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ABSTRACT
In this study, to determine horizontal location of subtle boundaries in the gravity anomaly maps, an image processing 
method known as Cellular Neural Networks (CNN) is used. The method is a stochastic image processing method 
based on close neighborhood relationship of the cells and optimization of A, B and I matrices known as cloning temp-
lates. Template coefficients of continuous-time cellular neural networks (CTCNN) and discrete-time cellular neural 
networks (DTCNN) in determining bodies and edges are calculated by particle swarm optimization (PSO) algorithm.
In the first step, the CNN template coefficients are calculated. In the second step, DTCNN and CTCNN outputs are 
visually evaluated and the results are compared with each other. The method is tested on Bouguer anomaly map of 
Salt Lake and its surroundings in Turkey. Results obtained from the Blakely and Simpson algorithm are compared 
with the outputs of the proposed method and the consistence between them is examined. The cases demonstrate that 
CNN models can be used in visual evaluation of gravity anomalies.
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ÖZ
Bu çalışmada, gravite anomali haritalarında gözle görülmeyen sınır ve uzanımları tanımlamak için Hücresel Sinir 
Ağları (HSA) olarak bilinen bir görüntü işleme tekniği kullanılmıştır.  Yöntem, şablon katsayıları olarak tanımlanan 
A, B ve I matrislerinin en iyileme ve komşu hücre ilişkilerine dayandırılmış stokastik bir görüntü işleme tekniğidir. 
Kütle ve kenarların saptanması için sürekli (SCNN) ve ayrık (ACNN) hücresel sinir ağlarına ait şablon katsayıları 
Parçacık Sürüsü Optimizasyon (PSO) algoritması kullanılarak hesaplanmıştır.
İlk etapta, Hücresel Sinir Ağı (HSA) şablon katsayıları hesaplanmıştır. İkinci etapta, ACNN ve SCNN çıkışları 
kalitatif olarak değerlendirilmiş ve sonuçlar birbirleri ile kıyaslanmıştır. Yöntem Türkiyede Tuz Gölü ve çevresine 
ait Bouguer anomali haritası üzerinde test edilmiştir. Önerilen yöntem çıkışları Blakely ve Simpson algoritmasından 
elde edilen sonuçlar ile kıyaslanmış ve aralarındaki uyumluluk incelenmiştir. Olgular, hücresel sinir ağ modellerinin 
jeofizik anomalilerin kaynak çizgiselliklerinin değerlendirilmesinde kullanılabileceğini göstermektedir.

Anahtar Kelimeler:  Hücresel Sinir Ağ, Parçacık Sürüsü Optimizasyonu, Şablonlar, Gravite Anomalileri, Çizgi-
sellikler.
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INTRODUCTION
Image enhancement methods are widely used in 

the interpretation of geophysical data. Due to their 
local dependency, CNNs have found a significant 
place in image processing applications. Dynam-
ic behavior of CNN networks can be controlled 
through 19 parameters defined as template coef-
ficients. The literature includes many algorithms 
for the calculation of these parameters. The trial 
and error method is based on the experiences of the 
developer. Another method is to use the template 
coefficients previously calculated with different 
algorithms for different purposes in the literature 
(Aydogan, 2012).  Yet another method preferred for 
obtaining stable template coefficients is to calculate 
the parameter values with the use of optimization 
algorithms such as genetic algorithm (GA), particle 
swarm optimization (PSO) and recurrent perception 
learning algorithm (RPLA). CNN is widely used 
in image processing because of being created by 
space invariant connection geometry (Aydogan et 
al. 2005; Aydogan, 2007; Guzelis, 1992; Dogaru, 
2008; Basturk and Gunay, 2009). 

