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ABSTRACT

In this study, to determine horizontal location of subtle boundaries in the gravity anomaly maps, an image processing
method known as Cellular Neural Networks (CNN) is used. The method is a stochastic image processing method
based on close neighborhood relationship of the cells and optimization of A, B and I matrices known as cloning temp-
lates. Template coefficients of continuous-time cellular neural networks (CTCNN) and discrete-time cellular neural
networks (DTCNN) in determining bodies and edges are calculated by particle swarm optimization (PSO) algorithm.

In the first step, the CNN template coefficients are calculated. In the second step, DTCNN and CTCNN outputs are
visually evaluated and the results are compared with each other. The method is tested on Bouguer anomaly map of
Salt Lake and its surroundings in Turkey. Results obtained from the Blakely and Simpson algorithm are compared
with the outputs of the proposed method and the consistence between them is examined. The cases demonstrate that
CNN models can be used in visual evaluation of gravity anomalies.
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0z

Bu caligmada, gravite anomali haritalarinda gézle goriilmeyen sinir ve uzanimlart tanimlamak i¢in Hiicresel Sinir
Aglar1 (HSA) olarak bilinen bir goriintii isleme teknigi kullanilmistir. Yntem, sablon katsayilari olarak tanimlanan
A, B ve I matrislerinin en iyileme ve komsu hiicre iliskilerine dayandirtlmis stokastik bir gériintii isleme teknigidir.
Kiitle ve kenarlarin saptanmast i¢in siirekli (SCNN) ve ayrik (ACNN) hiicresel sinir aglarina ait sablon katsayilart
Parcacik Siiriisii Optimizasyon (PSO) algoritmasi kullanilarak hesaplanmistir.

ilk etapta, Hiicresel Sinir Ag1 (HSA) sablon katsayilari hesaplanmustir. ikinci etapta, ACNN ve SCNN ¢ikislari
kalitatif olarak degerlendirilmis ve sonuglar birbirleri ile kiyaslanmistir. Yontem Tiirkiyede Tuz Golii ve gevresine
ait Bouguer anomali haritasi {izerinde test edilmistir. Onerilen yontem cikislar1 Blakely ve Simpson algoritmasimdan
elde edilen sonuglar ile kiyaslanmis ve aralarindaki uyumluluk incelenmistir. Olgular, hiicresel sinir ag modellerinin
jeofizik anomalilerin kaynak ¢izgiselliklerinin degerlendirilmesinde kullanilabilecegini gostermektedir.

Anahtar Kelimeler: Hiicresel Sinir Ag, Parcacik Siiriisti Optimizasyonu, Sablonlar, Gravite Anomalileri, Cizgi-
sellikler.
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INTRODUCTION

Image enhancement methods are widely used in
the interpretation of geophysical data. Due to their
local dependency, CNNs have found a significant
place in image processing applications. Dynam-
ic behavior of CNN networks can be controlled
through 19 parameters defined as template coef-
ficients. The literature includes many algorithms
for the calculation of these parameters. The trial
and error method is based on the experiences of the
developer. Another method is to use the template
coefficients previously calculated with different
algorithms for different purposes in the literature
(Aydogan, 2012). Yet another method preferred for
obtaining stable template coefficients is to calculate
the parameter values with the use of optimization
algorithms such as genetic algorithm (GA), particle
swarm optimization (PSO) and recurrent perception
learning algorithm (RPLA). CNN is widely used
in image processing because of being created by
space invariant connection geometry (Aydogan et
al. 2005; Aydogan, 2007; Guzelis, 1992; Dogaru,
2008; Basturk and Gunay, 2009).

Since potential field data are an indicator
of buried fault, contacts and edges of the
basin and uplift, and other tectonic linea-
ments, source boundaries can be mapped
to enhance the lineaments in accordance
with gravity and magnetic anomalies. In
the context of image processing techniques,
different algorithms based on gradients
have been developed by many authors for
automatic extraction of lineaments. Radon
transform was used for automatic interpre-
tation of lineaments from potential field

anomalies by Zhang et al. (2006). A model was
developed utilizing intensity, texture and shape
descriptors by Buckingham et al., (2003 a, b) for
content base magnetic image retrieval (CBMIR).

Blakely and Simpson (1986) developed clas-
sical method which is known as boundary
analysis and they used gradient to highlight
lineaments in gravity and magnetic data.
Thurston and Smith (1997), Verduzco et
al. (2004) and Cooper and Cowan (2006,
2007) used filters based on local phase,
inclination, slope gradient and theta map
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as edge detectors in interpretation of po-
tential field.

