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ABSTRACT
In this study, Artificial Neural Network approach to prediction of diffusion bonding behavior of Ni-Ti-Cu alloys, manufactured by powder metallurgy process, were obtained using a back-propagation neural network that uses gradient descent learning algorithm. Ni-Ti-Cu composite was manufactured with a chemical composition of 49 % Ni - 51 % Ti in weight percent as mixture with an average dimension of 45(m. Diffusi-on welding process have been made under argon atmosphere, with a constant load of 5 MPa, under the temperature of 940 and 970 ºC, in 40 and 60 minutes experiment time. Microstructure examination at bond interface were investigated by optical microscopy, SEM-EDS. Specimens were tested for shear strength and metallographic evaluations.  After the completion of experimental process and relevant test, to prepare the training and test (checking) set of the network, results were recorded in a file on a computer. In neural networks training module, different temperatures and welding periods were used as input, shear strength of bonded specimens at interface were used as outputs. Then, the neural network was trained using the prepared training set (also known as learning set). At the end of the training process, the test data were used to check the system accuracy. As a result the neural network was found successful in the prediction of diffusion bonding shear strength and behavior.  
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__________________________________________________________________________________________________________________________________________________
TOZ METALURJİSİ YÖNTEMİYLE ÜRETİLMİŞ Ni-Ti-Cu ALAŞIMLARININ DİFÜZYON KAYNAĞINDA (BİNDİRME-KAYMA) SONUÇLARININ YAPAY SİNİR AĞLARI (ANN) İLE BELİRLENMESİ
ÖZET
Bu çalışmada, toz metalurjisi yöntemiyle üretilmiş Ni-Ti-Cu alaşımlarının difüzyon kaynağı sonrasında yapılan bindirme-kayma (Shear-Strength) test sonuçlarının Yapay Sinir Ağları (Artificial Neural Network) yöntemi kullanılarak yapılan eğitme sonrası elde edilen sonuçlarla tutarlılığı araştırılmıştır. Ni-Ti-Cu kompo-zit malzemelerin kimyasal bileşimi % 49  Ni - %51  Ti olup, tozlar 45(m boyutundadır. Difüzyon kaynakları, argon atmosferi altında, 5 MPa sabit basınçta, 940-970 ºC sıcaklıklarda ve 40-60 dk. sürelerde yapılmıştır. Kaynaklı numuneler birleşme bölgesine dik doğrultuda kesilerek, numunelerin optik mikroskop, SEM-EDS analizleri yapılmıştır. Numunelerin kaynak sonrası birleşme kalitesini tespit etmek için bindirme-kayma testleri yapılmıştır ve elde edilen sonuçlar bilgisayar ortamında Yapay Sinir Ağları programında test edilmiş-tir. Test programında kaynak sıcaklıkları ve kaynak süreleri girdi, bindirme-kayma sonuçları da çıktı olarak kullanılmıştır. Gerçek sonuçlar ile Yapay Sinir Ağları test analizi sonuçları birbirleriyle karşılaştırılmış, so-nuçlar arasında bir tutarlılığın olduğu bilgisayar ortamında tespit edilmiştir.

Anahtar Kelimeler: Ni-Ti, Difüzyon Kaynağı, Bindirme-Kayma, Yapay Sinir Ağları.

__________________________________________________________________________________________________________________________________________________
1. INTRODUCTION
Recently, the needs for high damping materi-als have increased not only from environmental noise problem but also from various industries [1]. The production of composites and Ni-Ti-Cu alloys by powder metallurgy method was presented [2]. An artificial neural network is a parallel-dispensed in-formation proceeding system. It stores the speci-mens with dispensed coding, thus forming a trainab-le nonlinear system. The main idea of neural net-work resembles the human brain functioning. Given the inputs and loging outputs, it is also self-adaptive to the habitat so as to respond different inputs rationally. The neural network theory deals with learning from the preceding obtained data, which is named as training or learning set, and then to check the system accomplishment using test data [3-4]. Artificial Neural Networks (ANNs) have been used to model the human vision system. They are biologically inspired and contain a large number of simple processing elements that perform in a manner analogous to the most elementary functions of neurons. Artificial neural networks learn by experience, generalize from previous experiences to new ones, and can make decisions. 
Neural elements of a human brain have a computing speed of a few milliseconds, whereas the computing speed of electronic circuits is on the order of microseconds. The ANNs are parallel process elements which has characteristic in below. 
· ANN is a mathematical model of a biological neuron.
· ANN has very process elements which are rela-ted another.
· ANN keeps knowledge with connection weights.
Neural network models provide an alternate-ve approach to implementing enhancement techni-ques. A simple process element of the NNs is given in Fig.1. Output of ith process element at this simple model is given in Equation 1.
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Where, a is activation function, θi is threshold value of ith process element. Knowledge processes of process element compose from two parts: input and output. Output of ith process element is calcu-lated with Equation 2 [5-6]. 
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Figure 1. The Mathematical Model of Neuron