Since potential field data are an indicator 
of buried fault, contacts and edges of the 
basin and uplift, and other tectonic linea-
ments, source boundaries can be mapped 
to enhance the lineaments in accordance 
with gravity and magnetic anomalies. In 
the context of image processing techniques, 
different algorithms based on gradients 
have been developed by many authors for 
automatic extraction of lineaments. Radon 
transform was used for automatic interpre-
tation of lineaments from potential field 
anomalies by Zhang et al. (2006). A model was 
developed utilizing intensity, texture and shape 
descriptors by Buckingham et al., (2003 a, b) for 
content base magnetic image retrieval (CBMIR). 
Blakely and Simpson (1986) developed clas-
sical method which is known as boundary 
analysis and they used gradient to highlight 
lineaments in gravity and magnetic data. 
Thurston and Smith (1997), Verduzco et 
al. (2004) and Cooper and Cowan (2006, 
2007) used filters based on local phase, 
inclination, slope gradient and theta map 

as edge detectors in interpretation of po-
tential field. 

In this study, a CNN model based on PSO al-
gorithm is adopted for template coefficients that 
can be used in determining the bodies and edges 
in geophysical images. The CNN model is tested 
on the Bouguer anomaly map of Salt Lake and its 
surroundings.

CNN IN IMAGE PROCESSING
CNN is a relatively new circuit structure for im-

age processing, pattern recognition and other impor-
tant applications in the context of neural network. 
A cell is the basic unit of a CNN. Space invariant 
of the process applied to each image pixel is the 
convenient feature of CNN for image processing. 
Local connectivity is the most important character-
istic of CNN. Each pixel in the image corresponds 
to a cell in a CNN. A CNN is a network structure 
processed by nonlinear dynamic systems called 
cell by using three independent factors called input, 
bias and initial state. A standard CNN structure is 
depicted in Fig. 1a. Cells are placed in the cartesian 
coordinate system. In structure, a cell on the row i 
and column j are expressed as C(i,j) (i=1, 2, ... M, 
j=1, 2, ... N). 

The sphere of influence with radius r of a C(i,j) 
CNN cell is determined with neighborhood term 
described below (Chua and Yang 1988a,b; Chua 
and Roska 2002):

       

                                                                                      (1)
As shown in Figure 1a, the structure of CNN 

defines as a 2D array of MxN identical cell arranged 
in rectangular grid (i=1, 2 …, M and j=1, 2  ..., N). 
In image processing, the mathematical expression 
of the state equation of every C(i,j) cell depicted in 
Fig. 1b is defined as independent from circuit theory 
notation as follows (Chua and Yang 1988a,b). It is

(2)
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In this place, subscripts (i,j) define cell location 
and (k,l) define neighborhoods, xij is called the state 
of C(i,j) cell,  ykl is the output of cells, ukl is the input 
of cells. Iij is the value of bias. A(i,j;k,l) is feedback 
operator or feedback cloning template. B(i,j;k,l) is 
input control operator. 

Figure 1. CNN structure. a) 2D CNN array on a square 
grid, r=1 (3x3 square neighborhood), Local connection 
structure of cell, r, shows the neighboring cells around 
the central cell. The rows and columns of the cells in the 
model are presented with i and j, respectively. b) Kernel 
scheme of CNN Structure in the image processing, c) 
Piecewise linear function response (PWL).
Şekil 1. CNN yapısı. a) Bir kare grid üzerinde 2B CNN 
dizisi, r=1 (3x3 kare komşuluk), Hücrenin yerel bağlan-
tı yapısı, r, merkez hücre çevresinde komşu hücreleri 
göstermektedir. Modeldeki satır ve sütunlar, sırası ile, i 
ve j ile gösterilmiştir. b) Görüntü işlemede CNN yapısı-
nın çekirdek şeması, c)   Parça parça doğrusal fonksiyon 
cevabı (PWL).

The output function in Eq. 2 is given by Chua 
and Yang (1988a, b);

� (3)

Most of the CNN applications only use space 
invariant standard CNNs with 3x3 neighborhood, 
and sphere influence r=1. In this way, Eq. 1 can be 
denoted as follows:

� (4)

In view of space invariance, the contribution 
came from feedback operator A(i,j;k,l) can be writ-
ten as 

� (5)
 

(Chua and Roska 2002). The symbol  refers 
to the sum of the point multiplication. Yij matrix is 
the output image. Similar process can be written as 
follows for B(i,j;k,l): 

The contribution came from threshold expres-
sions can be written as I= Ii,j.

