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AN EXPLICIT DESCRIPTION OF SL(2,C) IN TERMS OF

SO+(3, 1) AND VICE VERSA

FRANK KLINKER

(Communicated by Murat TOSUN )

Abstract. In this note we present explicit and elementary formulas for the

correspondence between the group of special Lorentz transformation SO+(3, 1),
on the one hand, and its spin group SL(2,C), on the other hand.

Although we will not mention Clifford algebra terminology explicitly, it is

hidden in our calculations by using complex 2 × 2-matrices. Nevertheless, our
calculations are strongly motivated by the Clifford algebra gl(4,C) of four-

dimensional space-time.

1. Introduction

It is well known that for a pseudo-euclidean vector space (V, g) the universal
cover of the special orthogonal group SO(V, g) is given by the so called spin group
Spin(V, g). For the case V = Rp+q and g = diag(1q,−1p) we write SO(p, q)
and Spin(p, q). The covering map is 2:1 for dimV > 2. The theoretic setting in
which spin groups and related structures are best described is the Clifford algebra
C`(V, g), see [2, 3, 8] for example. Although spin groups in general refrain from be-
ing described by classical matrix groups for dimensional reason, there are accidental
isomorphisms to such in dimension three to six, see Table 1. The isomorphisms are
a consequence of the classification of Lie algebras and can for example be seen by
recalling the connection to Dynkin diagrams. We use the notation from [4] and rec-
ommend this book for details on the definition of the classical matrix groups. Due
to the fact that the complexifications of the orthogonal groups are independent of
the signature of the pseudo-Riemannian metric the groups in each column of Table
1 are real forms of the same complex group for fixed dimension.

Infinitesimally, i.e. on Lie algebra level, the 2:1 covering structure cannot be seen.
Therefore, the description on this level is given by fixing bases in the respective Lie
algebras. If we try to take over this to the groups we see that the exponential map
enters in the construction. A useful and manageable description is not obtained
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Table 1. The isomorphisms in dimensions 3 ≤ p+ q ≤ 6

p+ q = 3 p+ q = 4 p+ q = 5 p+ q = 6

(3, 0) SU(2) (4, 0) SU(2)2 (5, 0) Sp(2) (6, 0) SU(4)

(2, 1) SL(2,R) (3, 1) SL(2,C) (4, 1) Sp(1, 1) (5, 1) SL(2,H)

(2, 2) SL(2,R)2 (3, 2) Sp(4,R) (4, 2) SU(2, 2)

(3, 3) SL(4,R)

in general due to the Baker-Campbell-Hausdorff formula. However, in dimension
four such description is possible and we present explicit formulas for the maps that
connect SO(3, 1) and SL(2,C).

2. Some Preliminaries

We will give some preliminaries on Lorentz transformations, Pauli matrices,
gl(2,C), and SL(2,C), mainly to fix our notation.

By glnK we denote the set of all (n × n)-matrices over the field K and by
GL(n,K) ⊂ glnK the group of all regular matrices. The set of Lorentz trans-
formations O(3, 1) by definition contains all elements T ∈ GL(4,R) that obey
‖T~x‖2 = ‖~x‖2 for ~x = (x0, x1, x2, x3)t ∈ R4. Here we use

‖~x‖2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 =

3∑
i,j=0

gijx
ixj ,

where

(2.1) g = (gij)i,j=0,...,3 = diag(1,−1,−1,−1)

denotes the Minkowski metric and we write R3,1 = (R4, g). We denote the matrix

entries of an endomorphism T by T ij such that (T~x)i =
3∑
j=0

T ijx
j .

Remark 2.1. The Lorentz transformations form a subgroup of GL(4,R). As a
submanifold of GL(4,R) the group structure is smooth such that SO(3, 1) is indeed
a Lie group. This follows also from a more general fact stating that closed subgroups
of Lie groups are Lie subgroups, see [4, Theorem II.2.3].
SO(3, 1) admits four connected components that are associated to orientability

and time-orientability of R3,1. The connected component of the identity is given
by the Lorentz transformations that obey det(T ) = 1 and T 0

0 > 0. The special
Lorentz transformations form a subgroup denoted by SO+(3, 1).

