position vector of an admissible curve according to standart frame in the way of curvature and torsion in pseudo-Galilean 3-space G_{3}^{1}.

2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley-Klein geometries. As in [4], pseudo-Galilean inner product can be written as

$$
\left\langle v_{1}, v_{2}\right\rangle=\left\{\begin{array}{lc}
x_{1} x_{2}, & \text { if } x_{1} \neq 0 \vee x_{2} \neq 0 \\
y_{1} y_{2}-z_{1} z_{2}, & \text { if } x_{1}=0 \wedge x_{2}=0
\end{array}\right.
$$

where $v_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ and the pseudo-Galilean norm of the vector $v=(x, y, z)$ defined by

$$
\|v\|= \begin{cases}x, & x \neq 0 \\ \sqrt{\left|y^{2}-z^{2}\right|}, & x=0\end{cases}
$$

A vector $v=(x, y, z)$ is in G_{3}^{1} is said to be non-isotropic if $x \neq 0$, otherwise it is isotropic. All unit non-isotropic vectors are of the form $(1, y, z)$. There are four types of isotropic vectors : spacelike $\left(y^{2}-z^{2}>0\right)$, timelike $\left(y^{2}-z^{2}<0\right)$ and two types of lightlike $(y= \pm z)$ vectors. A non-lightlike isotropic vector is unit vector if $y^{2}-z^{2}= \pm 1$.

In pseudo-Galilean space a curve is given by

$$
\alpha: I \longrightarrow G_{3}^{1} \quad, \quad \alpha(t)=(x(t), y(t), z(t))
$$

where $I \subseteq \mathbb{R}$ and $x(t), y(t), z(t) \in C^{3}$. A curve α given above is called an admissible curve if $x(t) \neq 0$.

The curves in pseudo-Galilean space are characterized as follows:

Type I.

An admissible curve $\alpha: I \subseteq \mathbb{R} \longrightarrow G_{3}^{1}$ can be parameterized by arc length $t=s$, given in coordinate form

$$
\begin{equation*}
\alpha(s)=(s, y(s), z(s)) . \tag{2.1}
\end{equation*}
$$

Its curvature $\kappa(s)$ and torsion $\tau(s)$ are defined by

$$
\begin{gather*}
\kappa(s)=\sqrt{\left|y^{2}-z^{2}\right|} \tag{2.2}\\
\tau(s)=\frac{\operatorname{det}(\alpha(s), \alpha(s), \alpha(s))}{\kappa^{2}(s)}
\end{gather*}
$$

The associated trihedron is given by

$$
\begin{gather*}
t(s)=\alpha(s)=(1, y(s), z(s)) \\
n(s)=\frac{1}{\kappa(s)} \alpha(s)=\frac{1}{\kappa(s)}(0, y(s), z(s)) \tag{2.3}\\
b(s)=\frac{1}{\kappa(s)}(0, z(s), y(s))
\end{gather*}
$$

The vectors $t(s), n(s)$ and $b(s)$ are called the vectors of tangent, principal normal and binormal line of α, respectively. The curve α given by (2.1) is timelike, if $n(s)$
is spacelike vector. For derivatives of tangent vector $t(s)$, principal normal vector $n(s)$ and binormal vector $b(s)$, respectively, the following Frenet formulas hold

$$
\begin{align*}
& t(s)=\kappa(s) n(s), \\
& n(s)=\tau(s) b(s), \tag{2.4}\\
& b(s)=\tau(s) n(s) .
\end{align*}
$$

Type II.

An admissible curve $\beta: I \subseteq \mathbb{R} \longrightarrow G_{3}^{1}$ is given by $\beta(x)=(x, y(x), 0)$ and for this admissible curve, the curvature $\kappa(x)$ and the torsion $\tau(x)$ are defined by

$$
\begin{array}{r}
\kappa(x)=y(x), \tag{2.5}\\
\tau(x)=\frac{a_{2}(x)}{a_{3}(x)}
\end{array}
$$

where $a(x)=\left(0, a_{2}(x), a_{3}(x)\right)$. The associated trihedron is given by

$$
\begin{gather*}
t(x)=(1, y(x), 0), \\
n(x)=\left(0, a_{2}(x), a_{3}(x)\right), \tag{2.6}\\
b(x)=\left(0, a_{3}(x), a_{2}(x)\right) .
\end{gather*}
$$

For tangent vector $t(x)$, principal normal vector $n(x)$ and binormal vector $b(x)$, the following Frenet formulas hold

$$
\begin{gather*}
t(x)=\kappa(x)(\cosh \phi(x) n(x)-\sinh \phi(x) b(x)), \\
n(x)=\tau(x) b(x), \tag{2.7}\\
b(x)=\tau(x) n(x) .
\end{gather*}
$$

where ϕ is the angle between $a(x)$ and the plane $z=0$ [4].