Neural networks were procured a basically different draw near to material modeling and material processing control techniques than statisti-cal or numerical procedures. This method is feasible in many areas of engineering and has produced promising to prepare results in the areas of material modeling and proceduring. One of the main advantages of this approach is that there is no need to make a priori assumptions about material behave-or although in more were sophisticated neural network modeling projects one may take advantage of the information of the procedure in network design. Even though multi-layered neural network models cannot make sure a global minimum solute-on for any given problem, it is a sensible assumption that if the network is trained on an extensive database with a suitable representation project, the resulting model will approximate all of the laws of mechanics that the actual material or process obeys [7-8].
Neural networks are essentially connectionist system, in which different nodes called neurons are interconnected. A typical neuron accepts one or more input signals and procures an output signal trusting in the procedure function of the neuron. This output is conveyed to connected neurons in varying intensities, the signal intensity being deci-ded by the weights. Feed forward networks are jointly used. A feed forward network has a consecu-tive of layers consisting of a number of neurons in each layer. The output of neurons of one layer come to exists input to neurons of the achieving layer. The first layer, called an input layer, accepts data from the outside world. The last layer is the output layer, which sends knowledge out to users. Layers that lie between the input and output layers are called hidden layers and have no direct touch with the environment. Their presence is needed in order to procure complexity to network architecture for modeling non-linear functional kinship. After choo-sing the network architecture, the network is tested by using back propagation algorithm, where back propagation algorithm is the productive optimizati-on method used for underrating the error through weight arrangement The trained neural network has to be experimented by supplying testing data [9].

The basic fundamentals to build the system model on the basis of NN consist of: 
(a) connecting the artificial neurons into a network with respect to certain rules and a topology; 

(b) regulating the weights between neurons in term of an proofreading criterion; 

(c) establishing the topology and free parameters of the NN by learning specimen data (input pat-terns) repeatedly; 

(d) determining the system model by taking advan-tage of the strong learning ability of ANN (Fig. 2). 
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Figure 2.  Scheme of Modelling the System by ANN [9].
The information included in the illustration data was acquired via the improved back propaga-tion (BP) learning algorithm. The parameters of the BP network were defined as follows:

The input vectors [X = x0, x1, . . . , xn1]T
The output vectors [Y = y0, y1, . . . , ym1]T
where the symbols n, h and m represented the number of neurons in the input layer, the hidden layer and the output layer, sequentially. 

Joining of the powder metallurgy products (P/M) by diffusion bonding process is important both to protect the microstructural properties of parent materials and bonding behavior of joining materials [10]. Diffusion bonding is a solid state coalescence of contacting surfaces occurs at a temperature below the melting point (Tm) of the materials to be joined with the loads and the period, below those that would cause macro deformation and a significant properties change at the parent materials [11-12]. The process is depended on a number of parameters in particular, bonding temperature, atmosphere, time, pressure and surface roughness. Process pressure is selected high enough to dislocate the surface oxides. Bonding period should be selected long enough for the completion of the diffusion mechanism at the interface. Diffusion bonding is an advanced bonding process in which two materials, similar or dissimilar, can be bonded in solid state. Process temperature is selected as 0.5-0.7 (Tm) [13-14-15]. 

