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Modeling and Simulation of a Memristor-Based Sawtooth
Signal Generator Using Nonlinear Dopant Drift Memristor
Models
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Tekirdag, TURKEY

Abstract: The new circuit element memristor is under inspection for new types of analog applications. Memristors are already used in
some oscillator circuits. Recently, it has been shown that a sawtooth signal generator with a memristor can be made using HP model
of TiO2 memristor and its emulator. HP memristor model is obsolete now. In literature, there are ionic memristor models which uses
window functions. In this paper, several well-known nonlinear drift memristor model’s usabilities to analyze and simulate such a
sawtooth signal generator is examined. Analysis of the sawtooth signal generator is done using five different models. It has been shown
solving circuit equations that, for some of the models, the circuit has closed form solutions and some of the solutions are invalid at the
memristor boundaries (when the state variable is equal to zero or one). Biolek’s window function and a modified Biolek’s window
function, Zha’s window function are found to be the most useful ones to model the memristor throughout its whole operation using
simulations made in Matlab/Simulink. Low and high-frequency behavior of the signal generator is also shown.

Keywords: Memristor, Memristor-based signal generator, Nonlinear dopant drift memristor model, Sawtooth waveform, Window
Sfunction.

Nonlineer Siiriiklenmeli Memristor Modelleri Kullanilarak Memristor Tabanh Testere Disi Sinyal Kaynaginin
Modellenmesi ve Simiilasyonu

Ozet: Yeni devre elemam memristdriin yeni tip analog devre uygulamalar inceleme altindadir. Memristorler su ana kadar baz1 osilator
devrelerinde kullanilmigtir. Yakin zamanda, HP memristdr modeli ve onun emiilatorii kullanilarak bir testeredisi dalga sinyal
jeneratoriiniin yapilabilecegi gosterilmistir. HP memristdr modeli artik gegersiz olmus bir modeldir. Literatiirde, pencere fonksiyonu
kullanan iyonik memristor modelleri de bulunmaktadir. Bu makalede, bir kag¢ iyi bilinen nonlineer siiriiklenme hizli memristor
modelinin bdyle bir testeredisi dalga jeneratoriiniin analizinde ve benzetiminde kullanilabilirligi analiz edilmistir. Bes farkli model
kullanilarak testeredisi dalga jeneratoriiniin analizi yapilmustir. Devre denklemleri ¢oziilerek, baz1 modeller icin, bu devrenin kapali
fonksiyon seklinde ¢oziimii oldugu ve bazi ¢dzliimlerin memristdr sinirlarinda (memristér durum degiskeni sifira ya da bire esit
oldugunda) gegersiz oldugu gosterilmistir. Biolek’in pencere fonksiyonu ve bir degistirilmis Biolek pencere fonsiyonu olan Zha’nin
pencere fonksiyonu Matlab/Simulink programiyla yapilan benzetimler kullanilarak, tiim ¢aligma bdlgesi igin en kullanish pencere
fonksiyonlar1 olarak bulunmustur. Sinyal jeneratdriiniin algak ve yiliksek frakans davranisi da gosterilmistir.

Anahtar kelimeler: Memristor, Memristér modeli, Memristor tabanli sinyal jeneratorii, Testeredisi dalga sekli, Pencere fonksiyonu.
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1. Introduction

Memristor is a nonlinear circuit element [1]-[4]. Some literature
review about memristor and memristive systems can be found in
[5]-[10]. The simplest memristor model called linear dopant
speed memristor model or HP model is given by an HP research
team in 2008 [3]. The drift speed of the doped region is assumed
to be constant in this model [3]. There are Nonlinear dopant drift
memristor models which try to model memristor more accurately
and some of them are given in [11]-[15]. Analog application
areas of memristor have become a hot research area [9], [16]-
[34]. Chua had suggested a staircase signal
generator application even when memristor was just a
hypothetical component [1]. A few memristor-based oscillator
applications are inspected in [16], [23], [28-34]. It is shown that
it is possible to make a memristor-based sawtooth signal
generator and it is examined with the HP memristor model and
its emulator in [35]. Since HP memristor model is obsolete now,
more accurate analysis of the memristor-based sawtooth signal
generator must be made.

In this study, nonlinear dopant drift memristor models given in
[12]-[15] are used to examine such a generator analytically and
with simulations. The equations describing the memristor-based
generator are created. Analytical methods are tried to solve
them. Symbolic computer algebra systems such as Mathematica,
which is available online [36], is also used to quicken the solution
process. SimulinkTM toolbox of MatlabTM is used to simulate
the generator with a few different nonlinear dopant drift
memristor models. The results are interpreted.

The paper is arranged as follows. In the second section, The TiO2
memristor models with nonlinear drift are briefly explained. In
the third section, the memristor-based sawtooth signal generator
is analyzed using the models and the results are explained. In the
fourth section, the simulation results of the sawtooth generator
are given. The paper is concluded with the last section.

