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Abstract. In this paper, we construct timelike surfaces of revolution with
constant mean curvature H = c and minimal timelike surfaces of revolution

in de Sitter 3-space S31(c2) of constant sectional curvature c2. It is shown that

timelike surfaces of revolution with constant mean curvature H = c in S31(c2)
tend toward a timelike catenoid, the minimal timelike surface of revolution in

Minkowski 3-space R2+1 as c → 0. Minimal timelike surfaces of revolution in
S31(c2) also tend toward the timelike catenoid in R2+1 as c → 0.

Introduction

The symmetry group of the Minkowski 3-space R2+1 is the Lorentz group O(2, 1),
i.e. the set of all Lorentz isometries of R2+1. In particular, the parity preserving
Lorentz isometries form a subgroup SO(2, 1) of O(2, 1) which is called the special
Lorentz group. SO(2, 1) contains rotations about the time axis and Lorentz boosts
which may be considered as rotations about spacial axis in R2+1. In physics, the
trajectory of a massive particle is spacetime is called a worldline. In geometry, a
worldline x(λ) = (xµ(λ)) is called a timelike curve. The velocity vector dxµ

dλ satisfies

⟨x(λ), x(λ)⟩ = ηµν
dxµ

dλ
dxν

dλ < 0, where ⟨ , ⟩ is the inner product induced by the flat

Lorentzian metric of R2+1 and ηµν is the metric tensor of signature (−++). The
arc-length of x(λ) is defined to be

△x :=

∫ √
−ηµν

dxµ

dλ

dxν

dλ
dλ.

In physics, x(λ) is called proper time and is interpreted as the actual time elapsed
on a physical clock carried along the curve. A surface that is obtained by rotating
a timelike curve about an axis in R2+1 is a timelike surface of revolution. In
[5], the authors studied on how to construct a timelike surface of revolution with
constant mean curvature in R2+1 by solving the differential equation of its profile
curve. Other than flat Minkowski 3-space, there is another interesting Lorentzian
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3-manifold called de Sitter 3-space S31(c2). de Sitter 3-space is a timelike manifold
of constant sectional curvature c2. de Sitter 3-space has SO(2) symmetry, so we
may still consider rotations there. In this paper, the authors consider the flat chart
model of S31(c2) which is R3(t, x, y) with the metric gc = −(dt)2+e2ct{(dx)2+(dy)2}.
From the metric we clearly see that rotations in the xy-plane are the only kind of
rotations that may be considered in S31(c2). The authors study how to construct
timelike surfaces of constant mean curvature in S31(c2). From a string theory point
of view, timelike surfaces of revolution with constant mean curvature in S31(c2) may
be regarded as string worldsheets that are swept by closed strings in S31(c2).

Due to an analogue of Lawson correspondence ([3]) discussed in [4], there is a
one-to-one correspondence between timelike surfaces of constant mean curvature
Hs in S31(c2) and timelike surfaces of constant mean curvature Hm = ±

√
H2

s + c2

in R2+1. So, under the Lawson type correspondence, there are no timelike surfaces
of constant mean curvature in S31(c2) that are corresponded to minimal timelike
surfaces in R2+1. Interestingly, however, we show in this paper that the timelike
catenoid, the minimal timelike surface of revolution in R2+1 is the limit of timelike
surfaces of revolution with constant mean curvature H = c in S31(c2) as c → 0.

The authors also study how to construct minimal timelike surfaces of revolution
in S31(c2) using calculus of variations. Note that here the harmonic map equa-
tion is no longer the wave equation, so minimal timelike surfaces in S31(c2) is not
characterized by their mean curvature. We construct minimal timelike surfaces of
revolution in S31(c2) using the calculus of variations. The minimal timelike surfaces
of revolution in S31(c2) also tend toward the spacelike catenoid in R2+1 as c → 0.

The second named author Jacob was a promising high school (Oak Grove High
School) senior when he joined the first named author for the research project
reported in this paper. The research has been done during Summer 2013-Fall
2013. Jacob is currently an undergraduate student majoring mathematics at Mas-
sachusetts Institute of Technology. The Department of Mathematics at the Uni-
versity of Southern Mississippi is committed to support nearby high schools by
providing talented high school students opportunities for a research experience in
mathematical sciences. This research was done as part of such an outreach effort.

1. The Flat Chart Model of de Sitter 3-Space S31(c2)

Let R3+1 denote Minkowski spacetime with rectangular coordinates x0, x1, x2,
x3 and the Lorentzian metric

(1.1) ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2.