In this study, a CNN model based on PSO al-
gorithm is adopted for template coefficients that
can be used in determining the bodies and edges
in geophysical images. The CNN model is tested
on the Bouguer anomaly map of Salt Lake and its
surroundings.

CNN IN IMAGE PROCESSING

CNN is a relatively new circuit structure for im-
age processing, pattern recognition and other impor-
tant applications in the context of neural network.
A cell is the basic unit of a CNN. Space invariant
of the process applied to each image pixel is the
convenient feature of CNN for image processing.
Local connectivity is the most important character-
istic of CNN. Each pixel in the image corresponds
to a cell in a CNN. A CNN is a network structure
processed by nonlinear dynamic systems called
cell by using three independent factors called input,
bias and initial state. A standard CNN structure is
depicted in Fig. 1a. Cells are placed in the cartesian
coordinate system. In structure, a cell on the row i
and column j are expressed as C(i,j) (i=1, 2, ... M,
j=1,2, ... N).

The sphere of influence with radius r of a C(i,5)
CNN cell is determined with neighborhood term
described below (Chua and Yang 1988a,b; Chua
and Roska 2002):

I-j|< r},

(1

As shown in Figure 1la, the structure of CNN
defines as a 2D array of MxN identical cell arranged
in rectangular grid (i=1/, 2 ..., Mandj=1, 2 ..., N).
In image processing, the mathematical expression
of the state equation of every C(i,j) cell depicted in
Fig. 1b is defined as independent from circuit theory
notation as follows (Chua and Yang 1988a,b). It is

2

I<k<M, max(‘k —1
I<I<N

Sr(i,j)={C(kJ)

° dxl ..
Xij = Y :_'xl]+ ZA(I,];kﬂl)ykl-l_
dt C(k DS, (i.))
ZB(i, Jsk,Duy, +1;
CkDES, (7)) 2
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In this place, subscripts (i,/) define cell location
and (k,/) define neighborhoods, x, is called the state
of C(i,j) cell, y,, is the output of cells, u,, is the input
of cells. Iij is the value of bias. A(i,j;k,1) is feedback
operator or feedback cloning template. B(i,j,k,[) is
input control operator.
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Figure 1. CNN structure. a) 2D CNN array on a square
grid, r=1 (3x3 square neighborhood), Local connection
structure of cell, r, shows the neighboring cells around
the central cell. T he rows and columns of the cells in the
model are presented with i and j, respectively. b) Kernel
scheme of CNN Structure in the image processing, c)
Piecewise linear function response (PWL).

Sekil 1. CNN yapisi. a) Bir kare grid tizerinde 2B CNN
dizisi, =1 (3x3 kare komsuluk), Hiicrenin yerel baglan-
t1 yapisi, 1, merkez hiicre gevresinde komsu hiicreleri
gostermektedir. Modeldeki satir ve siitunlar, sirasi ile, i
ve j ile gosterilmistir. b) Gortintii islemede CNN yapisi-
nin ¢ekirdek semasi, ¢) Parca par¢a dogrusal fonksiyon
cevabi (PWL).

The output function in Eq. 2 is given by Chua
and Yang (1988a, b);

ij :f(x,j)zos{x,] +1’ — Xy —1‘} (3)

Most of the CNN applications only use space
invariant standard CNNs with 3x3 neighborhood,
and sphere influence =1. In this way, Eq. 1 can be
denoted as follows:

x,] =-X; + 2 zAkiy,+k m T

=—r |=r

Z ZBklul+k,j+l 1

=—r Il=—r (4)

In view of space invariance, the contribution
came from feedback operator A(i,j, k,/) can be writ-
ten as

D AG, ik Dy, =

C(k,DeS, (i.))

2 Zak 1 Vivk,j+i

=—r Il=—r

a, _,a,a,, Vi Vi Yiajn

= d_g_1 A Ay ® Yijat Vi Vijn
a .y dyy 4y, Yivja Vi Viajn

:A®Yi; (5)

(Chua and Roska 2002). The symbol & refers
to the sum of the point multiplication. ¥, matrix is
the output image. Similar process can be wrltten as
follows for B(i,j k,1):

r r
= z 2 bk,lui+k,j+1

k=—r I=-r

B@, j;k,Du,

C(k,)eS,. (i)

N b—l -1 b—l 0 b -1,1 Ui jma Yinyj Uiy j

= bobooboy Oty U U,

bl,—l bl,O b1,1 Ui o Uiy Uit
=B®U,, (6)

The contribution came from threshold expres-
sions can be written as I= L

In practice, the pattern of template coefficients
that determines the network’s dynamic structure
operates with C(4, B and I) and when this pattern
is approximated to an equilibrium state, the result
image can be obtained through states or outputs. The
image processing algorithm using CNN is carried
out the following steps given below:

Step 1: The image, the edges of which will be
determined, is normalized and entered into the net-
work.