3. Position vectors of admissible curves in pseudo-Galilean space G_{3}^{1}

In this section, we give the position vectors of admissible curves according to Frenet frame in pseudo-Galilean space G_{3}^{1}.

Theorem 3.1. Let $\alpha(x)=(x, y(x), z(x))$ be an admissible curve with curvature $\kappa(x)$ and torsion $\tau(x) \neq 0$ in G_{3}^{1}. Then its position vector is given by

$$
\begin{align*}
\alpha(x)= & \left(x+c_{1}\right) t(x)+\left[c_{2}-\frac{1}{2}\left(x+c_{1}\right) \kappa(x) e^{\tau(x) d x} d x\right]\left[e^{-\tau(x) d x}(n(x)+b(x))\right] \tag{3.1}\\
& +\left[c_{3}+\frac{1}{2}\left(x+c_{1}\right) \kappa(x) e^{-\tau(x) d x} d x\right]\left[e^{\tau(x) d x}(b(x)-n(x)]\right.
\end{align*}
$$

where c_{1}, c_{2} and c_{3} are arbitrary constants.
Proof. Let $\alpha(x)=(x, y(x), z(x))$ be an admissible curve in G_{3}^{1}. If $\lambda(x), \mu(x)$ and $\gamma(x)$ are differentiable functions of $x \epsilon I \subset \mathbb{R}$, then we can write the position vector of α in the following form

$$
\begin{equation*}
\alpha(x)=\lambda(x) t(x)+\mu(x) n(x)+\gamma(x) b(x) . \tag{3.2}
\end{equation*}
$$

Differentiating the equation (3.2) with respect to x and considering the Frenet equations (2.4), we get

$$
\lambda(x)-1=0,
$$

$$
\begin{gather*}
\lambda(x) \kappa(x)+\mu(x)+\gamma(x) \tau(x)=0 \tag{3.3}\\
\mu(x) \tau(x)+\gamma(x)=0
\end{gather*}
$$

Using the first equation of (3.3), we find

$$
\begin{equation*}
\lambda(x)=x+c_{1}, \tag{3.4}
\end{equation*}
$$

where c_{1} is an arbitrary constant. We can consider the variable $t=\tau(x) d x$. So, all functions of x will turn into the functions of t. The dot is used to denote the derivation with respect to t (prime is used to denote the derivative with respect to $x)$. We can write the third equation of (3.3) as follows

$$
\begin{equation*}
\mu(t)=-\dot{\gamma}(t) \tag{3.5}
\end{equation*}
$$

Considering the equation (3.5) with the second equation of (3.3), we obtain

$$
\begin{equation*}
\ddot{\gamma}(t)-\gamma(t)=\frac{\lambda(t) \kappa(t)}{\tau(t)} \tag{3.6}
\end{equation*}
$$

Then the solution for the above equation is written

$$
\begin{equation*}
\gamma(t)=\left(c_{2}-\frac{1}{2} \frac{\lambda(t) \kappa(t)}{\tau(t)} e^{t} d t\right) e^{-t}+\left(c_{3}+\frac{1}{2} \frac{\lambda(t) \kappa(t)}{\tau(t)} e^{-t} d t\right) e^{t} \tag{3.7}
\end{equation*}
$$

where c_{2} and c_{3} are arbitrary constants. If we differentiate the equation (3.7) with respect to t and substituting this in the equation (3.5), we have

$$
\begin{equation*}
\mu(t)=\left(c_{2}-\frac{1}{2} \frac{\lambda(t) \kappa(t)}{\tau(t)} e^{t} d t\right) e^{-t}-\left(c_{3}+\frac{1}{2} \frac{\lambda(t) \kappa(t)}{\tau(t)} e^{-t} d t\right) e^{t} \tag{3.8}
\end{equation*}
$$