In practice, the pattern of template coefficients 
that determines the network’s dynamic structure 
operates with C(A, B and I) and when this pattern 
is approximated to an equilibrium state, the result 
image can be obtained through states or outputs. The 
image processing algorithm using CNN is carried 
out the following steps given below:

Step 1: The image, the edges of which will be 
determined, is normalized and entered into the net-
work.

Step 2: Template coefficients C(A, B and I) are 
placed in Eq. 4, the CNN state equation transformed 
into a difference equation by using forward Euler 
approximation, and the process is continued.

(6)



56 Davut AYDOĞAN

Step 3: The output image is monitored at differ-
ent t times from the start until it is stable. 

PSO ALGORITHM
Nowadays, many methods inspired by biologi-

cal systems are used either as training algorithms 
or in the solution of problem systems. In social 
systems, which are actually a different kind of 
biological system, an individual’s collective be-
haviors towards other individuals are examined. 
This kind of behavior is referred to as swarm in-
telligence. PSO is a population based stochastic 
optimization algorithm inspired by the way swarms 
behave (Kennedy and Eberhart, 1995). In the PSO 
technique, which is designed for the solution of 
nonlinear problems, possible solutions are des-
ignated as models (particles). At first, the system 
is initiated with a population of random solutions 
by randomly positioning each particle in the PSO 
algorithm into the problem space, and for the best 
solution particles are updated as iterations and the 
fittest value within the parameter space is sought.  
Potential solutions that are denoted as particles in 
the algorithm move within the problem space by 
following the best solutions. 

The particles within the population have fit-
ness values evaluated by the fitness function to be 
optimized, and velocities that direct birds in flight. 
Within the parameter space, particles fly by follow-
ing the available optimum particles. In the iteration 
steps, each particle is updated according to two 
best values. First of these is the best fitness value 
of each particle in the iteration step and is referred 
to as the best local value (pb). The second one is the 
best fitness value of all particles in the population, 
and is referred to as the single global best value 
(gb) of the population. In PSO technique, position 
vector for n-particles consisting of m parameters 
(parameter space, parameter size) is

� (7)      
and the velocity vector that indicates the change of 
each particle at each position is 

� (8) 

Although particle size varies with the problem 
to be optimized, number of particles can usually 
be selected from 10 to 50. In complex problems 
higher values can be used. After initially appointing 
random values within the parameter range for m 
parameters, pb and gb values are obtained accord-
ing to the values obtained from the fitness function. 
Velocity and position of the particles within the 
population are updated with the equations respec-
tively presented below:

where i shows the number of particles in the popu-
lation and k shows the number of iterations. Gen-
eration of random values in the range of (0-1), for 
each iteration is shown with the rand (.) symbol. 
c1 and c2 in the equation are constants that can be 
selected from the range of (0-4) and denoted as the 
learning factors that direct particles towards local 
best and the global best positions, respectively. 
While c1 directs particle movement according to 
their own individual experiences, the constant c2 
directs movement according to the experiences of 
the particles within the population. 

A flow diagram of the method is presented in 
Fig. 2. As it can also be seen from the Eqs. 4 and 
5 above, the PSO technique can be applied in the 
optimization of nonlinear problems without re-
quiring any derivative information. Since there 
is a few numbers of parameters to be adjusted for 
implementing the algorithm, it is quite easy. PSO 
technique can be successfully applied in many ar-
eas of engineering such as function optimization, 
fuzzy system control and training of artificial neural 
networks. Some of the recent studies that utilize 
PSO algorithms in geophysics were conducted by 
Rahmat, 2003; Shaw and Srivastava, 2007; Sanyi 
et al., 2009; Martinez et al., 2010; Santos, 2010; 
Srivastava and Agarwal, 2010; Pekşen et al., 2011.
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Figure. 2. Flowchart of the PSO algorithm.
Şekil 2. PSO algoritmasının akış şeması.