Step 2: Template coefficients C(4, B and 1) are
placed in Eq. 4, the CNN state equation transformed
into a difference equation by using forward Euler
approximation, and the process is continued.
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Step 3: The output image is monitored at differ-
ent ¢ times from the start until it is stable.

PSO ALGORITHM

Nowadays, many methods inspired by biologi-
cal systems are used either as training algorithms
or in the solution of problem systems. In social
systems, which are actually a different kind of
biological system, an individual’s collective be-
haviors towards other individuals are examined.
This kind of behavior is referred to as swarm in-
telligence. PSO is a population based stochastic
optimization algorithm inspired by the way swarms
behave (Kennedy and Eberhart, 1995). In the PSO
technique, which is designed for the solution of
nonlinear problems, possible solutions are des-
ignated as models (particles). At first, the system
is initiated with a population of random solutions
by randomly positioning each particle in the PSO
algorithm into the problem space, and for the best
solution particles are updated as iterations and the
fittest value within the parameter space is sought.
Potential solutions that are denoted as particles in
the algorithm move within the problem space by
following the best solutions.

The particles within the population have fit-
ness values evaluated by the fitness function to be
optimized, and velocities that direct birds in flight.
Within the parameter space, particles fly by follow-
ing the available optimum particles. In the iteration
steps, each particle is updated according to two
best values. First of these is the best fitness value
of each particle in the iteration step and is referred
to as the best local value (p,). The second one is the
best fitness value of all particles in the population,
and is referred to as the single global best value
(g,) of the population. In PSO technique, position
vector for n-particles consisting of m parameters
(parameter space, parameter size) is

X, = [xﬂ,xiz,xﬂ,...,xm] (@=1L23,..,n) (7)

l
and the velocity vector that indicates the change of
each particle at each position is

V= v sl ((=212300). @)

Although particle size varies with the problem
to be optimized, number of particles can usually
be selected from 10 to 50. In complex problems
higher values can be used. After initially appointing
random values within the parameter range for m
parameters, p, and g, values are obtained accord-
ing to the values obtained from the fitness function.
Velocity and position of the particles within the
population are updated with the equations respec-
tively presented below:

Vi =y 4+ clrand(.)[pbf - Xik]+

€)
czmnd(.)[gbf.C - Xl,k]
and
X=X+ (10)

where i shows the number of particles in the popu-
lation and & shows the number of iterations. Gen-
eration of random values in the range of (0-1), for
each iteration is shown with the rand (.) symbol.
¢, and ¢, in the equation are constants that can be
selected from the range of (0-4) and denoted as the
learning factors that direct particles towards local
best and the global best positions, respectively.
While ¢, directs particle movement according to
their own individual experiences, the constant ¢,
directs movement according to the experiences of
the particles within the population.

A flow diagram of the method is presented in
Fig. 2. As it can also be seen from the Egs. 4 and
5 above, the PSO technique can be applied in the
optimization of nonlinear problems without re-
quiring any derivative information. Since there
is a few numbers of parameters to be adjusted for
implementing the algorithm, it is quite easy. PSO
technique can be successfully applied in many ar-
eas of engineering such as function optimization,
fuzzy system control and training of artificial neural
networks. Some of the recent studies that utilize
PSO algorithms in geophysics were conducted by
Rahmat, 2003; Shaw and Srivastava, 2007; Sanyi
et al., 2009; Martinez et al., 2010; Santos, 2010;
Srivastava and Agarwal, 2010; Peksen et al., 2011.
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Initialize population
Random position vector (x)
Random velocity vector {v)

For each agent
CNN Update position (x)
SIMULATION Update velocity (v)
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Figure. 2. Flowchart of the PSO algorithm.
Sekil 2. PSO algoritmasinin akig semast.