So, the equations (3.7) and (3.8) can be written

$$
\begin{gather*}
\gamma(x)=\left(c_{2}-\frac{1}{2}\left(x+c_{1}\right) \kappa(x) e^{\tau(x) d x} d x\right) e^{-\tau(x) d x} \tag{3.9}\\
+\left(c_{3}+\frac{1}{2}\left(x+c_{1}\right) \kappa(x) e^{-\tau(x) d x} d x\right) e^{\tau(x) d x} \\
\mu(x)=\left(c_{2}-\frac{1}{2}\left(x+c_{1}\right) \kappa(x) e^{\tau(x) d x} d x\right) e^{-\tau(x) d x} \tag{3.10}\\
-\left(c_{3}+\frac{1}{2}\left(x+c_{1}\right) \kappa(x) e^{-\tau(x) d x} d x\right) e^{\tau(x) d x}
\end{gather*}
$$

If we use the equations (3.4),(3.9) and (3.10) in (3.2) we obtain equation (3.1).
Theorem 3.2. Let $\beta(x)=(x, y(x), 0)$ be an admissible curve with constant ϕ angle and constant torsion $\tau(x)$ in G_{3}^{1}. Then its position vector is given by

$$
\begin{equation*}
\beta(x)=\left(x+c_{1}\right) t(x)+c_{2} e^{-\tau \operatorname{coth} \phi} n(x) \tag{3.11}
\end{equation*}
$$

where c_{1}, c_{2} and c_{3} are arbitrary constants.
Proof. Let $\beta(x)=(x, y(x), 0)$ be an admissible curve in G_{3}^{1}. Then we write its position vector in the following form

$$
\begin{equation*}
\beta(x)=\lambda(x) t(x)+\mu(x) n(x) \tag{3.12}
\end{equation*}
$$

where $\lambda(x)$ and $\mu(x)$ are differentiable functions of $x \epsilon I \subset \mathbb{R}$. We can suppose τ, ϕ are constants. If we differentiate the above equation with respect to x and considering Frenet equations (2.7), we get

$$
\begin{gather*}
\lambda(x)-1=0 \\
\lambda(x) \kappa \cosh \phi+\mu(x)=0 \tag{3.13}\\
-\lambda(x) \kappa \sinh \phi+\mu(x) \tau=0
\end{gather*}
$$

Using the first equation of (3.13), we find

$$
\begin{equation*}
\lambda(x)=x+c_{1}, \tag{3.14}
\end{equation*}
$$

where c_{1} is an arbitrary constant. If we use the second and third equation of (3.13), we have

$$
\begin{equation*}
\mu^{\prime}(x)+\tau \operatorname{coth} \phi \mu=0 \tag{3.15}
\end{equation*}
$$

The general solution of these equation is

$$
\begin{equation*}
\mu(x)=c_{2} e^{-\tau \operatorname{coth} \phi x} \tag{3.16}
\end{equation*}
$$

Substituting equations (3.14), (3.16) to (3.12), we obtain equation (3.11) .

4. Position vectors of admissible curves with respect to standart frame of G_{3}^{1}

Theorem 4.1. Let $\alpha(x)=(x, y(x), z(x))$ be an admissible curve with curvature $\kappa(x)$ and torsion $\tau(x)$ in the pseudo-Galilean space G_{3}^{1}.
i) if α is an admissible curve with spacelike normal, then the position vector of α is given

$$
\begin{equation*}
\alpha(x)=\left(x, \int\left(\int \kappa(x) \cosh \left(\int \tau(x) d x\right) d x\right) d x,\left(\kappa(x) \sinh \left(\int \tau(x) d x\right) d x\right) d x\right) . \tag{4.1}
\end{equation*}
$$

ii) if α is an admissible curve with timelike normal, then the position vector of α is given

$$
\begin{equation*}
\alpha(x)=\left(x, \int\left(\int \kappa(x) \sinh \left(\int \tau(x) d x\right) d x\right) d x,\left(\kappa(x) \cosh \left(\int \tau(x) d x\right) d x\right) d x\right) \tag{4.2}
\end{equation*}
$$