2. MATERIALS AND EXPERIMEN-TAL PROCEDURES
2.1. FABRICATION OF Ni-Ti-Cu
Ni-Ti-Cu composite manufactured with a chemical composition show in Table 1 in weight percent as mixture with a average dimension of 45(m. Powders were properly mixed with mechanic  mixers for homogeneity of the formation. The mixture was cold compacted at 900 MPa in the (10x11 mm steel dies. This is followed by sintering at 830ºC in argon atmosphere for 30 minutes.
Table 1. Mixture rations of specimens

	Sample
	Element (% wt.)

	
	Ni
	Ti
	Cu

	A
	48,9
	45,1
	6,0

	B
	49,1
	45,2
	5,7

	C
	49,5
	45,0
	5,5

	D
	49,6
	45,0
	5,4

	E
	49,9
	45,1
	5,0

	F
	49,0
	51,0
	-


2.2. DIFFUSION BONDING OF Ni-Ti-Cu COUPLES
Work pieces were prepared for diffusion bonding and surfaces to be joined were protected against corrosion and oxidation. The manufactured samples were joined by use diffusion welding technique. The bonding of composite material parts were realized under the constant pressure, at different temperatures and durations. Diffusion welding process have been  made under argon atmosphere, with a constant load of 5 MPa, under the temperature of 940 and 970ºC, 40 and 60 minutes experiment time. Schematic illustration of diffusion bonding apparatus is given in Fig.3.
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Figure 3. Schematic illustration of diffusion bonding apparatus [16].
2.3. MICROSTRUCTURE EXAMINATIONS AND SHEAR STRENGTH TESTS
After the bonding process, specimens were tested for shear strength. The schematic illustration of shear strength test apparatus is given in Fig.4. Specimens were cut perpendicular to the bonding interface to facilitate longitudinal microstructure cross section examinations. Grinding of the surface were followed by etching with Kroll reagent (6%HF, 9%NHO3, 85% water) for metallographic examinations. Metallographic evaluations and investigations were made by the aid of optical microscopy and SEM.
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Figure 4. Schematic illustration of shear strength testing apparatus
Modeling of shear strength of diffusion bonding behavior using MATLAB program diffusion bonding period and process temperature were employed as input and  shear strength of the bonded interfaces were recorded as output parameters. Back propagation Multilayer Perceptron (MLP) ANN was used for training of experimental results. ANN modeling the shear strength of the interface of diffusion bonded composites was carried out with the aid of ANN block diagram given at Fig.5. MLP architecture and training parameters were presented in Table 2. 
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Figure 5. Block diagram of the ANN.

Table 2. MLP architecture and training parameters
	The number of layers
	2

	The number of neuron on the layers
	Input: 2. Hidden: 16. Output: 1

	The initial weights and biases
	The Nguyen-Widrow method

	Activation functions
	Log-sigmoid

	Training parameters Learning rule
	Back-propagation

	Adaptive learning rate
	Initial: 0.0001

Increase: 1.05

Decrease: 0.7

	Momentum constant
	0.98

	Sum-squared error
	0.000000001


3. RESULTS AND DISCUSSION 

3.1. EVALUATION OF BOND INTEGRITY AND PARAMETERS
Deformation of surface asperities by plastic flow and creep, grain boundary diffusion of atoms to the voids and grain boundary migration, volume diffusion of atoms to voids can be listed as a sequence of metallurgical stages of the diffusion bonding. Especially with Ni-Ti alloys diffusion bonding can be achieved with adherent surface oxides. In general, the oxide is not removed, but is simply dispersed over a greater surface area in an enclosed environment, in which oxidation cannot recur. 
Figure 6 shows insufficient interface diffuse-on resulted by low temperature and duration. Diffu-sion mechanisms were accelerated and diffusion period were decreased at high temperatures in order to achieve the same coalescence which was given in Figure 7. Samples of the share experiment were examined in macro level and the fracturing presented a fairly smooth surface and a crisp style without any plastically deformation. This situation might be results of crisp phase formations during temperature acceleration. In case of SEM analyses examination almost all samples fractures were occurred at joint boundaries between interlayer and main material which were shown in the Figures 8 and 9. 
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Figure 6.  Optic photograph of specimens bonded at 940 ºC process temperature for (a) 40- (b) 60 minutes
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Figure 7.  Optic photograph of specimens bonded at 970 ºC process temperature for (a) Ni inter layer 40-(b) Cu interlayer 60 minutes.
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Figure 8. View of EDS and SEM analysis of fracturing surface after share experiment of A sample which was bonded in 60 minutes and at 970 ºC
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Figure 9. View of EDS and SEM analysis of fracturing surface after share experiment of F sample which was bonded in 60 minutes and at 970 ºC
3.2. ANN APPROACH TO SHEAR STRENGTH PREDICTION
In this study, predictions of shear strength of diffusion bonded MMC couples were performed by using a back-propagation neural network that uses gradient descent learning algorithm. 
a) Bonding process temperature and bonding period were used as the model inputs while the shear strength was the output of the model. These data’s were obtained from experimental works. 
b) Comparison of experimental shear strength test results with predicted values inline with bonding parameters were presented in Table 3. Experimental shear strength of specimen has shown a consistency with predicted results differing 0.5-1. These trained values can lead maximum 9 % error in shear strength calculations. 
Table 3. Shear strength of predicted values with actual values
	Sample No
	Couples of samples
	Temperatures