PSO BASED TEMPLATE LEARNING

With the purpose of determining subsurface
body distributions and boundaries that cause geo-
physical anomalies, the template coefficients of the
developed CNN model are calculated by using the
PSO approach. The setup designed in the template
coefficient calculation process is presented in Fig. 3.
Ten images sets artificially created on binary system
at 93 x 136 pixel resolution are used in the training
process. These training sets are used as input to the
CNN model for determining the objects and their
boundaries. Target images are loaded to the model
as output. The optimization vector for a single CNN
cell consists of 19 real numbers as follows:

n=(a,a,,a,,a,,as,a,,a,,ds,d,,

by, by, b3,b,,bs,bg, by, b, by, 1). (11)

In case that the feedback template coefficients
are symmetrically selected according to the posi-
tional invariance assumption, stable template coef-
ficients can be obtained.

a=a,=a,=a,=a,=a,=da;=d,=0,a,=a
b=b,=b=b=b=b,=b;=b,=b,b; =b,

With these assumptions, the optimization vector
in DTCNN case is

=(a,b,,b,1). (12)

nDTCNN

In the case of CTCNN, with the addition of the
time interval DT the following equation is obtained:

Nerenw = (a by,b,1 DT) (13)

In the training process, population size is taken
equal with the number of iterations. The initial val-
ues of the position and velocity vectors developed
according to Eqgs. 12 and 13 are selected randomly.
Training factors of PSO, ¢, and ¢, parameter values
that will change in iteration stages are takenasc,
=25,¢, . =5 ¢, =25andc, =5 In general
terms, training of CNN template coefficients can
be defined as an error minimization problem. In
the cases of DTCNN and CTCNN, the objective or
cost function to be minimized can be respectively
denoted as follows:

min, ,, E=(4,B,1),
minA,BJ’DT E = (A,B,I,DT) (14)

In the present study, for the DTCNN model the
objective function is denoted as follows

DTCNN \/ZZ( (AaBal)_Yi,j)z/n,
(15)

i=l j=1
while for the CTCNN model it is denoted as

follows:
v, fin.

Ecreny \/ZZ( (4,B,1,DT)—
(16)

i=l j=1

Here, while Y, signifies the actual output,
Y, (A B,)orY, (A B,I,DT) denotes the CNN model
output (target) In Egs. 15 and 16, 7 signifies the
total pixel number of each image of the training sets.

Original Image

Desired body image

Desired edge image

NN
output

CE N }—| >
Fso_J

Figure. 3. Template learning using PSO.
Sekil 3. PSO kullanilarak sablon egitimi.
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PSO parameter values calculated in the train-
ing process with population groups of 10, 20, 30,
..., 100 are shown in Tables 1 and 2 for DTCNN
and in Tables 3 and 4 for CTCNN. The template
coefficients obtained by using these values and
the setup in Fig. 3 are presented in Figs. 4 and 5
for DTCNN and Figs. 6 and 7 for CTCNN. While
the Local cost values presented in the tables sig-
nify the minimum cost values obtained for each
population, the Global cost and Global Avg. cost
include maximum and average cost values, respec-
tively. DT symbolizes the time interval calculated
for the CTCNN model. It is observed that the
template coefficients obtained for the population
where minimum Local cost values and maximum
Global cost values are included produce successful
results. It is also observed that the Global Avg.
cost values remained within the range of average
values. In application stages it is observed that
after the results are obtained in consequence of
a few iterations, there is no change in the output
image no matter how much iteration is made and
a stable status is established.

Table 1. PSO parameters for the template calculation
in the DTCNN_BODY process. Local cost, Global cost
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective
function on different populations. Itera: is the number
of iterations where the objective function reaches the
minimum value. Popsize. is the population number used
in the PSO process.

Cizelge 1. DTCNN _BODY isleminde sablon hesapla-
mast i¢in PSO parametreleri. Local cost, Global cost
and Global Avg.cost, sirasi ile, amag fonksiyonunun
farkli popiilasyonlardaki minimum, maksimum ve or-
talama degerlerini simgelemektedir. Itera: amag fonksi-
yonunun minimum degere ulastigi andaki yineleme sa-
yisidir. Popsize: PSO siirecinde kullanilan popiilasyon
sayisidir.

| Popsire | Itera [ Global cost ] Global Avg.cost | Local cost |
10 5 101,5066 53,6691 8,6843
20 S 163,4435 33,5719 2,3770
30 [ 163,4435 42,5485 3,7488
40 8 163,4435 75,0754 3,5609
50 10 163,4435 67,9850 2,A4354E-16
60 5 163,4435 65,5706 2,5411
70 5 163,4435 73,4538 6,4333E-15
80 4 163,4435 81,8513 1,4558
a0 5 163,4435 78,2097 2,2006E-15
100 3 163,4435 81,4034 2,1650
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Table 2. PSO parameters for the template calculation
in the DTCNN_EDGE process. Local cost, Global cost
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective
function on different populations. Itera: is the number
of iterations where the objective function reaches the
minimum value. Popsize: is the population number used
in the PSO process.