We use the following Pauli matrices:

(2.2) σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The matrices σ1, σ2, and σ3 obey

(2.3)

σ2
1 = σ2

2 = σ2
3 = σ2

0 = σ0 ,

σ1σ2 = −σ2σ1 , σ1σ3 = −σ3σ1 , σ2σ3 = −σ3σ2 ,
σ1σ2 = iσ3 , σ2σ3 = iσ1 , σ3σ1 = iσ2 .
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This can be combined to

(2.4) σiσj = δijσ0 + i

3∑
k=1

εijkσk

with εijk totally skew symmetric and ε123 = 1. In particular, for i = 0, 1, 2, 3 we
have the nice relation

(2.5) δij =
1

2
tr(σiσj) ,

and, moreover, from (2.4) we get for i = 1, 2, 3

(2.6)

3∑
j=1

σjσiσj = −σi and

3∑
j=0

σjσiσj = 0 .

We consider the natural R-linear map

(2.7)

Ψ : R4 → gl(2,C) ,

~x =


x0

x1

x2

x3

 7→ Ψ(~x) =

3∑
i=0

xiσi =

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
.

The image Ψ(~x) of ~x ∈ R4 is a Hermitian matrix, i.e.

Ψ(~x) ∈ h(2,C) := {A ∈ gl(2,C) | A = A†} ,

and, therefore, of type

(
a w̄
w b

)
with a, b ∈ R and w ∈ C. The inverse map is

given by

Ψ−1
((

a w̄
w b

))
=


1
2 (a+ b)
Re(w)
Im(w)
1
2 (a− b)

 .

In particular, each Hermitian matrix B ∈ h(2,C) can be written as B = x0σ0 +
x1σ1 + x2σ2 + x3σ3 with xi ∈ R and we have

‖~x‖2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 = det(Ψ(~x)) .

As noticed in the title the special linear group SL(2,C) ⊂ gl(2,C) will play an
important role in the following and we will recall its definition:

(2.8) SL(2,C) =
{
B ∈ gl(2,C) | det(B) = 1

}
.

SL(2,C) is a Lie group, that has complex dimension three or real dimension six: in
(2.8) we have one complex equation for the four complex parameters. Each matrix
in SL(2,C) can be written in the form

(2.9) A = a0σ0 + a1σ1 + a2σ2 + a3σ3

with

(2.10) det(A) = (a0)2 − (a1)2 − (a2)2 − (a3)2 = 1 .
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Complex generators of SL(2,C) are, for example, σ1, σ2 and σ3.1 Therefore, real
generators are σ1, σ2, and σ3, as well as iσ1, iσ2, and iσ3.

If we omit in (2.9) the condition on the determinant we get all of gl(2,C) by such

linear combination. The product of two matrices A =
3∑
j=0

ajσj and B =
3∑
j=0

bjσj

expands as

(2.11) AB =

3∑
j=0

ajbjσ0 +

3∑
j=1

(a0bj + b0aj)σj + i

3∑
j,k,`=1

εjk` ajbk σ` .

Given a matrix A ∈ gl(2,C) we define the conjugated matrix by

(2.12) A′ = a0σ0 − a1σ1 − a2σ2 − a3σ3 .
This conjugate obeys det(A′) = det(A) and A′B′ = (BA)′. In particular, the
product of a matrix and its conjugated is given by

(2.13) A′A = AA′ =
(
(a0)2 − (a1)2 − (a2)2 − (a3)2

)
σ0 ,

such that its trace obeys

(2.14)
1

2
tr(A′A) = det(A) = (a0)2 − (a1)2 − (a2)2 − (a3)2 .

Moreover, for A ∈ SL(2,C) we have A′ ∈ SL(2,C) and A−1 = A′ due to (2.10).
We collect the symmetry properties (2.3) and the symmetry property (2.12) as

follows. We introduce signs εi and εij defined by σ′i = εiσi and σiσj = εijσjσi, i.e.

(2.15)
(
εi
)
i=0,...,3

=


1
−1
−1
−1

 ,
(
εij
)
i,j=0,...,3

=


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .

In particular, in terms of εi Minkowski metric (2.1) reads as

gij = εiδij = εjδij .

3. SO(3, 1) in terms of SL(2,C)

We consider an action Φ of SL(2,C) on the set of Hermitian matrices that is
defined by

(3.1) SL(2,C)× h(2,C) 3 (A,B) 7→ ABA† ∈ h(2,C) .