2. TiO2 Memristor Models with Nonlinear Dopand
Drift

HP memristor model is used to analyze the memristor-based
sawtooth generator in [35]. The model is obsolete now. The TiO2
memristor models with window functions which take nonlinear
dopant drift into account do exist in the literature [11-15]. These
memristor models are briefly explained in this section. They are
to be used to examine the memristor-based sawtooth generator in
the next section. A memristor model with nonlinear dopant drift
can be given as

v(t) = R()i(t) €]
dx Ron -
= o iOf@ 2)

where v(t) is the memristor voltage, i(t) is the memristor
current, R(x) is the memristor or resistance, w is the oxidized
lenght of memristor, D is the total length of TiO2 region, x =
% is the normalized oxidized lenght of memristor, u,, is the
dopant mobility, Roy is the minimum resistance of the
memristor, f(x) is the memristor’s window function.

Kurtdemir ve Mutlu / European J. Eng. App. Sci 2(1), 44-57, 2019

The TiO2 memristor resistance is given as
R(x) = Ropr — (Rorr — Ron)x 3)

As explained in [3], its resistance ranges from its minimum value
Roy to its maximum value Rgpr. The window functions of the
models are given in Table 1 [11-15]. The window function is a
measure of how much a memristor approaches to being an ideal
memristor [12]. Evaluation of different memristor models are
given in Table 1.

Table 1. Evaluation of Existing Nonlinear Dopant Drift Models

Strukov Joglekar Biolek Prodromakis Zha
Resolve Yes Yes Discontinuties Yes Yes
boundary
conditions
Impose non- Yes Yes Yes Yes Yes
linear drift
over entire
D
Scalable N/A N/A Limited Yes Yes
0<f(x)<=1
Flexibility N/A N/A Yes Yes Yes
(control
parameter)

The window functions in [11,12,14] let dopant speed zero at the
boundaries of TiO: layer, their memristance/resistance value
starts changing when the window function is different than zero,
and this means that they have boundary tackle issues. The model
in [13] and [15] do not suffer from the issues. Strukov window
function is given in [3] and equal to

fO)=x—x* 4)

Joglekar window function is given in [12] and equal to

f)=1-2x-1% ®)

where p is a positive integer and stp(—i) is the unit step
function. It is defined as

N _(Li=0
sv@ ={y ;2 g ©)

Prodromakis model is given in [14] and its window function is
equal to
) =j1—(x=05)%+0,75)P) (7

A new window function has been proposed by Zha et al in [15].
Zha’s window function merges the functions given in [13] and

[15]. It allows scaling due to the parameter j and the problem

of sticking to boundaries are prevented. It is equal to

fO) =j(1=(0,25(x — stp(=))* + 0,75)") (8)

The window functions are drawn in Figure 1 for several different
p values.
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Figure 1. The window functions drawn for 5 different integer p values:
a) Strukov, b) Joglekar, c) Biolek, d)Prodromakis e) Zha
. . . Inverting Amplifier
3. Analysis of the Sawtooth Generator with Nonlinear Relaxation Oscillator With Momzistor

Dopant Drift TiO2 Memristors Models

The memristor-based sawtooth generator given in [35] is shown
in Figure 2. It is made of an opamp-based relaxation oscillator,
an opamp voltage follower and the Resistor-Memristor (R-M)
inverting amplifier. The opamp voltage follower separates the
relaxation oscillator dynamics from the R-M inverting amplifier.
The relaxation oscillator is used to obtain a square-wave. The
memristor polarity in Figure 3 is chosen as the way that its
memristance increases with positive current.

Figure 2. The sawtooth wave generator with a memristor [35].
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Figure 3: The R-M inverting amplifier [35].

The input voltage of the R-M amplifier is the output of the
relaxation generator and can be given as,

Ve, 0 <t < g
Vin = T &)
_Vsat' ; < t < T

Where Vg, is the saturation voltage of the opamp of the
relaxation oscillator and T is the electrical period of the square-
wave.

Then, the input current of the R-M amplifier;

_ VS‘" O<t<—
Vi = Lin = (10)
"R —@,;<t<T

where R is the input resistance of the resistor R, given in Figures
2 and 3.

The memristor current is also equal to the input current of the R-

M amplifier. The output voltage can be written as
R(x)
Vout = _TVin (1)

If the memristor is not in saturation,

R(x(t)) = Rorr — (Rorr — Ron)x(t) (12)
Therefore,
Rorr—(Rorr—Ron)x(t
Vout = _ (Rorr DF;‘ on)x(t)) Vin (13)
Therefore, to obtain the output voltage, the memristor state

variable x(t) with respect to time must be known. x(t) is the
solution of the following differential function;

&= BN (1) (x) (14)
% Zﬁtc HvRoNl(t) I-‘vI;ODNZVm (15)
oo = e a9
[ = e g = ey ¢ (17)

where C is the integration constant.