Cizelge 2. DTCNN_EDGE igleminde sablon hesapla-
mas1 i¢in PSO parametreleri. Local cost, Global cost
and Global Avg.cost, sirasi ile, amag fonksiyonunun
farkli popiilasyonlardaki minimum, maksimum ve or-
talama degerlerini simgelemektedir. /tera: amag fonksi-
yonunun minimum degere ulagtig1 andaki yineleme sa-
yisidir. Popsize: PSO siirecinde kullanilan popiilasyon
sayisidir.

| Popsire | Itera | Global cost I Global Avg.cost | Local cost I
10 3 87,9858 38,9845 2,6620
20 1a 217,6338 58,7524 0,1508
30 30 217,6336 60,8328 0,1217
40 15 217,6336 93,8327 0,0957
S0 10 217,6336 1141818 0,1706
&0 56 217,6336 112,9012 0,077e
70 13 217,6336 109,1345 0,0270
a0 15 217,6336 119,0305 0,1054
S0 83 217,6336 112,8112 0,0828
100 a4 217,6336 114,6833 0,0760

Table 3. PSO parameters for the template calculation
in the CTCNN_BODY process. Local cost, Global cost
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective
function on different populations. Itera: is the number
of iterations where the objective function reaches the
minimum value. Popsize: is the population number used
in the PSO process. DT: is the time interval calculated
in the case of CTCNN.

Cizelge 3. CTCNN_BODY isleminde sablon hesapla-
mast i¢in PSO parametreleri. Local cost, Global cost and
Global Avg.cost, sirasi ile, amag fonksiyonunun farkli
popiilasyonlardaki minimum, maksimum ve ortalama
degerlerini simgelemektedir. /fera: amag¢ fonksiyonu-
nun minimum degere ulastig1 andaki yineleme sayisidir.
Popsize: PSO siirecinde kullanilan popiilasyon sayisidir.
DT: CTCNN durumunda hesaplanan zaman aralig.

Popsize | Itera DT Global cost | Global Avg.cost Local cost
10 9 14,3483 160,2269 93,5252 5,3155
20 3 44,4387 163,4435 9,070 5,1305
20 B 32,8866 163,4435 55,4032 5,1278
40 4 0.8682 163,4435 67,5293 2,8438
50 5 61406 163,4436 71,3255 3,5108
0 5 7,5475 163,4436 76,2339 4,8401
70 5 2,0923 163,4435 75,3767 48,9432
80 5 6,7698 163,4435 £6,3000 2,5526
S0 a4 3,831% 163,4435 76,4662 5,2933
100 B 2,9130 172,6474 77,3387 3,6635
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Table 4. PSO parameters for the template calculation
in the CTCNN_EDGE process. Local cost, Global cost
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective
function on different populations. Itera: is the number
of iterations where the objective function reaches the
minimum value. Popsize: is the population number used
in the PSO process. DT: is the time interval calculated
in the case of CTCNN.

Cizelge 4. CTCNN_EDGE isleminde sablon hesapla-
masi i¢in PSO parametreleri. Local cost, Global cost and
Global Avg.cost, sirast ile, ama¢ fonksiyonunun farkli
popiilasyonlardaki minimum, maksimum ve ortalama
degerlerini simgelemektedir. Itera: amag¢ fonksiyonu-
nun minimum degere ulastig1 andaki yineleme sayisidir.
Popsize: PSO siirecinde kullanilan popiilasyon sayisidir.
DT: CTCNN durumunda hesaplanan zaman aralig1.

Popsize | Itera DT Global cost_|Global st Local cost
10 g 3,3134 202,5319 85,3688 0,1062
20 12 5, 7456 217,6336 54,3831 0,056
a0 3 6,956%5 217 6336 84,0818 0,0053
40 17 32,4786 217,6336 92,8216 0,0753
50 El 3,8028 217,6336 91,6328 0,0382
&0 54 0,8504 217,6336 110,4090 0,0079
70 10 32,5874 221,06850 115,3889 0,022%
8O L] 44,5622 230, 7001 113,8314 0,0083
80 17 5,9%03 217,6336 117,7345 0,0162
100 14 2,5123 218,3352 115,8650 0,0205

Figure. 4. Graphical User Interface of the DTCNN
BODY operation for the template calculations.