PSO BASED TEMPLATE LEARNING
With the purpose of determining subsurface 

body distributions and boundaries that cause geo-
physical anomalies, the template coefficients of the 
developed CNN model are calculated by using the 
PSO approach.  The setup designed in the template 
coefficient calculation process is presented in Fig. 3. 
Ten images sets artificially created on binary system 
at 93 x 136 pixel resolution are used in the training 
process. These training sets are used as input to the 
CNN model for determining the objects and their 
boundaries. Target images are loaded to the model 
as output. The optimization vector for a single CNN 
cell consists of 19 real numbers as follows:

� (11)

In case that the feedback template coefficients 
are symmetrically selected according to the posi-
tional invariance assumption, stable template coef-
ficients can be obtained.

 With these assumptions, the optimization vector 
in DTCNN case is

                                                        (12)

In the case of CTCNN, with the addition of the 
time interval DT the following equation is obtained:

                                              (13)    

In the training process, population size is taken 
equal with the number of iterations. The initial val-
ues of the position and velocity vectors developed 
according to Eqs. 12 and 13 are selected randomly. 
Training factors of PSO, c1 and c2 parameter values 
that will change in iteration stages are taken as c1max 
=2.5, c1min =.5, c2max =2.5 and c2min =.5. In general 
terms, training of CNN template coefficients can 
be defined as an error minimization problem. In 
the cases of DTCNN and CTCNN, the objective or 
cost function to be minimized can be respectively 
denoted as follows:

� (14)

In the present study, for the DTCNN model the 
objective function is denoted as follows

  (15)

while for the CTCNN model it is denoted as 
follows:

(16)                                                                                                                                                 
                                                                                                                                                                                                                                                                                                            
   Here, while Yi,j signifies the actual output, 
Yi,j(A,B,I) or Yi,j(A,B,I,DT) denotes the CNN model 
output (target). In Eqs. 15 and 16,  signifies the 
total pixel number of each image of the training sets.

Figure. 3. Template learning using PSO.
Şekil 3. PSO kullanılarak şablon eğitimi.
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PSO parameter values calculated in the train-
ing process with population groups of 10, 20, 30, 
..., 100 are shown in Tables 1 and 2 for DTCNN 
and in Tables 3 and 4 for CTCNN. The template 
coefficients obtained by using these values and 
the setup in Fig. 3 are presented in Figs. 4 and 5 
for DTCNN and Figs. 6 and 7 for CTCNN. While 
the Local cost values presented in the tables sig-
nify the minimum cost values obtained for each 
population, the Global cost and Global Avg. cost 
include maximum and average cost values, respec-
tively. DT symbolizes the time interval calculated 
for the CTCNN model. It is observed that the 
template coefficients obtained for the population 
where minimum Local cost values and maximum 
Global cost values are included produce successful 
results. It is also observed that the Global Avg. 
cost values remained within the range of average 
values. In application stages it is observed that 
after the results are obtained in consequence of 
a few iterations, there is no change in the output 
image no matter how much iteration is made and 
a stable status is established.

Table 1. PSO parameters for the template calculation 
in the DTCNN_BODY process. Local cost, Global cost 
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective 
function on different populations. Itera: is the number 
of iterations where the objective function reaches the 
minimum value. Popsize: is the population number used 
in the PSO process. 
Çizelge 1. DTCNN_BODY işleminde şablon hesapla-
ması için PSO parametreleri. Local cost, Global cost 
and Global Avg.cost, sırası ile, amaç fonksiyonunun 
farklı popülasyonlardaki minimum, maksimum ve or-
talama değerlerini simgelemektedir. Itera: amaç fonksi-
yonunun minimum değere ulaştığı andaki yineleme sa-
yısıdır. Popsize: PSO sürecinde kullanılan popülasyon 
sayısıdır.