Proof. If $\alpha(x)$ is an admissible curve in G_{3}^{1}, then from the second equation of (2.4) we obtain

$$
b(x)=\frac{1}{\tau} n(x) .
$$

Using the third equation of (2.4) we have

$$
\left(\frac{1}{\tau} n(x)\right)-\tau(x) n(x)=0
$$

We can write the above equation by the form

$$
\begin{equation*}
\frac{d^{2} n}{d t^{2}}-n=0 \tag{4.3}
\end{equation*}
$$

where $t=\int \tau(x) d x$.
i) Let α be an admissible curve with spacelike normal. The principal normal vector can be written

$$
n=(0, \cosh \theta(t), \sinh \theta(t))
$$

Considering the vector n in the equation (4.3) we have

$$
\begin{aligned}
& \left(\dot{\theta}^{2}(t)-1\right) \cosh \theta(t)+\ddot{\theta}(t) \sinh \theta(t)=0 \\
& \left(\dot{\theta}^{2}(t)-1\right) \sinh \theta(t)+\ddot{\theta}(t) \cosh \theta(t)=0
\end{aligned}
$$

Using above equations we get

$$
\dot{\theta}(t)= \pm 1 \quad, \quad \ddot{\theta}(t)=0
$$

and from above equation we have $\theta(t)= \pm t= \pm \int \tau(x) d x$. We can take the positive sign for $\theta(t)$. Then the principal normal vector can be written

$$
n(x)=\left(0, \cosh \left(\int \tau(x) d x\right) d x, \sinh \left(\int \tau(x) d x\right) d x\right)
$$

Using the principal normal vector we have

$$
t(x)=\int \kappa(x)\left(0, \cosh \left(\int \tau(x) d x\right), \sinh \left(\int \tau(x) d x\right)\right)+c
$$

where c is a constant vector. We can take $c=(1,0,0)$ because of the first component of tangent vector and then

$$
t(x)=\left(1, \int \kappa(x) \cosh \left(\int \tau(x) d x\right) d x, \int \kappa(x) \sinh \left(\int \tau(x) d x\right) d x\right)
$$

Using above equation we find

$$
\alpha(x)=\int\left(1, \int \kappa(x) \cosh \left(\int \tau(x) d x\right) d x, \int \kappa(x) \sinh \left(\int \tau(x) d x\right) d x\right) d x
$$

So the equation (4.1) is obtained.
ii) Let α be an admissible curve with timelike normal. The principal normal vector can be written

$$
n=(0, \sinh (\theta(t)), \cosh (\theta(t))
$$

Considering n in the equation (4.3) we obtain

$$
\begin{aligned}
& \left(\dot{\theta}^{2}(t)-1\right) \sinh (\theta(t))+\ddot{\theta}(t) \cosh (\theta(t))=0 \\
& \left(\dot{\theta}^{2}(t)-1\right) \cosh (\theta(t))+\ddot{\theta}(t) \sinh (\theta(t))=0
\end{aligned}
$$

Using above equations we get

$$
\dot{\theta}(t)= \pm 1, \quad \ddot{\theta}(t)=0
$$

and from above equation we have $\theta(t)= \pm t= \pm \int \tau(x) d x$. We can take the positive sign for $\theta(t)$. Then the principal normal vector can be written

$$
n(x)=\left(0, \sinh \left(\int \tau(x) d x\right) d x, \cosh \left(\int \tau(x) d x\right) d x\right) .
$$

Using above equation we have

$$
t(x)=\int \kappa(x)\left(0, \sinh \left(\int \tau(x) d x\right), \cosh \left(\int \tau(x) d x\right)\right)+c
$$

where c is a constant vector. We can take $c=(1,0,0)$ because of the first component of tangent vector and then

$$
t(x)=\left(1, \int \kappa(x) \sinh \left(\int \tau(x) d x\right) d x, \int \kappa(x) \cosh \left(\int \tau(x) d x\right) d x\right) .
$$

Using above equation we obtain

$$
\alpha(x)=\int\left(1, \int \kappa(x) \sinh \left(\int \tau(x) d x\right) d x, \int \kappa(x) \cosh \left(\int \tau(x) d x\right) d x\right) d x
$$