3.1. Analysis of the Circuit with Strukov Model

Letk = ””R% for the sake of simplification. Then, by submitting
D

Strukov window function in Eq. (18), the following equation is
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obtained:

dx dx
T4 [ = [kldt (18)

X
By integrating Eq. (18),
In(x) —In(1 —x)+ Cl=kIt + C2 (19)

By rearranging Eq. (19), the state variable is found as

ekit+C

(20)

= e
At t=0, x(0) intitial value can be found as

xo = (Rorr — Ro)/AR 2D
where Ro is the initial memristance value.

Using x(0), the integration constant can be found as

C=In (%) 22)

Submitting C into Eq. (23),

_ eklty(0)
T 1+x(0)(ekit-1) 23)
Submitting C into Eq. (3), the memristance is found as

ity (0) ekltx(0)

R() = Ron Trzireme—y T Rorr( — Ty (29
Using Eq. (120, the output voltage is obtained as
VOut =
kit kit
Roy—= X —+Ropp(1 i
1+x(0)( T ~1) LOE D g oy T
Ry 2
ekltx(O) N 1 kltx(o) (25)
Ron 1t TRorF( kIt
- 1+x(0)(e T ~1) LOE D Ty g
R, 2

3.2. Analysis with Joglekar Model

Joglekar et al parameterized the window function using the
parameter p. Eq. (17) turns into

dx vRonVin
f1—(2x—1)2” =* R(;)NZ t+C (26)

The solution of the Eq. (26) are found for a few p values and
given in Table 1. Only the solution found for p=1 has an explicit
solution. For other p values, the solutions of Eq. (26) is more
complex and of closed form. Mathematica is used to obtain the
solutions for a few different p values which are given in Table 2.
For the solutions obtained p values other than 1, x(t) should be
solved using numerical methods. Eq.s (10) and (11) can be used
to obtain the output voltage of the circuit.

3.3. Analysis of the Circuit with Biolek Model

Considering current polarity, Biolek’s window function can be
expressed as

ax _ {ki[l —(x=D%,i(t) <0

ac | ki[l— ()%, i(t) >0 @7

Using Biolek window function and the parameter p Eq. (17) turns
into

J- dx — .uvRONVin
1—(x — 1)2P RD2

t+Ci<0
28)

47



i>0

dx RonV;
f _ HvlRonVin t+C,
1—(x)%» RD?
The differential equations are dependent on current polarity and
be solved considering the current direction.

The solution of the Eq. (28) are found for a few p values and
given in Table 1. Only the solution found for p=1 has an explicit
solution. For other p values, the solutions of Eq. (28) are more
complex and of closed form. Mathematica is used to obtain the
solutions for a few different p values and different

current polarities which are given in Tables 3 and 4 respectively.
For the solutions obtained p values other than 1, x(t) should be
solved using numerical methods. Eq.s (10) and (11) can be used
to obtain the output voltage of the circuit.

3.4. Analysis of the Circuit with Prodromakis Model

Prodromakis Model has two parameters; p and j. It has no current
dependence and it also suffers from boundary tackling issues. For
Prodromakis window function using the parameter p and j, Eq.
(17) turns into

— HyRonVin

dx
| iazamommmorem = mor EHC

29

The solution of the Eq. (30) are found for a few p values and
given in Table 5. Only the solution found for p=1 has an explicit
solution. For other p values, the solutions of Eq. (29) is more
complex and of closed form. Mathematica is used to obtain the
solutions for a few different p values which are given in Table 3.
For the solutions obtained p values other than 1, x(t) should be
solved using numerical methods. Eq.s (10) and (11) can be used
to obtain the output voltage of the circuit.

Table 2. Solutions with Joglekar Model.
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3.5. Analysis of the Circuit with Zha Model

Zha’s model is obtained by merging Biolek and Prodromakis
model. It is scalable and current polarity dependent. Zha Model
has two parameters; p and j. Considering current polarity, Zha’s
window function can be expressed as

j(1—0,25(x — 1)2 4 0,75)P),i(t) < 0

f& ={ jlL-025%2 + 0757, i =0 O

Using Zha’s window function and the parameters p and j, Eq.
(17) turns into

dx :uvRONVin .
= <
Jj(l — 025G -12+0757) Rp? TCIs0O
(31)
dx URonVin ,
fj[l (0252 + 0759~ Rpz ' TEi>0

The differential equations are dependent on current polarity and
should be solved considering the current direction. The solution
ofthe Eq. (31) are found for a few p values and for j=1 and given
in Tables 6 and 7. Only the solution found for p=1 has an explicit
solution. For other p values, the solutions of Eq. (31) are more
complex and of closed form. Mathematica is used to obtain the
solutions for a few different p values and different current
polarities which are given in Tables 6 and 7 respectively. For the
solutions obtained p values other than 1, x(t) should be solved
using numerical methods. Eq.s (10) and (11) can be used to
obtain the output voltage of the circuit.

p f%=fk1dt

dx 1
! f4x(1 —x) z(ln(x) —In(1-x))+C1=kit+C2

f dx _
—16x*+32x3-24x2+8x

1 —
§<— log(1 —x) +log(x) + tan™?! (x .