Table 2. PSO parameters for the template calculation 
in the DTCNN_EDGE process. Local cost, Global cost 
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective 
function on different populations. Itera: is the number 
of iterations where the objective function reaches the 
minimum value. Popsize: is the population number used 
in the PSO process. 
Çizelge 2. DTCNN_EDGE işleminde şablon hesapla-
ması için PSO parametreleri. Local cost, Global cost 
and Global Avg.cost, sırası ile, amaç fonksiyonunun 
farklı popülasyonlardaki minimum, maksimum ve or-
talama değerlerini simgelemektedir. Itera: amaç fonksi-
yonunun minimum değere ulaştığı andaki yineleme sa-
yısıdır. Popsize: PSO sürecinde kullanılan popülasyon 
sayısıdır. 

Table 3. PSO parameters for the template calculation 
in the CTCNN_BODY process. Local cost, Global cost 
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective 
function on different populations. Itera: is the number 
of iterations where the objective function reaches the 
minimum value. Popsize: is the population number used 
in the PSO process. DT: is the time interval calculated 
in the case of CTCNN.  
Çizelge 3. CTCNN_BODY işleminde şablon hesapla-
ması için PSO parametreleri. Local cost, Global cost and 
Global Avg.cost, sırası ile, amaç fonksiyonunun farklı 
popülasyonlardaki minimum, maksimum ve ortalama 
değerlerini simgelemektedir. Itera: amaç fonksiyonu-
nun minimum değere ulaştığı andaki yineleme sayısıdır. 
Popsize: PSO sürecinde kullanılan popülasyon sayısıdır. 
DT: CTCNN durumunda hesaplanan zaman aralığı. 



59Training of Cellular Neural Networks and Application to Geophysics

Table 4. PSO parameters for the template calculation 
in the CTCNN_EDGE process. Local cost, Global cost 
and Global Avg. cost respectively represent the mini-
mum, maximum and average values of the objective 
function on different populations. Itera: is the number 
of iterations where the objective function reaches the 
minimum value. Popsize: is the population number used 
in the PSO process. DT: is the time interval calculated 
in the case of CTCNN.
Çizelge 4. CTCNN_EDGE işleminde şablon hesapla-
ması için PSO parametreleri. Local cost, Global cost and 
Global Avg.cost, sırası ile, amaç fonksiyonunun farklı 
popülasyonlardaki minimum, maksimum ve ortalama 
değerlerini simgelemektedir. Itera: amaç fonksiyonu-
nun minimum değere ulaştığı andaki yineleme sayısıdır. 
Popsize: PSO sürecinde kullanılan popülasyon sayısıdır. 
DT: CTCNN durumunda hesaplanan zaman aralığı. 

Figure. 4. Graphical User Interface of the DTCNN_
BODY operation for the template calculations.
Şekil 4. Şablon hesaplamaları için  DTCNN_BODY iş-
leminin grafiksel kullanıcı arayüzeyi.

Figure. 5. Graphical User Interface of the DTCNN_
EDGE operation for the template calculations.
Şekil 5. Şablon hesaplamaları için  DTCNN_EDGE iş-
leminin grafiksel kullanıcı arayüzeyi.

Figure. 6. Graphical User Interface of the CTCNN_
BODY operation for the template calculations.
Şekil 6. Şablon hesaplamaları için  CTCNN_BODY iş-
leminin grafiksel kullanıcı arayüzeyi.

Figure. 7. Graphical User Interface of the CTCNN_
EDGE operation for the template calculations.
Şekil 7. Şablon hesaplamaları için  CTCNN_EDGE iş-
leminin grafiksel kullanıcı arayüzeyi.

APPLICATION TO FIELD EXAMPLE
In this section, to test the reliability of the pro-

posed CNN model approach, the PSOCNNPOT-
TOOL program developed in Matlab environment 
is used for determining the subsurface body dis-
tribution and boundaries that cause the Bouguer 
anomalies of the Salt Lake and its surroundings, 
and some practical findings are presented and briefly 
discussed.