Sekil 4. Sablon hesaplamalari igin DTCNN_BODY is-
leminin grafiksel kullanici arayiizeyi.

Figure. 5. Graphical User Interface of the DTCNN_
EDGE operation for the template calculations.

Sekil 5. Sablon hesaplamalari igin DTCNN_EDGE is-
leminin grafiksel kullanici araytizeyi.

Figure. 6. Graphical User Interface of the CTCNN _
BODY operation for the template calculations.

Sekil 6. Sablon hesaplamalar1 icin CTCNN_BODY is-
leminin grafiksel kullanici arayiizeyi.

Figure. 7. Graphical User Interface of the CTCNN _
EDGE operation for the template calculations.

Sekil 7. Sablon hesaplamalari icin CTCNN_EDGE is-
leminin grafiksel kullanict arayiizeyi.

APPLICATION TO FIELD EXAMPLE

In this section, to test the reliability of the pro-
posed CNN model approach, the PSOCNNPOT-
TOOL program developed in Matlab environment
is used for determining the subsurface body dis-
tribution and boundaries that cause the Bouguer
anomalies of the Salt Lake and its surroundings,
and some practical findings are presented and briefly
discussed.

Most of the surface area of the Salt Lake ba-
sin is covered by largely undeformed Neogene to
Quaternary strata that bury many of the important
pre-Neogene structures (Cemen et al. 1999). How-
ever, several northwest striking faults are present as
prominent topographic and structural features (Fig.
8). In addition, there is a channel shaped basin to
the west of the Salt Lake, connecting the Salt Lake
and Haymana basins (Aydemir and Ates 2008). A
northwest-striking fault zone is the most prominent
structural feature along the eastern margin of the
Salt Lake basin. Arpat and Saroglu (1975) have
named this the Tuzgolu fault zone. This fault is
about 200 km long and can be divided into a north-
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ern and southern part at the town of Aksaray. In the
western part of the basin, two parallel fault zones
extend from Yeniceoba and Cihanbeyli northwest-
ward. The northernmost of the two faults is called
the Yeniceoba fault zone and the southern one is
named the Cihanbeyli fault zone.

Figure. 8. Tectonic and location map of the study area
(simplified from Cemen et al., 1999).

Sekil 8. Calisma alaninin tektonik ve yer bulduru hari-
tast (Cemen ve dig., 1999°dan basitlestirilmistir).

In the context of image processing, potential
field data are quite different from binary data, and
consequently, extraction of discontinuities turns out
to be complex for only single CNN. In this study, to
obtained necessary CNN model outputs, we propose
the extraction process which is compose of two
successive steps (Fig. 9). Firstly, the proposed al-
gorithm starts with CNN1. By assuming a CNN cell
responsible for an image pixel, to unify the coding of
input and output image, the best way is to normalize
the pixel values. After normalization process, the
outcomes of the normalization must be rounded to
the closest integer, to compensate the calculation
inaccuracies. Normalized gravity data is named
as GRN. The initial state X and input U are equal
to the normalized input image (GRN) and gravity
data (GR), respectively. The output of the CNN1
is a marker of sources to remain. This procedure
is used to detect causative subsurface sources. The
cloning templates which are used in the nonlinear
CNN1 are capable of only a detection of sources.
For DTCNN and CTCNN models, the temple coef-
ficients used in CNN1 are depicted in Fig. 4 and Fig.
6, respectively. After the CNN1 operation reaches
a stable state, the resulting image belongs to the
subsurface body distribution. Secondly, while the
initial state matrix for CNN2 is taken as the same
one in CNNI, the resulting output from the first
step is assigned to the input of CNN2. To detect

the edges, for DTCNN and CTCNN models, the
temple coefficients used in CNN2 are illustrated
in Fig. 5 and Fig. 7, respectively.

Figure. 9. Representation of CNN designed for the de-
tection of source and edges from gravity images.

Sekil 9. Gravite goriintiilerinden kaynak ve sinirlarin
saptanmasi i¢in tasarlanan CNN gdsterimi.