1) +tan~! (L) +C1 = kIt + C2
1—x

dx
f—64x5—192x5—240x4+160x3—60x2+12x -

23tan1 (3;;")) +C1 = kIt +C2

3 i(—log(4x2 —6x+3) +log(4x? —2x + 1) — 21log(1 — x) + 2 log(x) + 2v/3tan™! (1—4x) _

V3

dx
f —256x8+1024x7—-1792x6+1792x5—-1120x*+448x3-112x2+16x N

+2v2tan~ (2(V2x = V2 + 1)) + C1 = kit + C2

%(\/Elog(ﬁtxz +2(V2—-2)x—V2+2—V2log(4x? —2(N2 = 2)x + V2 + 2)
—21log(1 —x) + 2log(x) — 4tan™ (1 — 2x) — 2V2tan~'(-2(V2x + V2 + 1)
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fd—x:
1-(2x-1)10

%(\/g—l)log<8x2 +2(\/§—5)x+2(2+%(1—\/§)))>+

(1++V5)log <8x2 +2(V5-3)x+2 (2 +%(—1 - \/E)))> -

5 | W5-1)log(8x?—2(\5+3)x +V5+3) —
V5+1)log(8x? = 2(V5+5)x + V5 +5) — 4log(1 — x) + 4 log(x) —
—8x++V5+3 —8x++V5+5
225+ \/g)tan‘l(L) —2/(10 + 2vB)tan-? <L> +
_1,8x+V5-5 (8x+\/— 3) _
2v10 + 2V5 + tan (J_)+2\/10+2 tan™! (T==— )+ C1 = kit +C2
Table 3. Solutions of the circuit equations for Biolek window function for 5 different values of p and i<0.
kldt
P f f@) f
1 dx 1
fm = E(ln(x) —In(2—x))+Cl=kiIt+C2
2 dx 1 x—2 x
= —| — — N pA— -1 (—— =
f—x4+4x3—6x2 T ax 4_< log(2 — x) +log(x) + tan ( . )+tan (Z—x)>+c kit + C2
307 dx -
—x6+6x5-15x4+20x3-15x2+6x
(log(x —3x 4+ 3) +log(x% — x + 1) — 2log(2 — x) + 2log(x) + 2v/3tan™! (23_3) + 2+/3tan"t (23_1)) +Cl=
kIt +C2
4 |7 dx =
—x8+8x7-28x6+56x5-70x*+56x3-28x2+8x
1
16 (\/E (log(x? + (V2 4 2)x — V2 4+ 2) — V2log(x? — (V2 + 2)x + V2 + 2) — 21og(2 — x) + 2log(x)
—4tan~ (1 —x) — Z\Etan‘l(—\/ix +V2 + 1)+ Z\Etan‘l(\/fx -2+ 1)) +C1=kit+C2
5

fl_(;’fl)m:si( (1+\/_)log<2x +2 %(—1—\/g)—Z)x+2(2+%(1+\/§)>>>

(
—(\/g—1)10g<2x2+2(%(1—\/§)—2)x+2(2+%+(\/E—l)))

+(V5 + 1)10g(2x2+2<%(1+\/§)—2)x+2<2+%+(_\/§_1)>)

- /10+2\/§)10g(2x2+2<—2— /%(5+\/§)>x+2<2+ §(5+\/§)>
+ /2(5+\/§)log 2x2+2<,%(5+\/§)—2>x+2<2— %(5+\/§)>

—4log(2 — x) + 4log(x) — zjm)tan_l(w)
(10 + 2v5)

~2./(10 - 2v5)tan™ <—4"”_+5> — 2(1 + V5) tan~1 (FERI020EH, T +2(V5 - 1) tan (R 11_0v+§m+4)

/(10 24/5)

=
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4x ++/5-5 4x ++/5-3
—8tan‘1(1—x)+2/(10+2\/§)tan_1 SR il +2/(10—2\/§)+tan—1 Sl L)

(10 - 2V5) (10 - 2v5)

4x +v10-2V5-4
+2(V5-1)tan™? +Cl=kit+C2

(1++5) (V5-1)

2045 + Dyean-1 | B 10 -2v5 -4

Table 4. Solutions of the circuit equations for Biolek window function for 5 different values of p and I>0.