Most of the surface area of the Salt Lake ba-
sin is covered by largely undeformed Neogene to 
Quaternary strata that bury many of the important 
pre-Neogene structures (Çemen et al. 1999). How-
ever, several northwest striking faults are present as 
prominent topographic and structural features (Fig. 
8). In addition, there is a channel shaped basin to 
the west of the Salt Lake, connecting the Salt Lake 
and Haymana basins (Aydemir and Ateş 2008). A 
northwest-striking fault zone is the most prominent 
structural feature along the eastern margin of the 
Salt Lake basin. Arpat and Şaroglu (1975) have 
named this the Tuzgolu fault zone. This fault is 
about 200 km long and can be divided into a north-
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ern and southern part at the town of Aksaray. In the 
western part of the basin, two parallel fault zones 
extend from Yeniceoba and Cihanbeyli northwest-
ward. The northernmost of the two faults is called 
the Yeniceoba fault zone and the southern one is 
named the Cihanbeyli fault zone. 

Figure. 8. Tectonic and location map of the study area 
(simplified from Çemen et al., 1999). 
Şekil 8. Çalışma alanının tektonik ve yer bulduru hari-
tası (Çemen ve diğ., 1999’dan basitleştirilmiştir).

In the context of image processing, potential 
field data are quite different from binary data, and 
consequently, extraction of discontinuities turns out 
to be complex for only single CNN. In this study, to 
obtained necessary CNN model outputs, we propose 
the extraction process which is compose of two 
successive steps (Fig. 9). Firstly, the proposed al-
gorithm starts with CNN1. By assuming a CNN cell 
responsible for an image pixel, to unify the coding of 
input and output image, the best way is to normalize 
the pixel values. After normalization process, the 
outcomes of the normalization must be rounded to 
the closest integer, to compensate the calculation 
inaccuracies. Normalized gravity data is named 
as GRN.  The initial state X and input U are equal 
to the normalized input image (GRN) and gravity 
data (GR), respectively. The output of the CNN1 
is a marker of sources to remain. This procedure 
is used to detect causative subsurface sources. The 
cloning templates which are used in the nonlinear 
CNN1 are capable of only a detection of sources. 
For DTCNN and CTCNN models, the temple coef-
ficients used in CNN1 are depicted in Fig. 4 and Fig. 
6, respectively. After the CNN1 operation reaches 
a stable state, the resulting image belongs to the 
subsurface body distribution. Secondly, while the 
initial state matrix for CNN2 is taken as the same 
one in CNN1, the resulting output from the first 
step is assigned to the input of CNN2. To detect 

the edges, for DTCNN and CTCNN models, the 
temple coefficients used in CNN2 are illustrated 
in Fig. 5 and Fig. 7, respectively.

Figure. 9. Representation of CNN designed for the de-
tection of source and edges from gravity images.
Şekil 9. Gravite görüntülerinden kaynak ve sınırların 
saptanması için tasarlanan CNN gösterimi.

 In this study, Bouguer gravity anomaly map 
compiled by Ugurtas (1975) is used. The Bouguer 
anomaly map covering the Salt Lake basin in the 
study area is digitized with a sampling interval 
of 1 km. For detecting the source boundaries and 
orientations, the Bouguer anomaly map shown in 
Fig. 10 is normalized to be loaded to the program 
in DTCNN and CTCNN processes, and converted 
into grayscale format.  The body distribution that 
causes anomaly is obtained through 8 iterations in 
the DTCNN_BODY process presented in Fig. 11, 
and stable results are obtained in 3 iterations for 
DTCNN_EDGE (Fig. 12), which is used for deter-
mining the body boundaries that cause anomalies. 
A further increase in the iteration value does not 
affect the stability in the obtained result and no 
further variation is observed in the output of the 
model. This choice satisfies the needed accuracy. 
Such a performance can make CNN approach 
very suitable for a wide range of image process-
ing tasks. By repeating the same procedure for 
CTCNN_BODY with 9 iterations and time inter-
vals of 0.5, similar results are obtained as presented 
in Fig. 13. Stable results are also obtained in this 
case by decreasing time interval against the in-
creasing iteration value. As it is clear from these 
CNN outputs, the tracks of many NW-SE-oriented 
bodies are seen as basic structural features. It is 
observed that stable results can be achieved with 
5 iterations and 0.5 time interval value in the case 
of CTCNN_EDGE (Fig. 14).
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Figure.10. Bouguer gravity anomaly map of Salt Lake 
and its vicinity (compiled by Ugurtas (1975)), contour 
interval is 1 mGal. 
Şekil 10. Tuz Gölü ve çevresine ait Bouguer anomali 
haritası (Ugurtas (1975) tarafından derlenmiş), kontur 
aralığı 1 mGal.