In this study, Bouguer gravity anomaly map
compiled by Ugurtas (1975) is used. The Bouguer
anomaly map covering the Salt Lake basin in the
study area is digitized with a sampling interval
of 1 km. For detecting the source boundaries and
orientations, the Bouguer anomaly map shown in
Fig. 10 is normalized to be loaded to the program
in DTCNN and CTCNN processes, and converted
into grayscale format. The body distribution that
causes anomaly is obtained through 8 iterations in
the DTCNN_ BODY process presented in Fig. 11,
and stable results are obtained in 3 iterations for
DTCNN_EDGE (Fig. 12), which is used for deter-
mining the body boundaries that cause anomalies.
A further increase in the iteration value does not
affect the stability in the obtained result and no
further variation is observed in the output of the
model. This choice satisfies the needed accuracy.
Such a performance can make CNN approach
very suitable for a wide range of image process-
ing tasks. By repeating the same procedure for
CTCNN_BODY with 9 iterations and time inter-
vals of 0.5, similar results are obtained as presented
in Fig. 13. Stable results are also obtained in this
case by decreasing time interval against the in-
creasing iteration value. As it is clear from these
CNN outputs, the tracks of many NW-SE-oriented
bodies are seen as basic structural features. It is
observed that stable results can be achieved with
5 iterations and 0.5 time interval value in the case
of CTCNN_EDGE (Fig. 14).
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Figure.10. Bouguer gravity anomaly map of Salt Lake
and its vicinity (compiled by Ugurtas (1975)), contour
interval is 1 mGal.

Sekil 10. Tuz Golu ve ¢evresine ait Bouguer anomali
haritas1 (Ugurtas (1975) tarafindan derlenmis), kontur
araligi 1 mGal.

The Salt Lake fault zone is the most predomi-
nant basic structural feature to the east of the Salt
Lake basin. The causative sources and lineaments
in the regions with steady changes that are easily
spotted in the proposed CNN outputs. Apart from
these, we also detect many lineaments produced by
small bodies and whose effects are invisible to the
eye in the anomaly map. Furthermore, to compare
the proposed approach with classical derivative
techniques, Blakely and Simpson method (1986) is
applied on the same gravity anomaly map and the
result is given in Fig. 15. As seen in the figure, the
boundaries of the sources with smaller areas in the
model could not be exactly detected. In comparison
to the results of the proposed CNN approach, the
results of CNN could be argued to better represent.
A combined look at Figs. 11-14, 15 shows that the
obtained results are consistent with the results of
previous studies conducted in the same region.

Figure. 11. DTCNN _BODY output obtained from Bougu-
er gravity anomaly map of Salt Lake and its surroundings.
Sekil 11. Tuz Goli ve gevresine ait Bouguer anomali
haritasindan elde edilen DTCNN_BODY c¢iktisi.

Figure. 12. DTCNN _EDGE output obtained from
Bouguer gravity anomaly map of Salt Lake and its sur-
roundings.

Sekil 12. Tuz Golii ve gevresine ait Bouguer anomali
haritasindan elde edilen DTCNN_EDGE c¢iktisi.

Figure. 13. CTCNN_BODY output obtained from Bou-
guer gravity anomaly map of Salt Lake and its sur-
roundings.

Sekil 13. Tuz Golii ve gevresine ait Bouguer anomali
haritasindan elde edilen CTCNN_BODY ¢iktisi.

Figure. 14. CTCNN _EDGE output obtained from Bou-
guer gravity anomaly map of Salt Lake and its sur-
roundings.

Sekil 14. Tuz Golii ve gevresine ait Bouguer anomali
haritasindan elde edilen CTCNN_EDGE c¢iktisi.



62 Davut AYDOGAN

@ Output of Blakely and Simpson method ||,
—_— Onlpmolgﬂalgom%m L

_;J’ e R

P

Figure. 15. Boundary analysis map obtained from
Blakely and Simpson method(1986). Lineaments are
shown on the Bouguer anomaly map.

Sekil 15. Blakely ve Simpson(1986) yonteminden elde
edilen sinir analizi haritasi. Cizgisellikler Bouguer ano-
mali haritasinda gosterilmistir.

CONCLUSIONS

In this study, a CNN model, the template coef-
ficients of which are trained by the global optimi-
zation method PSO, is developed for the purpose
of determining subsurface bodies that cause geo-
physical anomalies. The PSO approach is used in
calculating the template coefficients to be used
in the extraction of the bodies and boundaries for
different types of CNN models. In order to obtain
stable template coefficients, different populations
are included in the scope, and the template coef-
ficients calculated on the basis of the values in the
population, where both local minimum values and
global maximum values of the objective function
are achieved, are used. The feedback and control
template play an important role in the CNN ap-
plication. In terms of the estimation power and the
computation time, CNN can be considered to be an
effective and powerful tool in solving geophysical
problems.