P fkldt
f( )

1 dx 1
f—l 2 = 5 Un(x+ D —In(l —x)) + €1 = kit + C2

2| [ =2 (~log(1 - x) +log(1 + x) + 2tan™* (x)) + C1 = kIt + C2

3 dx _1 1. _ B _ A
fl 12 log(x% — x + 1) + log(x? + x + 1) — 2log(1 — x) + 2log(x + 1) + 2+/3tan™! ( = ).,.
2v3tan™ (22) + 1 = kit + 2

4 f:ig :i(—ﬁlog(xz —V2x 4+ 1) +V2log(x? + v2x + 1) — 2log(1 — x) + 2log(1 + x) + 4tan~*(x) —
2v2tan™(1 —VZx) + 2vZtan™ (V2x + 1)) + C1 = kit + C2

10

f(1 = ( (1+V5)log(2x? + (-1 —V5)x +2) — (V5 — 1) log(2x? + (1 = V5)x + 2)

—( /10—2\/§>10g<2x2— /(10—2\/§)x+2>+< /10—2\/§>10g<2x2+ /(10—2\/§)x+2>

(V5 = Dlog(2x? + (V5 — 1)x + 2) + (1 + V5) log(2x? + (V5 + 1)x + 2)

_< /10+2\/§>10g<2x2—<m>x+2>+< /10+2\/§>10g<2x2+< /10+2\/§>x+2)
—4log(1—x) +4log(x +1) - 2(m> tan~1 w

(10 - 2v5)

+2(\/§— 1)tan‘1 M +8tan_1(x) +2< ’10+2\/§> + tan-1 w
(1-5) (10 + 2V5)

+2<‘/10+2\/§>mn—1 AxtS-1 ) ( 10— 2 ) gyt | VB4
(10 + 2v5) JTZH

/4x—M\ 2(\/_+1)mn1<4x 10 - 2x/§\

I(1+5) /

2(v5 - 1)tan™? <‘“‘+— M)) +Cl=klt + C2
(Vs-1)

+2(\/§+ 1)tan‘3l

Table 5. Solutions of the circuit equations for Prodromakis window function for 5 different values of p.

f%=fk1dt
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dx
J ;=lnx—In(1-x)+C1=kit+(C2
X—x

J dx _
—x* 4+ 2x3 —3x2 4 2x

1
5 (og(x) —log(1 — x)) + 0,377964tan"*(0,755929x — 0,377964) + C1 = kIt + (2

f—x5+3x5—6x‘i:c—7x3—6x2+3x7

0.333333(— (0274668 + 0298255i) log(x — (0,867893 + 1,17701i) )
—(0274668 — 02982551) log(x — (0,867893 — 1,17701i) )
+(0274668 — 02982551) log(x — (0,132107 + 1,17701i) )
+(0274668 + 02982551) log(x — (0,132107 + 1,17701i) )

—log(1 —x) +log(x) + C1 = kIt + C2

f—x5+3x5—6x‘i:c—7x3—6x2+3x7

0.333333(— (0274668 + 02982551) log(x — (0,867893 + 1,17701i) )
—(0274668 — 02982551) log(x — (0,867893 — 1,17701i) )
+(0274668 — 02982551) log(x — (0,132107 + 1,17701i) )
+(0274668 + 02982551) log(x — (0,132107 + 1,17701i) )

—log(1 —x) +log(x) + C1 = kIt + C2

f dx _

1—-((x—0,5)%2+0,75)*

—0,188982tan"1(0,377964 — 0,755929x + 0,1log(x? — 2x + 2)
+0,11log(x? + 1) — 0,25log(1 — x) + 0,25log(x) — 0,1tan™*(1 — x)
+0,1tan™(x) + C1 = klt + C2

10

—(0,0646813 — 0,00695034i)log(x — (1,06998 + 0,515618i))
—(0,0646813 + 0,006950341)log(x — (1,06998 — 0,5156181))
—(0,0472654 + 0,0122782i)log(x — (1,0506 + 0,862932i))
—(0,0472654 — 0,0122782D)log(x — (1,0506 — 0,8629321))
—(0,0325866 + 0,0263531i)log(x — (0,92683 + 1,11409i))
—(0,0325866 — 0,0263531)log(x — (0,92683 — 1,11409i))
—(0,0167806 + 0,03491251)log(x — (0,731435 + 1,26987i))
—(0,0167806 — 0,0349125)log(x — (0,731435 — 1,26987i))
+(0,0167806 — 0,0349125)log(x — (0,268565 + 1,26987i))
+(0,0167806 + 0,0349125)log(x — (0,268565 — 1,26987i))
+(0,0325866 — 0,0263531D)log(x — (0,07311697 + 1,114409))
+(0,0325866 + 0,0263531)log(x — (0,07311697 — 1,114409))
+(0,0472654 — 0,0122782D)log(x + (0,05110612 — 0,862932i))
+(0,0472654 + 0,0122782)log(x + (0,05110612 + 0,862932i))
+(0,0646813 + 0,00695034i)log(x + (0,0699814 — 0,515618i))
+(0,0646813 — 0,00695034i)log(x + (0,0699814 + 0,515618i))
—0,0755929tan"1(0,377964 — 0,755929x) — 0,11og(1 — x) + 0,11og(x) + C1 = kit + C2