Writing B = Ψ(~x) the combination Ψ−1(AΨ(~x)A†) yields an element in R4. This
defines an action Φ of SL(2,C) on R4 via

(3.2) Φ(A)(~x) = Ψ−1(AΨ(~x)A†)

The map Φ(A) : R4 → R4 is R-linear. Furthermore, we have

‖Φ(A)(~x)‖2 = ‖Ψ−1(AΨ(~x)A†)‖2 = det(AΨ(~x)A†)

= det(A) det(A) det(Ψ(~x)) = det(Ψ(~x)) = ‖~x‖2

such that Φ(A) is a Lorentz transformation.

1Because of (2.3) we have exp(b1σ1 + b2σ2 + b3σ3) = a0 + a1σ1 + a2σ2 + a3σ3 with complex

coefficients ai which depend on the bj . This follows from a more general relation between Lie
groups and their tangent space at the identity, i.e. their Lie algebra, see [4, Proposition II.1.6].
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The Matrix entries of T := (Φ(A)ij)i,j=0,...,3 depend on the complex parameters
ai from the decomposition of A according to (2.9). They can explicitly be expressed
by expanding and rearranging the right hand side of (3.2):

Ψ
(
Φ(A)(~x)

)
=

4∑
i,j=0

T ijx
jσi

=
(
a0ā0 + a1ā1 + a2ā2 + a3ā3

)
x0σ0

+
(
a0ā1 + a1ā0 − ia2ā3 + ia3ā2

)
x1σ0

+
(
a0ā2 + a2ā0 + ia1ā3 − ia3ā1

)
x2σ0

+
(
a0ā3 + a3ā0 − ia1ā2 + ia2ā1

)
x3σ0

+
(
a0ā1 + a1ā0 + ia2ā3 − ia3ā2

)
x0σ1

+
(
a0ā0 + a1ā1 − a2ā2 − a3ā3

)
x1σ1

+
(
a1ā2 + a2ā1 + ia0ā3 − ia3ā0

)
x2σ1

+
(
a1ā3 + a3ā1 − ia0ā2 + ia2ā0

)
x3σ1(3.3)

+
(
a0ā2 + a2ā0 − ia1ā3 + ia3ā1

)
x0σ2

+
(
a1ā2 + a2ā1 − ia0ā3 + ia3ā0

)
x1σ2

+
(
a0ā0 − a1ā1 + a2ā2 − a3ā3

)
x2σ2

+
(
a2ā3 + a3ā2 + ia0ā1 − ia1ā0

)
x3σ2

+
(
a0ā3 + a3ā0 + ia1ā2 − ia2ā1

)
x0σ3

+
(
a1ā3 + a3ā1 + ia0ā2 − ia2ā0

)
x1σ3

+
(
a2ā3 + a3ā2 − ia0ā1 + ia1ā0

)
x2σ3

+
(
a0ā0 − a1ā1 − a2ā2 + a3ā3

)
x3σ3 .

By applying (2.5) directly to (3.2) we see that (3.3) gets the following compact
form.

Proposition 3.1. Consider A ∈ SL(2,C) and Φ : SL(2,C)→ SO(3, 1). Then the
image of T = Φ(A) has the entries

(3.4) T ij =
1

2
tr(σiAσjA

†) =
1

2
tr(AσjA

†σi)

Remark 3.1. As we saw, the map Φ(A) is a Lorentz transformation – but is it a
special Lorentz transformation as well? From (3.3) we see directly that Φ(A)00 > 0
– but what about the determinant of Φ(A)? Without calculating the determinant
we can see the result as follows: The image of the map Φ : SL(2,C) → O(3, 1) is
connected because Φ is continuous and SL(2,C) is (simply) connected. Further-
more, the identity is in the image of Φ such that all of the image of Φ is contained
in SO+(3, 1).

4. SL(2,C) in terms of SO(3, 1)

By explicitly inverting the system (3.3)we show in this section that for any special
Lorentz transformation T ∈ SO+(3, 1) their exists a matrix A ∈ SL(2,C) with
T = Φ(A). This matrix isn’t unique, because with A its negative −A ∈ SL(2,C)
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obeys Φ(−A) = Φ(A), too. This 2:1 behavior will be reflected in the existence of a
square root during the process of solving the equation T = Φ(A), i.e. (3.3), for ai.