The Salt Lake fault zone is the most predomi-
nant basic structural feature to the east of the Salt 
Lake basin. The causative sources and lineaments 
in the regions with steady changes that are easily 
spotted in the proposed CNN outputs. Apart from 
these, we also detect many lineaments produced by 
small bodies and whose effects are invisible to the 
eye in the anomaly map. Furthermore, to compare 
the proposed approach with classical derivative 
techniques, Blakely and Simpson method (1986) is 
applied on the same gravity anomaly map and the 
result is given in Fig. 15. As seen in the figure, the 
boundaries of the sources with smaller areas in the 
model could not be exactly detected. In comparison 
to the results of the proposed CNN approach, the 
results of CNN could be argued to better represent. 
A combined look at Figs. 11-14, 15 shows that the 
obtained results are consistent with the results of 
previous studies conducted in the same region. 

Figure. 11. DTCNN_BODY output obtained from Bougu-
er gravity anomaly map of Salt Lake and its surroundings.
Şekil 11. Tuz Gölü ve çevresine ait Bouguer anomali 
haritasından elde edilen DTCNN_BODY çıktısı.

Figure. 12. DTCNN_EDGE output obtained from 
Bouguer gravity anomaly map of Salt Lake and its sur-
roundings.
Şekil 12. Tuz Gölü ve çevresine ait Bouguer anomali 
haritasından elde edilen DTCNN_EDGE çıktısı.

Figure. 13. CTCNN_BODY output obtained from Bou-
guer gravity anomaly map of Salt Lake and its sur-
roundings.
Şekil 13. Tuz Gölü ve çevresine ait Bouguer anomali 
haritasından elde edilen CTCNN_BODY çıktısı.

Figure. 14. CTCNN_EDGE output obtained from Bou-
guer gravity anomaly map of Salt Lake and its sur-
roundings.
Şekil 14. Tuz Gölü ve çevresine ait Bouguer anomali 
haritasından elde edilen CTCNN_EDGE çıktısı.
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Figure. 15. Boundary analysis map obtained from 
Blakely and Simpson method(1986). Lineaments are 
shown on the Bouguer anomaly map.
Şekil 15. Blakely ve Simpson(1986) yönteminden elde 
edilen sınır analizi haritası. Çizgisellikler Bouguer ano-
mali haritasında gösterilmiştir.

CONCLUSIONS
In this study, a CNN model, the template coef-

ficients of which are trained by the global optimi-
zation method PSO, is developed for the purpose 
of determining subsurface bodies that cause geo-
physical anomalies. The PSO approach is used in 
calculating the template coefficients to be used 
in the extraction of the bodies and boundaries for 
different types of CNN models. In order to obtain 
stable template coefficients, different populations 
are included in the scope, and the template coef-
ficients calculated on the basis of the values in the 
population, where both local minimum values and 
global maximum values of the objective function 
are achieved, are used. The feedback and control 
template play an important role in the CNN ap-
plication. In terms of the estimation power and the 
computation time, CNN can be considered to be an 
effective and powerful tool in solving geophysical 
problems. 

For a comparison of the performance of the 
proposed CNN, one of the classical methods named 
as Blakely and Simpson algorithm is reiterated 
for studies with the same purposes. While source 
boundaries masked by large bodies cannot be clearly 
detected in studies using boundary analysis, the 
proposed CNN approach allows obtaining close-to-
reality visible results more effectively. The perfor-
mance of CNN is quite good. Such a performance 
can make CNN method very suitable for a wide 
range of image processing tasks. 

Consequently, it could be argued that the pro-
posed approach can be employed as a simple and 
powerful tool for efficient body and edge detection 
in normalized digitized gravity images. As in other 
geophysical methods, the method is a practical and 
convenient approach that can be used to investigate 
and detect structural features in large areas. 