De Sitter 3-space is the hyperquadric

(1.2) S3(c2) := {(x0, x1, x2, x3) ∈ R3+1 : −(x0)2 + (x1)2 + (x2)2 + (x3)2 =
1

c2
}

which is a 3-dimensional hyperboloid of one sheet in spacetime. De Sitter 3-space
is a timelike 3-manifold of constant sectional curvature c2. Consider the open chart

U = {(x0, x1, x2, x3) ∈ S3(c2) : x0 + x1 > 0}
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and define (see [2])

(1.3)

t =
1

c
log c(x0 + x1),

x =
x2

c(x0 + x1)
,

y =
x3

c(x0 + x1)
.

Then

ds2 = −(dt)2 + e2ct{(dx)2 + (dy)2}.
R3 with coordinates t, x, y and the metric

(1.4) gc := −(dt)2 + e2ct{(dx)2 + (dy)2}
is called the flat chart model of de Sitter 3-space. We will still denote it by S3(c2).
As c → 0, S3(c2) flattens out to Minkowski 3-space R2+1.

2. Parametric Timelike Surfaces in S3(c2)

Let M be a domain1 and φ : M −→ S3(c2) an immersion. The metric (1.4)
induces an inner product ⟨ , ⟩ on each tangent space TpS3(c2).

Definition 2.1. An immersion φ : M(u, v) −→ S3(c2) is said to be timelike if ∂φ
∂u

is timelike and ∂φ
∂v is spacelike, i.e.⟨

∂φ

∂u
,
∂φ

∂u

⟩
< 0,

⟨
∂φ

∂v
,
∂φ

∂v

⟩
> 0.

Using the induced inner product on each TpS3(c2), we can speak of conformal
surfaces in S3(c2).

Definition 2.2. φ : M −→ S3(c2) is said to be Lorentz conformal if

(2.1)
⟨φu, φv⟩ = 0,

−|φu|2 = |φv|2 = eω,

where (u, v) is a local coordinate system in M and ω : M −→ R is a real-valued
function in M . Lorentz conformal timelike surfaces are called Lorentz surfaces.

The induced metric on the Lorentz surface is given by

(2.2) ds2φ = ⟨dφ, dφ⟩ = eω{−(du)2 + (dv)2}.

If N is a unit normal vector field of a timelike immersion φ : M −→ S31(c2), then
⟨N,N⟩ = 1, ⟨N,φu⟩ = ⟨N,φv⟩ = 0.

In order to calculate a unit normal vector field, we need an analogue of the cross
product. We will still call that analogue the cross product. Although S31(c2) is
not a vector space, the cross product on it can be defined locally on each tangent

space TpS31(c2), which is a vector space. Let v = v1
(

∂
∂t

)
p
+ v2

(
∂
∂x

)
p
+ v3

(
∂
∂y

)
p
,

w = w1

(
∂
∂t

)
p
+ w2

(
∂
∂x

)
p
+ w3

(
∂
∂y

)
p
∈ TpS3(c2), where

{(
∂
∂t

)
p
,
(

∂
∂x

)
p
,
(

∂
∂y

)
p

}
1A 2-dimensional connected open set.
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denote the canonical basis for TpS3(c2). Then the cross product v ×w is defined
to be

(2.3)

v ×w = (−v2w3 + v3w2)

(
∂

∂t

)
p

+ e−2ct(v3w1 − v1w3)

(
∂

∂x

)
p

+ e−2ct(v1w2 − v2w1)

(
∂

∂y

)
p

where p = (t, x, y) ∈ S3(c2).
We can also write (2.3) simply as a determinant

(2.4) v ×w =

∣∣∣∣∣∣
− ∂

∂t e−2ct ∂
∂x e−2ct ∂

∂y

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
One may also define a triple scalar product ⟨u,v ×w⟩ as a determinant

(2.5) ⟨u,v ×w⟩ =

∣∣∣∣∣∣
−u1 e−2ctu2 e−2ctu3

v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .
However, the cross product and the inner product are not interchangeable i.e.

⟨u,v ×w⟩ ̸= ⟨u× v,w⟩
unlike the Euclidean case.

Let

(2.6) E := ⟨φu, φu⟩, F := ⟨φu, φv⟩, G := ⟨φv, φv⟩.