Theorem 4.2. Let $\beta(x)=(x, y(x), 0)$ be an admissible curve with curvature $\kappa(x)$ and torsion $\tau(x)$ in the pseudo-Galilean space G_{3}^{1}.
i) if β be an admissible curve with spacelike normal, then the position vector of β is given
$\beta(x)=\left(x, \int\left[\int \kappa(x)\left(\cosh \phi \cosh \left(\int \tau(x) d x\right)-\sinh \phi \sinh \left(\int \tau(x) d x\right)\right) d x\right] d x\right.$,

$$
\begin{equation*}
\left.\int\left[\int \kappa(x)\left(\cosh \phi \sinh \left(\int \tau(x) d x\right)-\sinh \phi \cosh \left(\int \tau(x) d x\right)\right) d x\right] d x\right) \tag{4.4}
\end{equation*}
$$

ii) if β be an admissible curve with timelike normal, then the position vector of β is given
$\beta(x)=\left(x, \int\left[\int \kappa(x)\left(\cosh \phi \sinh \left(\int \tau(x) d x\right)-\sinh \phi \cosh \left(\int \tau(x) d x\right)\right) d x\right] d x\right.$,

$$
\begin{equation*}
\left.\int\left[\int \kappa(x)\left(\cosh \phi \cosh \left(\int \tau(x) d x\right)-\sinh \phi \sinh \left(\int \tau(x) d x\right)\right) d x\right] d x\right) \tag{4.5}
\end{equation*}
$$

Proof. i) Let β be an admissible curve with spacelike normal. If $\beta(x)$ is an admissible curve in G_{3}^{1}, then the Frenet equations (2.7) are hold. From the second equation of (2.7), we have

$$
b(x)=\frac{1}{\tau} n(x) .
$$

Using the third equation of (2.7), we have

$$
\left(\frac{1}{\tau} n(x)\right)-\tau(x) n(x)=0
$$

So the above equation can be written

$$
\begin{equation*}
\frac{d^{2} n}{d t^{2}}-n=0 \tag{4.6}
\end{equation*}
$$

where $t=\int \tau(x) d x$.The principal normal vector can be written as follows

$$
n=(0, \cosh \theta(t), \sinh \theta(t)) .
$$

If we use the vector n in the equation (4.6) we obtain

$$
\begin{aligned}
& \left(\dot{\theta}^{2}(t)-1\right) \cosh \theta(t)+\ddot{\theta}(t) \sinh \theta(t)=0 . \\
& \left(\dot{\theta}^{2}(t)-1\right) \sinh \theta(t)+\ddot{\theta}(t) \cosh \theta(t)=0 .
\end{aligned}
$$

Then we get

$$
\dot{\theta}(t)= \pm 1, \quad \ddot{\theta}(t)=0
$$

and from above equation we have $\theta(t)= \pm t= \pm \int \tau(x) d x$. We can take the positive sign for $\theta(t)$. Then

$$
n(x)=\left(0, \cosh \left(\int \tau(x) d x\right) d x, \sinh \left(\int \tau(x) d x\right) d x\right)
$$

Since $\beta(x)$ is an admissible curve in G_{3}^{1}, the Frenet equations (2.7) are hold. From the third equation (2.7), we have

$$
n(x)=\frac{1}{\tau} b(x) .
$$

If we put the above equation in the second equation of (2.7) we obtain the differential equation with respect to principal normal vector n

$$
\left(\frac{1}{\tau} b(x)\right)-\tau(x) b(x)=0 .
$$

The above equation can be written as follows

$$
\begin{equation*}
\frac{d^{2} b}{d t^{2}}-b=0 \tag{4.7}
\end{equation*}
$$

where $t=\int \tau(x) d x$.We can write the binormal vector in the following form

$$
b=(0, \sinh \theta(t), \cosh \theta(t)) .
$$

Considering the second and the third components from the vector n in the equation (4.7) we obtain

$$
\begin{aligned}
& \left(\dot{\theta}^{2}(t)-1\right) \sinh \theta(t)+\ddot{\theta}(t) \cosh \theta(t)=0 \\
& \left(\dot{\theta}^{2}(t)-1\right) \cosh \theta(t)+\ddot{\theta}(t) \sinh \theta(t)=0
\end{aligned}
$$