PROGRAM DESCRIPTIONS
The program PSOCNNPOTTOOL is devel-

oped with Matlab 7.12.0(R2011a) on Windows 
7 environment. It consists of three graphical user 
interfaces (GUI) and operation processes are carried 
out with the PSO CNNPOTTOOL, which includes 
CNN_TRAINING_ MODULE and CNN_AP-
PLICATION_MODULE interfaces. The template 
coefficients calculated for DTCNN and CTCNN 
are obtained with the use of the CNN_TRAIN-
ING_MODULE, and the target outputs with the 
theoretically created image and field image are 
obtained from the CNN_APPLICATION_MOD-
ULE. The program includes 6 sub folders. The 
first of these, namely cloning template, is the part 
where the template coefficients calculated with the 
program and used in CNN models are kept. The 
second sub folder named as field images is required 
for the CNN_APPLICATION_ MODULE and is 
where the field data are kept. First images, as the 
third sub folder, are required for the images used 
in the PSOCNNPOTTOOL interface. The fourth 
sub folder input image is the part that includes 
the training images used in the training process. 
Training data sets are automatically loaded to the 
program. The fifth sub folder is outputs, where the 
outputs obtained with the use of the CNN_AP-
PLICATION_MODULE interfaces are kept. The 
last one is the test images sub folder that holds 
application and test purposed data. 

After the program is unzipped, graphical user in-
terface (GUI) program is run with >>PSOCNNPOT-
TOOL from Matlab command window. According 
to the purpose, either training or application part 
is operated. Concerning the CNN model template 
coefficients, the user has to run the training part 
of the program for different number of image sets 
to be prepared at binary scale for both CNN types 
(DTCNN and CTCNN) and purposes (body and 
edge). The application part can be used after this.        
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ÖZET
 Bu çalışmada, farklı disiplinlerde yaygın bir 

kullanım alanına sahip olan Hücresel Sinir Ağları 
(HSA) algoritması gravite anomalilerine neden 
olan kütle sınırlarının saptanması amacı ile kulla-
nılmıştır. Önerilen algoritma, görüntü işleme ko-
nularında kullanılan stokastik bir yöntem olarak 
bilinmektedir. Yöntemin temeli, şablon katsayıları 
olarak bilinen üç farklı matrisin eğitilmesi ilkesine 
dayanmaktadır. Matrisler, değişik veri setleri üze-
rinde farklı optimizasyon yöntemleri kullanılarak 
eğitilebilmektedir. Bu çalışmada, gravite değerle-
rine neden olan kütle sınırlarının saptanması amacı 
ile kullanılan şablon katsayıları Parçacık Sürüsü 
Optimizasyon (PSO) algoritması kullanılarak eği-
tilmiştir. Bu amaca yönelik olarak Matlab prog-
ramlama dili kullanılarak bir arayüzey programı 
hazırlanmıştır. Eğitilen matris katsayıları kuramsal 
veri setleri üzerinde test edilerek uygulanabilirlik-
leri araştırılmıştır. Test işlemleri sırasında şablon 
katsayılarının önemli röl oynadıkları gözlemlenmiş 
olup sonuçta tatmin edici sonuçlar elde edilmiş ve 
yöntemin arazi verileri üzerindeki uygulanabilir-
liğini test etmek amacı ile Tuz Gölü ve çevresine 
ait Bouguer anomali haritası kullanılmıştır. Kenar 
saptama işlemlerinde sıklıkla kullanılan ve klasik 
yöntemlerden olan Blakely ve Simpson algorit-
ması kullanılarak elde edilen sonuçlar önerilen 
yöntem sonuçları ile kıyaslanmış olup tatmin edici 
sonuçlar elde edilmiştir. Sonuç olarak, jeofizikte 
kütle sınırlarının görsel(kalitatif) saptanması ve 
yorumlanmasında, uygun şablon katsayılarının 
kullanılması koşulu ile tatminkar sonuçların elde 
edilebileceği kanısına varılmıştır. 
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