To solve (3.3) we write Φ(A) = T and consider (3.2) and (3.4), i.e. Ψ(T~x) =
AΨ(~x)A† and T ij = 1

2 tr(σiAσjA
†). We define matrices τ(i)(T ) ∈ gl(2,C) by

(4.1) τ(i)(T ) :=

3∑
j,k=0

T jkσ
′
iσjσiσk .

For example, i = 0 yields

(4.2) τ(0)(T ) =

3∑
i=0

T iiσ0 +

3∑
i=1

(T i0 + T 0
i)σi + i

3∑
i,j,k=1

T ijεijkσk .

Moreover, due to (3.2), we have

(4.3)

τ(i)(T ) =

3∑
k=0

σ′i
( 3∑
j=0

T jkσj
)
σiσk =

3∑
k=0

σ′iΨ(T (~ek))σiσk

=

3∑
k=0

σ′iAσkA
†σiσk .

For arbitrary B =
3∑
i=0

biσi we get

(4.4)

3∑
j=0

σjBσj = b0
3∑
j=0

(σj)
2σ0 +

3∑
i=1

bi
3∑
j=0

σjσiσj = 4b0σ0

by using (2.6). Doing the same calculations for Bσ1, Bσ2, and Bσ3 we get for
i = 0, 1, 2, 3

(4.5)

3∑
j=0

σjBσiσj = 4biσ0

such that

(4.6) τ(i)(T ) = σ′iA

3∑
j=0

σjA
†σiσj = 4āiσ′iA .

We use (2.12) and consider the following trace

(4.7)

1

2
tr
(
τ(i)(T )′τ(i)(T )

)
=

1

2
tr
(
(4āiσ′iA)′(4āiσiA)

)
= 8(āi)2tr(A′σiσiA)

= 16(āi)2 .

This special combination of τ(i)(T ) and τ(i)(T )′ yields the following statement.

Proposition 4.1. Consider T ∈ SO+(3, 1). Then there exist maps

Φ̂±(i) : SO+(3, 1)→ SL(2,C)



100 FRANK KLINKER

for i = 0, 1, 2, 3 such that the images Φ̂±(i)(T ) are the solutions of Φ(A) = T if

tr
(
τ(i)(T )′τ(i)(T )

)
6= 0. The maps are given by

(4.8) Φ̂±(i)(T ) = ± 1√
1
2 tr
(
τ(i)(T )′τ(i)(T )

) σ′iτ(i)(T )

We will formulate the result (4.8) in terms of T alone, i.e. without help of the
map τ(i). By using the signs (2.15) a more explicit way to express (4.1) is

εiτ(i)(T ) =

3∑
j,k=0

T jkσiσjσiσk

=
( 3∑
j=0

εijT
j
j

)
σ0 +

3∑
j=1

(
εijT

j
0 + T 0

j

)
σj + i

3∑
j,k,`=1

εijεjk`T
j
kσ` .

We write T(i) for the matrix with entries (T(i))
j
k = εijT

j
k, in particular T(0) = T .

For the expansion εiτ(i) = t0σ0 + t1σ1 + t2σ2 + t3σ3 we have

1

2
tr
(
τ(i)(T )′τ(i)(T )

)
= (t0)2 − (t1)2 − (t2)2 − (t3)2

=
(
tr(T(i))

)2 − 3∑
j=1

(
εijT

j
0 + T 0

j + i

3∑
k,`=1

εikεk`jT
k
`

)2
=
(
tr(T(i))

)2 − 3∑
j=1

(
T j0T

j
0 + T 0

jT
0
j + 2εijT

j
0T

0
j

)
−

3∑
j,k,`,m,n=1

εikεimεk`jεmnjT
k
`T

m
n

+ 2i

3∑
j,k,`=1

εk`j(εijT
j
0 + T 0

j)εikT
k
`

=
(
tr(T(i))