So, using the above equations we get

$$
\dot{\theta}(t)= \pm 1 \quad, \quad \ddot{\theta}(t)=0
$$

and from above equation we have $\theta(t)= \pm t= \pm \int \tau(x) d x$. We can take the positive sign for $\theta(t)$. Then the principal normal vector is written as follows

$$
b(x)=\left(0, \sinh \left(\int \tau(x) d x\right) d x, \cosh \left(\int \tau(x) d x\right) d x\right)
$$

Using first equation of (2.7), we can write

$$
\begin{aligned}
t(x)= & \kappa(x) \cosh \phi\left(0, \cosh \left(\int \tau(x) d x\right) d x, \sinh \left(\int \tau(x) d x\right) d x\right) \\
& -\kappa(x) \sinh \phi\left(0, \sinh \left(\int \tau(x) d x\right) d x, \cosh \left(\int \tau(x) d x\right) d x\right)
\end{aligned}
$$

If we integrate the above equation with respect to x, we have the equation (4.4).
ii) Let β be an admissible curve with timelike normal. If $\beta(x)$ is an admissible curve in G_{3}^{1}, then the Frenet equations (2.7) are hold. From the second equation of (2.7), we obtain

$$
b(x)=\frac{1}{\tau} n(x) .
$$

Considering the above equation to the third equation of (2.7) we obtain

$$
\left(\frac{1}{\tau} n(x)\right)-\tau(x) n(x)=0
$$

We can write the above equation in the following form

$$
\begin{equation*}
\frac{d^{2} n}{d t^{2}}-n=0 \tag{4.8}
\end{equation*}
$$

where $t=\int \tau(x) d x$. The principal normal vector can be written

$$
n=(0, \sinh \theta(t), \cosh \theta(t))
$$

Using the equation (4.8) we have

$$
\begin{aligned}
& \left(\dot{\theta}^{2}(t)-1\right) \sinh \theta(t)+\ddot{\theta}(t) \cosh \theta(t)=0 \\
& \left(\dot{\theta}^{2}(t)-1\right) \cosh \theta(t)+\ddot{\theta}(t) \sinh \theta(t)=0
\end{aligned}
$$

So,

$$
\dot{\theta}(t)= \pm 1, \quad \ddot{\theta}(t)=0
$$

and from above equation we have $\theta(t)= \pm t= \pm \int \tau(x) d x$. We can take the positive sign for $\theta(t)$. Then

$$
n(x)=\left(0, \sinh \left(\int \tau(x) d x\right) d x, \cosh \left(\int \tau(x) d x\right) d x\right) .
$$

Since $\beta(x)$ is an admissible curve in G_{3}^{1}. From the third equation (2.7), we have

$$
n(x)=\frac{1}{\tau} b(x)
$$

Considering the second equation of (2.7) we have

$$
\left(\frac{1}{\tau} b(x)\right)-\tau(x) b(x)=0
$$

The above equation can be written

$$
\begin{equation*}
\frac{d^{2} b}{d t^{2}}-b=0 \tag{4.9}
\end{equation*}
$$

where $t=\int \tau(x) d x$.Thus

$$
b=(0, \cosh \theta(t), \sinh \theta(t))
$$

Using the equation (4.9) we have

$$
\begin{aligned}
& \left(\dot{\theta}^{2}(t)-1\right) \cosh \theta(t)+\ddot{\theta}(t) \sinh \theta(t)=0 \\
& \left(\dot{\theta}^{2}(t)-1\right) \sinh \theta(t)+\ddot{\theta}(t) \cosh \theta(t)=0
\end{aligned}
$$

Then

$$
\dot{\theta}(t)= \pm 1, \quad \ddot{\theta}(t)=0,
$$

and from above equation we have $\theta(t)= \pm t= \pm \int \tau(x) d x$. We can take the positive sign for $\theta(t)$. Then

$$
b(x)=\left(0, \cosh \left(\int \tau(x) d x\right) d x, \sinh \left(\int \tau(x) d x\right) d x\right)
$$