Table 6. Solutions of the circuit equations for Zha’s window function for 5 different values of p ve i(t)<0.

p | [dx/fx = [kidt
1 fd—x -
1-(0,25(x—1)%2+0,75)
=2In(x) —2In(2—-x)+ C1 = kit + C2
2 J- dx _
(1-(0,25(x—1)%2+0,75)2)
—log(2 — x) + log(x) + 0,755929tan"1(0,377964(x — 1)) + C1 = kit + C2
3

J- dx _
(1-(0,25(x—1)2+0,75)3)
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—(0,183112 + 0,193837i) log(x — (1,73579 + 2,35401i)) — (0,183112 — 0,193837i) log(x — (1,73579 —
2,35401i)) + (0,183112 — 0,1938374)log(x — (0,264214 + 2,35401i) + (0,183112 + 0,193837i)log(x —
(0,264214 — 2,35401i) — 0,666667 log(2 — x) 0,666667 log(x) + C1= kit + C2

4 J- dx _
(1-(0,25(x—1)2+0,75)%)
—0,377964tan"1(0,377964(1 — x)) + 0,2log(x? + 4) — 0,2log(x? — 4x + 8) — 0,5log(2 — x) + 0,5logx —
0,2tan*(1 — 0,5x) + 0,2tan~(0,5x) + C1= kit + C2
10

J- dx —

(1-(0,25(x—1)2+0,75)10)
—(0,129363 — 0,0139007)log(x — (2,13996 + 1,03124i))
—(0,129363 + 0,0139007:)log(x — (2,13996 — 1,03124i))
—(0,0945307 + 0,02455641)log(x — (2,10212 + 1,725861))
—(0,0945307 — 0,02455641)log(x — (2,10212 — 1,72586())
—(0,0651733 + 0,05270631)log(x — (1,853661 + 2,22818i))
—(0,0651733 — 0,05270631)log(x — (1,853661 — 2,22818i))
—(0,0356613 + 0,069825i)log(x — (1,462869 + 2,53975())
+(0,0356613 — 0,069825i)log(x — (1,462869 — 2,53975())
+(0,0356613 — 0,069825i)log(x — (0,537131 + 2,53975())
+(0,0356613 + 0,069825)log(x — (0,537131 — 2,539751))
+(0,0651733 — 0,05270631)log(x — (0,146339 + 2,22818i))
+(0,0651733 + 0,05270631)log(x — (0,146339 — 2,22818i))
+(0,0945307 — 0,02455641)log(x + (1,10212 — 1,725861))
+(0,0945307 + 0,02455641)log(x + (1,10212 + 1,725860))
+(0,129363 + 0,01390071)log(x + (1,139963 — 1,03124i))
+(0,129363 — 0,0139007)log(x + (1,139963 + 1,031241))
—0,210g(2 — x) + 0,2log x + 0,151186tan"1(0,377964 — 0,377964x) + C1 = kit + C2

Table 7. Solutions of the circuit equations for Zha’s window function for 5 different values of p ve i(t)>0.

p | [dx/fx=[kidt
1 __dx
f0,25—0,25x2
=2In(x+1)—2In(1 —x) + C1=kIt + C2
2 f dx
1— (0,25x2 + 0,75)?
= —log(1 —x) + log(x + 1) + 0,755929tan1(0,377964x) + C1= kit + C2
3 f dx _
1—(0,25x2 +0,75)3
—0,183112log(x? — 1,47157x + 6,08276) + 0,183112log(x? + 1,47157x + 6,08276) — 0,666667log(1 — x) +
0,666667log(1 + x) + 0,397674tan"1(0.212403(2x — 1,47157)) + 0,397674tan"1(0.212403(2x + 1,471157)) +
Cl=kit+ C2
4 f dx _
1—(0,25x2 + 0,75)*
0,2tan~1(0,5 — 0,5x) — 0,2 log(x? — 2x + 5) + 0,2log(x? + 2x + 5) — 0,5log(1 — x) + 0,5log(1 + x) +
0,210g(0,5x + 0,5) + 0,377964tan"1(0.377964x)) + C1= kit + C2
10