Proposition 2.1. Let φ : M −→ S3(c2) be an immersion. Then on each tangent
plane Tpφ(M),

(2.7) ||φu × φv||2 = e−4ct(u,v)(F 2 − EG)

where p = (t(u, v), x(u, v), y(u, v)) ∈ S3(c2).

Proof. Straightforward by a direct calculation. �

Remark 2.1. If c → 0, (2.7) becomes the familiar formula in Lorentzian case [5]

||φu × φv||2 = F 2 − EG.

3. The Mean curvature of a Parametric Surface in S3(c2)

In the well-known Euclidean case, the mean curvature of a parametric surface
φ(u, v) may be calculated by Gauss’s beautiful formula [7]

(3.1) H =
Gℓ+ En− 2Fm

2(EG− F 2)

where
ℓ = ⟨φuu, N⟩, m = ⟨φuv, N⟩, n = ⟨φvv, N⟩

and N is the unit normal vector field of φ(u, v). The formula (3.1) is still valid for
parametric surfaces in any 3-dimensional space-form including timelike surfaces in
S31(c2). The derivation of (3.1) in [7] requires a use of Lagrange’s identity which
is no longer valid in tangent spaces of S3(c2). However, the formula (3.1) may
also be proved using the shape operator of a parametric surface in a 3-dimensional
space-form obtained from its unit normal vector field. The proof is elementary and



120 SUNGWOOK LEE AND JACOB MARTIN

may be found in [6] for instance. In particular, we obtain the following proposition
from (3.1).

Proposition 3.1. Let φ : M −→ S3(c2) be a conformal surface satisfying (2.1).
Then the mean curvature H of φ is computed to be

(3.2) H =
1

2
e−ω⟨�φ,N⟩,

where � = − ∂2

∂u2 + ∂2

∂v2 is d’Alembert’s operator.

4. Lorentz Surfaces of Revolution with Constant Mean Curvature
in S3(c2)

There is an interesting one-to-one correspondence, the Lawson-Guichard corre-
spondence, between constant mean curvature surfaces in different semi-Riemannian
space forms [4]. The correspondence is more than just a bijection. Correspond-
ing constant mean curvature surfaces satisfy the same Gauss-Codazzi equations, so
they share many geometric properties in common, even though they live in differ-
ent spaces. For this reason they are often called cousins. In particular, there is
a one-to-one correspondence between timelike surfaces of constant mean curvature
H in S3(c2) and timelike surfaces of constant mean curvature2

(4.1) Hm = ±
√
H2 + c2

in Minkowski 3-space R2+1. As seen clearly in (4.1), there are no timelike surfaces of
constant mean curvature in S31(c2) that correspond to minimal3 timelike surfaces in
R2+1. Physically, minimal timelike surfaces in R2+1 are bosonic string worldsheets.
While there are no cousins in S31(c2) of minimal timelike surfaces in R2+1, the limit
of timelike surfaces of revolution with constant mean curvature H = c in S31(c2) as
c → 0 is the timelike catenoid4, the minimal timelike surface of revolution in R2+1.

In this section, we are interested in constructing a Lorentz surface of revolution
with constant mean curvature H = c in S3(c2) which corresponds to a Lorentz

surface of constant mean curvature ±
√
2c in R2+1 via the Lawson-Guichard corre-

spondence.
From the metric (1.4), one can see that S31(c2) has SO(2) symmetry, i.e. SO(2)

is a subgroup of the isometry group of S31(c2), and it is the maximally rotational
symmetry. More specifically, the rotations about the t-axis (i.e. rotations on the
xy-plane) are the only type of Euclidean rotations that can be considered in S31(c2).

Consider a profile curve α(u) = (g(u), h(u), 0) in the tx-plane. Denote by φ(u, v)
the rotation of α(u) about t-axis through an angle v. Then

(4.2) φ(u, v) = (g(u), h(u) cos v, h(u) sin v).

If ġ(u) = dg(u)
du is never 0, (4.2) has a parametrization of the form

φ(w, v) = (w, f(w) cos v, f(w) sin v).

2The choice of ± signs depends on the orientation of the surface.
3Area minimizing surfaces or equivalently conformal surfaces with zero mean curvature.
4Timelike catenoid is physically worldsheet of a closed string in R2+1.
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Thus, without loss of generality we may assume that g(u) = u in (4.2). The
quantities E,F,G are calculated to be

E = e2cu{−e−2cu + ḣ(u)2},
F = 0,

G = e2cuh(u)2.