For a comparison of the performance of the
proposed CNN, one of the classical methods named
as Blakely and Simpson algorithm is reiterated
for studies with the same purposes. While source
boundaries masked by large bodies cannot be clearly
detected in studies using boundary analysis, the
proposed CNN approach allows obtaining close-to-
reality visible results more effectively. The perfor-
mance of CNN is quite good. Such a performance
can make CNN method very suitable for a wide
range of image processing tasks.

Consequently, it could be argued that the pro-
posed approach can be employed as a simple and
powerful tool for efficient body and edge detection
in normalized digitized gravity images. As in other
geophysical methods, the method is a practical and
convenient approach that can be used to investigate
and detect structural features in large areas.

PROGRAM DESCRIPTIONS

The program PSOCNNPOTTOOL is devel-
oped with Matlab 7.12.0(R2011a) on Windows
7 environment. It consists of three graphical user
interfaces (GUI) and operation processes are carried
out with the PSO CNNPOTTOOL, which includes
CNN_TRAINING_ MODULE and CNN_AP-
PLICATION MODULE interfaces. The template
coefficients calculated for DTCNN and CTCNN
are obtained with the use of the CNN_TRAIN-
ING_MODULE, and the target outputs with the
theoretically created image and field image are
obtained from the CNN_APPLICATION_MOD-
ULE. The program includes 6 sub folders. The
first of these, namely cloning template, is the part
where the template coefficients calculated with the
program and used in CNN models are kept. The
second sub folder named as field images is required
for the CNN_APPLICATION MODULE and is
where the field data are kept. First images, as the
third sub folder, are required for the images used
in the PSOCNNPOTTOOL interface. The fourth
sub folder input image is the part that includes
the training images used in the training process.
Training data sets are automatically loaded to the
program. The fifth sub folder is outputs, where the
outputs obtained with the use of the CNN_AP-
PLICATION _MODULE interfaces are kept. The
last one is the test images sub folder that holds
application and test purposed data.

After the program is unzipped, graphical user in-
terface (GUI) program is run with >>PSOCNNPOT-
TOOL from Matlab command window. According
to the purpose, either training or application part
is operated. Concerning the CNN model template
coefficients, the user has to run the training part
of the program for different number of image sets
to be prepared at binary scale for both CNN types
(DTCNN and CTCNN) and purposes (body and
edge). The application part can be used after this.
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OZET

Bu ¢alismada, farkli disiplinlerde yaygin bir
kullanim alanina sahip olan Hiicresel Sinir Aglar1
(HSA) algoritmasi gravite anomalilerine neden
olan kiitle sinirlarinin saptanmast amaci ile kulla-
milmistir. Onerilen algoritma, goriintii isleme ko-
nularinda kullanilan stokastik bir yontem olarak
bilinmektedir. Yontemin temeli, sablon katsayilari
olarak bilinen {i¢ farkli matrisin egitilmesi ilkesine
dayanmaktadir. Matrisler, degisik veri setleri tize-
rinde farkli optimizasyon yontemleri kullanilarak
egitilebilmektedir. Bu ¢alismada, gravite degerle-
rine neden olan kiitle sinirlarinin saptanmasi amacti
ile kullanilan sablon katsayilart Pargacik Siiriisii
Optimizasyon (PSO) algoritmas1 kullanilarak egi-
tilmistir. Bu amaca yonelik olarak Matlab prog-
ramlama dili kullanilarak bir arayiizey programi
hazirlanmistir. Egitilen matris katsayilari kuramsal
veri setleri lizerinde test edilerek uygulanabilirlik-
leri arastirilmistir. Test islemleri sirasinda sablon
katsayilarimin énemli r6l oynadiklari gézlemlenmis
olup sonugcta tatmin edici sonuglar elde edilmis ve
yontemin arazi verileri iizerindeki uygulanabilir-
ligini test etmek amaci ile Tuz Golii ve ¢evresine
ait Bouguer anomali haritast kullanilmistir. Kenar
saptama islemlerinde siklikla kullanilan ve klasik
yontemlerden olan Blakely ve Simpson algorit-
masi1 kullanilarak elde edilen sonuglar 6nerilen
yontem sonuglari ile kiyaslanmig olup tatmin edici
sonuclar elde edilmistir. Sonug olarak, jeofizikte
kiitle sinirlarinin gorsel(kalitatif) saptanmast ve
yorumlanmasinda, uygun sablon katsayilarinin
kullanilmas1 kosulu ile tatminkar sonuglarin elde
edilebilecegi kanisina varilmistir.
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