—(0,129363 — 0,0139007i)log(x — (1,13996 + 1,03124i))
—(0,129363 + 0,0139007i)log(x — (1,13996 — 1,03124i))
—(0,0945307 + 0,0245564i)log(x — (1,10212 + 1,725861))
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—(0,0945307 — 0,0245564i)log(x — (1,10212 — 1,72586i))
—(0,0651733 4+ 0,0527063i)log(x — (0,853661 + 2,22818i))
—(0,0651733 — 0,0527063i)log(x — (0,853661 — 2,228184i))
—(0,0356613 + 0,069825i)log(x — (0,462869 + 2,539751i))
—(0,0356613 — 0,069825i)log(x — (0,462869 — 2,539751))
+(0,0356613 — 0,069825i)log(x + (0,462869 — 2,539751))
+(0,0356613 + 0,069825i)log(x + (0,462869 + 2,539751))
+(0,0651733 — 0,0527063i)log(x + (0,853661 — 2,22818i))
+(0,0651733 4+ 0,0527063i)log(x + (0,853661 + 2,22818i))
+(0,0945307 — 0,0245564i)log(x + (1,10212 — 1,725861))
+(0,0945307 + 0,0245564i)log(x + (1,10212 + 1,72586i))
+(0,129363 + 0,0139007i)log(x + (1,139963 — 1,031241))
+(0,129363 — 0,0139007i)log(x + (1,139963 + 1,031241))

—0,2l0g(1 — x) + 0,2log(x + 1) + 0,151186tan1(0,377964x) + C1 = kit + C2

4. Simulation Results

As shown in the tables given in the previous section, only for a
few cases, the solutions are explicit and they are usually of closed
form. The solutions obtained with Strukov, Joglekar and
Prodromakis window functions for x=0 and x=1 diverge. Also,
the solutions are very complex for p values except for the case
for p=1. That’s why the memristor-based sawtooth generator
circuit must be solved using numerical methods for each window
function. Due to space considerations, only Joglekar’s, Biolek’s
and Zha’s window functions are used for simulations. The output
of the relaxation oscillator is applied to the input of the R-M
amplifier. The memristor parameters used in the simulations are
shown in Table 8. Simulink toolbox of Matlab is used for
simulations. The simulation results of the output voltage of the
sawtooth signal generator are shown for the cases of different
window functions in the following sections.

Table 8. Memristor parameters used in the simulations.

The memristor minimum Ron 100 Ohm
resistance

The memristor maximum Rorr 20000 Ohm
resistance

The dopant mobility muon 104 m?/V.s
The memristive element D 10 nm
length

4.1. Simulink Results for Joglekar Model

The Simulink block diagram of the Sawtooth Generator for
Joglekar window function is shown in Figures 4. Joglekar
window function is able to adjust nonlinearity of dopant speed
more successfully than Strukov window function due to having
the extra parameter p and current polarity dependency. However,
it is unable to do scaling considering voltage magnitude and
operation frequency. The model is able to simulate the system if
the state variable takes values greater than zero and less than 1.
As shown in Figure 6 and 7, the state variable x gets stuck at the
boundary values at x=0 and x=1 respectively. That’s why it

cannot be used to model such a sawtooth generator at x=0 and
x=1. Usage of the Joglekar window function to model such a
generator must be prevented due to the boundary tackle issues.
For x(0)=0.5, there is no boundary tackling issue and a sawtooth
waveform at the output is obtained.

— ]
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Figure 4. Simulink block diagram of the Sawtooth Generator for

Joglekar’s Window Function.
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Figure 5. Signal generator output voltage for Joglekar model at
10 Rad/s and (Vin)pp=10 V, R2=80k(, p=5 and x(0)=0.5.
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Figure 6. Signal generator output voltage for Joglekar model at
10 Rad/s and (Vin)pp=10, R2=80kQ, p=5 and x(0)=0.
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Figure 7. Signal generator output voltage for Joglekar model at
10 Rad/s and (Vin)pp=10, R2=80kQ, p=5 and x(0)=1.

frer= oWk

Figure 8. Simulink block diagram of the Sawtooth Generator for
Biolek’s Window Function.

4.2. Simulink Results for Biolek Model

The Simulink block diagram of the Sawtooth Generator for
Biolek Window function is shown in Figures 8. Biolek window
function is current-dependent. However, it does not have a
scaling parameter as Joglekar. The model is able to simulate the
system for the state variable x taking the values between 0 and 1.
The output voltage waveforms are very familiar for p=1 and p=2
as shown in Figure 11 and 12 respectively. As shown in Figures
9 through 13, the state variable x does not get stuck at the
boundary values at x=0 as and the output voltage is asymmetric
due to the current dependency of the Biolek’s window function

Kurtdemir ve Mutlu / European J. Eng. App. Sci 2(1), 44-57, 2019

shown in Figure 11. For 30 rad/s and p=5, the output voltage is
shown in Figures 12 and 13. The system output voltage is a
sawtooth waveform however it starts resembling a square
waveform with increasing frequency.