If we require φ(u, v) to be conformal, then

(4.3) e−2cu − ḣ(u)2 = h(u)2.

The quantities ℓ,m, n are calculated to be

ℓ = − ḧ(u)h(u)√
h(u)2(e−2cu − ḣ(u)2)

,

m = 0,

n =
h(u)2√

h(u)2(e−2cu − ḣ(u)2)
.

So the mean curvature H is calculated by

H =
Gℓ+ En− 2Fm

2(EG− F 2)

=
1

2

−h(u)ḧ(u)− e−2cu + ḣ(u)2

e2cu(−e−2cu + ḣ(u)2)
√
h(u)2(e−2cu − ḣ(u)2)

.

With the conformality condition (4.3), H becomes

(4.4) H =
ḧ(u) + h(u)

2e2cuh(u)3
.

Differentiating (4.3) with respect to u, we obtain

(4.5) ḣ(u)(ḧ(u) + h(u)) = ce2cu.

It follows from (4.4) and (4.5) that if H = 0 then c = 0 and hence we have:

Proposition 4.1. There are no Lorentz surfaces of revolution with H = 0 in
S31(c2).

Remark 4.1. Although S31(c2) does not admit Lorentz surfaces of revolution with
H = 0, it does not mean that there are no timelike surfaces with H = 0 in S31(c2).
For instance, the timelike plane (u, v, 0) in S31(c2) has H = 0. The timelike plane is
not conformal in S31(c2).

Remark 4.2. The timelike catenoid φ(u, v) = (u, cosu cos v, cosu sin v) is a minimal
Lorentz surface in R2+1 (see [5]). One may consider the timelike catenoid in S31(c2)
but then it is not conformal since E = −1+ e2cu sin2 u, F = 0, and G = e2cu cos2 u.
Its mean curvature is neither 0 nor constant. It is given by

H = −1

2

−1 + e2cu

| cosu|(1− e2cu sin2 u)
3
2

.

φ(u, v) satisfies the equation −φuu + φvv = 0. Note that this does not lead to
H = 0 since φ(u, v) is not conformal.
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Let H = c. Then (4.4) can be written as

(4.6) ḧ(u) + h(u)− 2ce2cuh(u)3 = 0.

Hence, constructing a surface of revolution with H = c comes down to solving the
second order nonlinear differential equation (4.6). Unfortunately, we cannot solve
(4.6) analytically, so we solve it numerically with the aid of MAPLE. (See Appendix
B of [6] for details of the computational procedure.) In the next section, we show
the graphics of the Lorentz surface of revolution with constant mean curvature
H = c in S31(c2) that we obtained using the numerical solution of the differential
equation (4.6). The conformality condition (4.3) can be used to determine initial
conditions. For all the numerical solutions of (4.6) in this paper, we used the same

initial conditions h(0) = 0 and ḣ(0) =
√
1− h(0)2 = 1.

If c → 0, then (4.6) becomes

(4.7) ḧ(u) + h(u) = 0

which is an equation of underdamped simple harmonic oscillator. The equation
(4.7) has the general solution

h(u) = c1 cosu+ c2 sinu.

This h(u) gives rise to a minimal timelike surface of revolution in R2+1 which is
called a timelike catenoid. For c1 = 1, c2 = 0, φ(u, v) is given by

(4.8) φ(u, v) = (u, cosu cos v, cosu sin v).

This is a minimal surface of revolution in R2+1 which is called a timelike catenoid.
Figure 1 shows a timelike catenoid with h(0) = 0 and ḣ(0) = 1.

(a) (b)

Figure 1. (a) Profile Curve h(u), −8 ≤ u ≤ 1.2, (b) Timelike
Catenoid in R2+1

5. The Illustration of the Limit of Lorentz Surfaces of Revolution
with H = c in S31(c2) as c → 0

In section 4, it is shown that the limit of Lorentz surfaces of revolution with
constant mean curvature H = c in S31(c2) is the timelike catenoid, the minimal
timelike surface of revolution in R2+1. In this section, such limiting behavior of
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Lorentz surfaces of revolution with H = c in S31(c2) is illustrated with graphics
in Figure 2 (H = 1), Figure 3 (H = 1

2 ), Figure 4 (H = 1
4 ), Figure 5 (H = 1

8 ),

Figure 6 (H = 1
64 ), and Figure 7 (H = 1

256 ). These still images clearly show the

limiting behavior of Lorentz surfaces of revolution with CMC H = c in S31(c2) as
c → 0. The authors have made an animation of the limiting behavior available
at http://www.math.usm.edu/lee/tldscmcanim.gif. The graphic of each profile
curve h(u) (in blue) is drawn with the graphic of the profile curve of timelike
catenoid in R2+1 (in red) for visual comparison. The graphic of each Lorentz
surface of revolution (in blue) is also drawn with the graphic of timelike catenoid
in R2+1 (in transparent greyscale) for visual comparison.