Using first equation of (2.7), we can write

$$
\begin{aligned}
t(x)= & \kappa(x) \cosh \phi\left(0, \sinh \left(\int \tau(x) d x\right) d x, \cosh \left(\int \tau(x) d x\right) d x\right) \\
& -\kappa(x) \sinh \phi\left(0, \cosh \left(\int \tau(x) d x\right) d x, \sinh \left(\int \tau(x) d x\right) d x\right)
\end{aligned}
$$

If we integrate the above equation with respect to x, we get the equation (4.5)

Example 4.1. Let α be a straight line with respect to the Frenet frame in G_{3}^{1}. If we take $\kappa(x)=0$ and consider this in the equation (4.1) and (4.4), then its position vector can be written

$$
\alpha_{1}(x)=\left(x, c_{1} x+c_{2}, c_{3} x+c_{4}\right)
$$

and

$$
\alpha_{1}(x)=\left(x, c_{1} x-c_{2} x+c_{3}, c_{4} x+c_{5} x+c_{6}\right),
$$

respectively, where $c_{i}, i=1,2,3,4,5,6$ are arbitrary constants.
Example 4.2. Let β be a planar curve with respect to the Frenet frame in G_{3}^{1}. If we take $\tau(x)=0$ and consider this in the equation (4.1) and (4.2), then its position vector can be written

$$
\beta_{3}(x)=\left(x, \cosh \eta \int\left(\int \kappa(x) d x\right) d x, \sinh \eta \int\left(\int \kappa(x) d x\right) d x\right)
$$

and

$$
\beta_{4}(x)=\left(x, \sinh \eta \int\left(\int \kappa(x) d x\right) d x, \cosh \eta \int\left(\int \kappa(x) d x\right) d x\right)
$$

respectively, where η is arbitrary constant. If we take $\tau(x)=0$ and consider this in the equation (4.4) and (4.5), then its position vector can be written

$$
\begin{aligned}
\beta_{5}(x)= & \left(x, \nu \int\left(\int \kappa(x) \cosh \phi(x) d x\right) d x-\delta \int\left(\int \kappa(x) \sinh \phi(x) d x\right) d x\right. \\
& \left.\delta \int\left(\int \kappa(x) \cosh \phi(x) d x\right) d x-\nu \int\left(\int \kappa(x) \sinh \phi(x) d x\right) d x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\beta_{6}(x)= & \left(x, \delta \int\left(\int \kappa(x) \cosh \phi(x) d x\right) d x-\nu \int\left(\int \kappa(x) \sinh \phi(x) d x\right) d x\right. \\
& \left.\nu \int\left(\int \kappa(x) \cosh \phi(x) d x\right) d x-\delta \int\left(\int \kappa(x) \sinh \phi(x) d x\right) d x\right)
\end{aligned}
$$

respectively, where η, ν and δ are arbitrary constants, $\cosh [\eta]=\nu$ and $\sinh [\eta]=\delta$.
Example 4.3. Let γ be an admissible curve with $\kappa(x)=$ const. and $\tau(x)=$ const.in pseudo-Galilean space G_{3}^{1}. If we take $\kappa(x)$ and $\tau(x)$ are constants and put it in the equation (4.1) and (4.2), we obtain

$$
\gamma_{1}=\left(x, \frac{\kappa}{\tau^{2}} \cosh (\tau x), \frac{\kappa}{\tau^{2}} \sinh (\tau x)\right)
$$

and

$$
\gamma_{2}=\left(x, \frac{\kappa}{\tau^{2}} \sinh (\tau x), \frac{\kappa}{\tau^{2}} \cosh (\tau x)\right)
$$

respectively.
If we take $\kappa(x)$ and $\tau(x)$ are constants and consider this in the equation (4.4) and (4.5), we get

$$
\begin{aligned}
\gamma_{3}= & \left(x, \kappa \int\left(\int(\cosh \phi(x) \cosh (\tau x)-\sinh \phi(x) \sinh (\tau x)) d x\right) d x\right. \\
& \left.\left.\kappa \int\left(\int(\cosh \phi(x) \sinh (\tau x)-\sinh \phi(x) \cosh (\tau x)) d x\right) d x\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma_{4}= & \left(x, \kappa \int\left(\int(\cosh \phi(x) \sinh (\tau x)-\sinh \phi(x) \cosh (\tau x)) d x\right) d x\right. \\
& \left.\kappa \int\left(\int(\cosh \phi(x) \cosh (\tau x)-\sinh \phi(x) \sinh (\tau x)) d x\right) d x\right)
\end{aligned}
$$