2

0.5

-0.5

Vout, The Output Voltage(V)

Figure 9. Signal generator output voltage for Biolek model at 10
Rad/s and (Vin)pp=10 V, R2=80kQ, p=1 and x(0)=0.3.

2

Vout, The Output Voltage(V)

Figure 10. Signal generator output voltage for Biolek model at
10 Rad/s Hz and (Vin)pp=10 V, R2=80kQ, p=2 and x(0)=0.3.

25

Vout, The Output Voltage(V)

Time(s)

Figure 11. Signal generator output voltage for Biolek model at
10 Rad/s and (Vin)pp=10 V, R2=80kQ, p=5 and x(0)=0.
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Figure 12. Signal generator output voltage for Biolek model at
10 Rad/s and (Vin)pp=10 V, R2=80kQ, p=5 and x(0)=0.3.
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Figure 13. Signal Generator Output Voltage for Biolek model
at 30 Rad/s and (Vin)pp=10 V, R2=80kQ, p=5 and x(0)=0.3.

4.3 Simulink Results for Zha Model

The block diagram of the Sawtooth Generator for Zha’s Window
function is shown in Figures 14. Zha’s window function has
current dependency as Joglekar’s window function and, in
addition, it has a scaling parameter. Using different p and j
parameter, the waveforms given in Figures 15 through 19 are
obtained. An output waveform which looks a sawtooth waveform
most can be found in Figure 19. This means that by adjusting
memristor parameters, the output voltage waveform of the
sawtooth generator can be adjusted. The model is also able to
simulate the system without boundary tackling issues. In this
case, the state variable x can take all values between 0 and 1 as
shown in Figures 19 and 20. The output voltage has a dc offset
due to the current dependency of the Zha’s window function as
shown in Figures 18 through 20. The system output voltage is a
sawtooth waveform however it starts resembling a square
waveform with increasing frequency. The best-looking sawtooth
waveform can be seen in Figure 20. The sawtooth waveform
optimization can be done considering the memristor and the other
circuit parameters.
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Figure 14. Simulink block diagram of the Sawtooth Generator

for Zha’s Window Function.
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Figure 15. Signal generator output voltage for Zha model at 10
Rad/s and (Vin)pp=10 V, R>=40kQ, p=5, j=0,5 and x(0)=0,3.
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Figure 16. Signal generator output voltage for Zha model at 10
Rad/s and (Vin)pp=10 V, R:=40kQ, p=5, j=1 and x(0)=0,3.
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Figure 17. Signal generator output voltage for Zha model at 10
Rad/s and (Vin)pp=10 V, R>=40kQ, p=10, j=0,5 ve x(0)=0,3.
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Figure 18. Signal generator output voltage for Zha model at 10
Rad/s and (Vin)pp=10 V, R2=40kQ, p=10, j=0,8 and x(0)=0,3.
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Figure 19. Signal generator output voltage for Zha model at 10
Rad/s and (Vin)pp=10 V, R2=40kQ, p=30, j=0.5 ve x(0)=0.
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Figure 20. Signal generator output voltage for Zha model at 10
Rad/s and (Vin)pp=10 V, R2=40kQ, p=10, j=30 and x(0)=1.
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Figure 21. Signal generator output voltage for Zha model at 30
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Rad/s and (Vin)pp=10 V, R2=40kQ, p=5, j=1 and x(0)=0,3.
5. Conclusion

A sawtooth signal generator given in [35] is examined
analytically first using nonlinear dopant drift models. Closed
solutions are obtained solving the differential equations
describing the memristor-based sawtooth generator. It has
become obvious that numerical solutions are needed to simulate
the circuit except for a few cases. Simulink is used to simulate
the signal generator. The simulated circuit waveforms are
obtained and the results are interpreted. As a result of this study,
it has been found that Biolek’s and Zha’s window functions
outperform the other nonlinear dopant drift models examined
since they do not have the boundary tackling issues. Zha’s
window function is more flexible due to having a scaling
parameter. The memristor-based sawtooth generator may find
use in circuits requiring sawtooth waveforms in the future. We
suggest that in the design process, such a memristor-based
sawtooth generator should be analyzed with future memristor
models without the boundary tackling issues.

It is also realized that different models produce different output
voltage for the sawtooth generator. If experiments are performed
with thin-film memristors, the window function which produces
the most similar waveform to the experimental waveform should
be chosen for modeling.

In the future, when memristor becomes available in the market,
it may be possible to make different types of memristor-based
signal generators and mismodeling of a memristor results in
mismodeling of such analog application circuits, too. That’s why
the companies which plan to commercialize memristor should
also give models which describes them best to make its
exploitation in circuits easier.
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