)2 − 3∑
i=1

(
T j0T

j
0 + T 0

jT
0
j + 2εijT

j
0T

0
j

)
+

3∑
j,k=1

T jkT
j
k −

3∑
j,k=1

εikεijT
j
kT

k
j

− 2i

3∑
j,k,`=1

εjk`(εijT
j
0 + T 0

j)εikT
k
` ,

where we used
∑3
`=1 εjk`εmn` = 2δjkmn in the last step. From the fact that T is a

Lorentz transformation we have

(4.9)

3∑
i,k=0

T ijgikT
k
` = gj` .
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After considering j = ` and multiplying by the sign εj we take the sum over j and
obtain

(4.10)

3∑
k,j=1

T kjT
k
j −

3∑
j=1

T j0T
j
0 −

3∑
j=1

T 0
jT

0
j = 4− (T 0

0)2 .

We use this and insert the positive signs εi0 to simplify

1

2
tr(τ ′(i)τ(i)) = 4 +

(
tr(T(i))

)2 − 2i

3∑
j,k,`=1

εjk`(εijT
j
0 + T 0

j)εikT
k
`

− εi0εi0T 0
0T

0
0 − 2

3∑
i=1

εi0εijT
j
0T

0
j −

3∑
j,k=1

εikεijT
j
kT

k
j

= 4 + (tr
(
T(i))

)2 − 3∑
j,k=0

εikεijT
j
kT

k
j

− 2i

3∑
j,k,`=1

εjk`(εijT
j
0 + T 0

j)εikT
k
`

= 4 +
(
tr(T(i))

)2 − tr(T 2
(i))− 2i

3∑
j,k,`=1

εjk`(εijT
j
0 + T 0

j)εikT
k
` .

This yields the following Corollary of Proposition 4.1 that contains the announced
explicit description of SL(2,C) in terms of SO(3, 1).

Corollary 4.1. In terms of the entries of T formula (4.8) reads

(4.80) Φ̂±(0)(T ) = ±

tr(T )σ0 +

3∑
j=1

T j0 + T 0
j + i

3∑
k,`=1

T k`εjk`

σj√
4 + (tr(T ))2 − tr(T 2)− 2i

3∑
j,k,`=1

εjk`(T j0 + T 0
j)T k`

for i = 0, as well as
(4.8i)

Φ̂±(i)(T ) =± 1√
4 +

(
tr(T(i))

)2 − tr(T 2
(i))− 2i

3∑
j,k,`=1

εjk`(εijT j0 + T 0
j)εikT k`

×

×

(T i0 + T 0
i + i

3∑
j,k=1

εijεijkT
j
k

)
σ0 + tr(T(i))σi

+

3∑
j=1

(
T ij − εijT ji + i

3∑
k=1

εikj(εikT
k
0 + T 0

k)
)
σj


for i = 1, 2, 3.

Remark 4.1. All four combinations in (4.1) are needed to describe full SL(2,C)

because formula (4.8) only works for τ(i)(T ) 6= 0. For example, the choice Φ̂0

only works for matrices T such that a0 6= 0. In particular, the matrices σ1, σ2,



102 FRANK KLINKER

and σ3 that correspond to T = diag(1, 1,−1,−1), T = diag(1,−1, 1,−1), and
T = diag(1,−1,−1, 1), respectively, cannot be described.

Example 4.1. We consider T ∈ SO+(3, 1) such that

T(0) = T =

coshα sinhα
sinhα coshα

12

 , T(1) =

coshα sinhα
sinhα coshα

−12

 ,

T(2) =

coshα − sinhα
sinhα − coshα

σ3

 , T(3) =

coshα − sinhα
sinhα − coshα

−σ3

 .

Then
tr(T ) = 2(cosh(α) + 1) , tr(T(1)) = 2(cosh(α)− 1) ,

tr(T(2)) = tr(T(3)) = 0 .

Furthermore we have

T 2 = T 2
(1) =

 2 cosh2 α− 1 2 coshα sinhα

2 coshα sinhα 2 cosh2−1
12

 , T 2
(2) = T 2

(3) = 14 ,

and

tr(τ(0)(T )′τ(0)(T )) = 8(cosh 2α+ 1) ,

tr(τ(1)(T )′τ(1)(T )) = 8(cosh 2α− 1) ,

tr(τ(2)(T )′τ(2)(T )) = tr(τ(3)(T )′τ(3)(T )) = 0 .