(a) (b)

Figure 2. CMC H = 1: (a) Profile Curve h(u), −8 ≤ u ≤ 1.2,
(b) Lorentz Surface of Revolution in S31(1)

(a) (b)

Figure 3. CMC H = 1
2 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2,

(b) Lorentz Surface of Revolution in S31
(
1
4

)
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(a) (b)

Figure 4. CMC H = 1
4 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2,

(b) Lorentz Surface of Revolution in S31
(

1
16

)

(a) (b)

Figure 5. CMC H = 1
8 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2,

(b) Lorentz Surface of Revolution in S31
(

1
64

)
6. Minimal Lorentz Surface of Revolution in S3(c2)

In this section, we construct a minimal Lorentz surface of revolution in S31(c2)
using the calculus of variation. Let us consider a surface of revolution which is
obtained by rotating a timelike curve x(t) in the tx-plane about the t-axis. The
curve is required to pass through the points (t1, x1) and (t2, x2) as shown in Figure
8. Since x(t) is a timelike curve, the squared infinitesimal arc-length shown in
Figure 8

ds2 = −(dt)2 + e2ct(dx)2

is negative. So, the infinitesimal arc-length ds should be the proper time
√
−ds2

which we will simply denote by ds. Thus, the area element dA for a Lorentz surface



TIMELIKE SURFACES OF REVOLUTION WITH CONSTANT MEAN CURVATURE... 125

(a) (b)

Figure 6. CMC H = 1
64 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2,

(b) Lorentz Surface of Revolution in S31
(

1
4096

)

(a) (b)

Figure 7. CMC H = 1
256 : (a) Profile Curve h(u), −8 ≤ u ≤ 1.2,

(b) Lorentz Surface of Revolution in S31
(

1
65535

)

of revolution is given by

(6.1)

dA = 2πx(t)ds

= 2πx(t)
√
(dt)2 − e2ct(dx)2

= 2πx(t)
√
1− e2ctẋ(t)2dt,

where ẋ(t) = dx
dt . The area functional is then

(6.2) J =

∫ t2

t1

2πx(t)
√
1− e2ctẋ(t)2dt.
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t

x

ds

(t

(t

1 , x1)

2
, x2)

x(t)

Figure 8. Surface of Revolution in S31(c2)

Let5 f(x, ẋ, t) = x
√
1− e2ctẋ2. Finding a critical point of the area functional is

equivalent to solving the Euler-Lagrange equation (see [1] for example)

(6.3)
∂f

∂x
− d

dt

∂f

∂ẋ
= 0.

The Euler-Lagrange equation (6.3) is equivalent to the second order nonlinear dif-
ferential equation

(6.4) −1 + e2ctẋ2 + cxe4ctẋ3 − 2xce2ctẋ− xe2ctẍ = 0.

We require the timelike surface of revolution to be conformal. Applying the con-
formality condition (4.3) in terms of x(t), the equation (6.4) simplifies to

(6.5) ẍ+ c(1 + e2ctx2)ẋ+ x = 0.

We solve this nonlinear differential equation numerically as it cannot be solved an-
alytically. Figure 9 shows the profile curve x(t) and the minimal Lorentz surface of
revolution in S31(1). For the numerical solution, we used the same initial conditions
x(0) = 0 and ẋ(0) = 1 as before.

If c → 0, then (6.4) becomes the equation of underdamped simple harmonic oscil-
lator (4.7). Thus, as c → 0 minimal Lorentz surfaces of revolution in S31(c2) also tend
toward the timelike catenoid, the minimal timelike surface of revolution in R2+1.
An animation of this limiting behavior of minimal Lorentz surfaces of revolution in
S31(c2) is available at http://www.math.usm.edu/lee/tldsminimalanim.gif.

5The constant 2π can be ignored since it makes no contribution to the solution of our variational
problem.
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(a) (b)

Figure 9. (a) Profile Curve x(t), −8 ≤ u ≤ 1.2, (b) Minimal
Lorentz Surface of Revolution in S31(1)
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