respectively.
Example 4.4. Let ψ be an admissible general helix in pseudo-Galilean space G_{3}^{1}. Then if we take $\tau(x)=m \kappa(x)$, where m is arbitrary constant and consider this in the equation (4.1) and (4.2), we get

$$
\psi_{1}=\left(x, \int\left[\int \kappa(x)\left(\cosh \left(m \int \kappa(x) d x\right), \sinh \left(m \int \kappa(x) d x\right)\right) d x\right] d x\right)
$$

and

$$
\psi_{2}=\left(x, \int\left[\int \kappa(x)\left(\sinh \left(m \int \kappa(x) d x\right), \cosh \left(m \int \kappa(x) d x\right)\right) d x\right] d x\right)
$$

respectively.
If we take $\tau(x)=m \kappa(x)$, where m is arbitrary constant and consider this in the equation (4.4) and (4.5), we get

$$
\begin{aligned}
\psi_{3}= & \left(x, \int\left[\int \kappa(x)(\cosh \phi \cosh [\xi(x)]-\sinh \theta \sinh [\xi(x)]) d x\right] d x\right. \\
& \left.\int\left[\int \kappa(x)(\cosh \phi \sinh [\xi(x)]-\sinh \theta \cosh [\xi(x)]) d x\right] d x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\psi_{4}= & \left(x, \int\left[\int \kappa(x)(\cosh \phi \sinh [\xi(x)]-\sinh \theta \cosh [\xi(x)]) d x\right] d x\right. \\
& \left.\int\left[\int \kappa(x)(\cosh \phi \cosh [\xi(x)]-\sinh \theta \sinh [\xi(x)]) d x\right] d x\right)
\end{aligned}
$$

respectively, where $m \int \kappa(x) d x=\xi(x)$.

References

[1] Ali, A.T. and Turgut, M., Position Vector of a timelike slant helix in Minkowski 3-Space, J. Math. Anal. Appl. 365 (2010), 559-569.
[2] Ali, A. T., Determination of the Position Vector of General Helices From Intrinisic Equations in E_{1}^{3}, Bull. Math. Anal. Appl. 3 (2011), 198-205.
[3] Chen, B.Y., When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003), 147-152.
[4] Divjak, B., Curves in Pseudo-Galilean Geometry, Annales Univ. Sci. Budapest. 41 (1998), 117-128.
[5] Eisenhart, L. P., A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., 1909.
[6] İlarslan, K. and Nesović, E. and Petrović-Torgeŝev, M., Some Characterizations of Rectifying Curves in the Minkowski 3-Space, Novi sad J. Math. Vol. 33. No. 2, (2003), 23-32.
[7] İlarslan, K. and Nesović, E., Timelike and Null Normal curves in Minkowski Space E_{1}^{3}, İndian J. pure appl. Math., 35(7), (2004), 881-888.
[8] İlarslan K. and Boyacıoğlu, Ö., Position Vectors of a Spacelike W-Curve in Minkowski Space E_{1}^{3},Bull. Korean Math. Soc. 44 (2007), no. 3, 429-438.
[9] Lipschitz, M. M., Schum's Outline of Theory and Problems of Differential Geometry, McGraw-Hill Book Company, New York, 1969.
[10] Öğrenmiş, A. O., Öztekin , H. and Ergüt, M., Bertrand Curves In Galilean Space and Their Characterizations, Kragujevac J.Math. 3(2009), 139-147.
[11] Turgut, M. and Yılmaz, S., Contributions to Classical Differential Geometry of the Curves in E^{3}, Sci. Magna 4(2008), 5-9.

Department of Mathematics, Firat University, 23119 Elaziğ-TURKEY
E-mail address: handanoztekin@gmail.com
Department of Mathematics, Osmaniye Korkut Ata University, 80000 Osmaniye-TURKEY
E-mail address: hulya-gun@hotmail.com

[^0]: Date: Received: January 3, 2013 and Accepted: February 8, 2014.
 2010 Mathematics Subject Classification. 53A35.
 Key words and phrases. Pseudo-Galilean space, admissible curve, position vector.