Therefore, we can consider Φ̂±(0)(T ) and Φ̂±(1)(T ) and get

Φ̂±(0)(T ) =
1√
2

(√
coshα+ 1σ0 +

sinhα√
coshα+ 1

σ1

)
,

Φ̂±(1)(T ) =
1√
2

(
sinhα√

coshα− 1
σ0 +

√
coshα− 1σ1

)
.

Both yield the same Matrix A , namely

A =

(
cosh α

2 sinh α
2

sinh α
2 cosh α

2

)
,

which follows from 2 sinh2 α
2 = coshα− 1 and 2 cosh2 α

2 = coshα+ 1.

5. Some concluding Remarks

• The results that we presented here in an elementary way have been dis-
cussed in parts in the literature. The particular choice i = 0 in (4.8) has
been discussed in [6, p. 69] where the author states a variant of formula
(4.80), in [5, p. 53] where the author emphasizes that the formula only
holds in special cases, and in [7, p. 130] with reference to [5] but without
comment on the incompleteness.
• On purpose we neglected the use of the theory of Clifford algebras and

their representations although there is a strong relation. In fact, the Clifford
algebra C`(4) is the framework in which the results above can be formulated
and we will shortly recall how Pauli matrices enter into the discussion.
Starting in dimension two we see that the set {σ1, σ2} provides generators
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of the Clifford algebra C`(2) because σiσj + σjσi = 2δij for i = 1, 2. By
adding the volume element σ3 = −iσ1σ2 we get generators {σ1, σ2, σ3} of
C`(3) because the same relations as before hold but for 1 ≤ i ≤ 3. As we can
check the set {Σ0 = σ1⊗1,Σ1 = σ2⊗σ1,Σ2 = σ2⊗σ2,Σ3 = σ2⊗σ3, } obeys
ΣiΣj + ΣjΣi = 2δij for 0 ≤ i ≤ 3 such that it yields generators of C`(4).
Such doubling process can always be used when going from C`(2k − 2)
to C`(2k). This gives a iterative way to construct C`(2k) from C`(2),
see for example [1]. The doubling process, of course, isn’t unique because
with any set of generators {Σi} and any unitary transformation Ω the set
{ΩΣiΩ

†} yields generators, too. Although we restricted to the complex
Clifford algebra above, generators of the real Clifford algebra according to
a metric with signature can easily be obtained by adding some extra i in
front of some of the generators. For more details we again refer to the
literature, for example [2, 3, 8].

• Our choice for C`(4) above is the so called Weyl representation for which
the subspace span

{
Σij = 1

2 (ΣiΣj−ΣjΣi)
}
⊂ C`(4) is block-diagonal. This

subspace is isomorphic to the algebra of skew-symmetric (4 × 4)-matrices
and reflects the algebra isomorphism so(4) ' so(2) ⊕ so(2). In terms of
Dynkin diagrams this is D2 = A1 ⊕ A1 and here sl(2,C) enters as the
standard realization of A1. A more geometric way to interpret the iso-
morphism is the notion of selfduality of two-forms in dimension four. In
this particular dimension the Hodge operator provides an involution on the
six-dimensional space of two-forms and, therefore, it splits into two three-
dimensional eigenspaces, the so called self-dual and anti-self-dual two-forms.
• The introduction of the sign εi into (4.9) to get (4.10) is somewhat artificial.

In a more geometric way this is due to the natural isomorphism R4 ' (R4)∗

defined by the Minkowski metric g. In terms of index-notation this is raising
and lowering of indices. This isomorphism is needed when we want to
calculate invariant traces of bilinear forms. In fact, (4.9) is a bilinear form
rather than an endomorphism.
• There is a last nice relation we like to mention. The isomorphism Ψ from

(2.7) translates (2.11) to R4. After writing R4 = R ×R3 this reflects the
geometry of R3, i.e. the Euclidean product 〈·, ·〉 and the cross product ×.
For this we write ~x = (x0,x) with x ∈ R3. Then

Ψ−1
(
Ψ(~x)Ψ(~y)

)
=

(
x0y0 + 〈x,y〉

x0y + y0x + x× y

)
,

and therefore

1
2Ψ−1

(
Ψ(~x)Ψ(~y)−Ψ(~y)Ψ(~x)

)
=

(
0

x× y

)
.
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