(ºC)
	Duratıons (min.)
	Actual values of shear strength (MPa)
	Predicted values of shear strength (MPa)
	Error (MPa)
	% Error

	1
	Ni-A/A
	910
	40
	150
	148.27
	+1.73
	+1.15

	2
	Ni-B/B
	910
	40
	153
	149.02
	+3.98
	+2.60

	3
	Ni-C/C
	910
	40
	148
	156.33
	-8.33
	-5.63

	4
	Ni-D/D
	910
	40
	147
	144.28
	+2.72
	+1.85

	5
	Ni-E/E
	910
	40
	150
	142.66
	+7.34
	+4.89

	6
	Ni-F/F
	910
	40
	160
	164.25
	-4.25
	-2.66

	7
	Ni-A/A
	940
	40
	164
	169.35
	-5.35
	-3.26

	8
	Ni-B/B
	940
	40
	160
	150.18
	+9.82
	+6.14

	9
	Ni-C/C
	940
	40
	164
	170.01
	-6.01
	-3.66

	10
	Ni-D/D
	940
	40
	170
	161.22
	+8.78
	+5.16

	11
	Ni-E/E
	940
	40
	153
	149.45
	+3.55
	+2.32

	12
	Ni-F/F
	940
	40
	164
	160.38
	+3.62
	+2.21

	13
	Ni-A/A
	970
	40
	177
	180.66
	-3.66
	-2.07

	14
	Ni-B/B
	970
	40
	185
	178.12
	+6.88
	+3.72

	15
	Ni-C/C
	970
	40
	180
	184.29
	-4.29
	-2.38

	16
	Ni-D/D
	970
	40
	157
	151.26
	+5.74
	+3.66

	17
	Ni-E/E
	970
	40
	161
	155.47
	+5.53
	+3.43

	18
	Ni-F/F
	970
	40
	175
	181.37
	-6.37
	-3.64

	19
	Ni-A/A
	910
	60
	150
	142.86
	+7.14
	+4.76

	20
	Ni-B/B
	910
	60
	153
	151.73
	+1.27
	+0.83

	21
	Ni-C/C
	910
	60
	157
	156.15
	+0.85
	+0.54

	22
	Ni-D/D
	910
	60
	161
	166.91
	-5.91
	-3.67

	23
	Ni-E/E
	910
	60
	164
	168.35
	-4.35
	-2.65

	24
	Ni-F/F
	910
	60
	170
	167.23
	+2.77
	+1.63

	25
	Ni-A/A
	940
	60
	164
	170.20
	-6.2
	-3.78

	26
	Ni-B/B
	940
	60
	175
	169.57
	+5.43
	+3.10

	27
	Ni-C/C
	940
	60
	172
	170.83
	+1.17
	+0.68

	28
	Ni-D/D
	940
	60
	170
	175.69
	-5.69
	-3.35

	29
	Ni-E/E
	940
	60
	170
	164.45
	+5.55
	+3.26

	30
	Ni-F/F
	940
	60
	174
	172.71
	+1.29
	+0.74

	31
	Ni-A/A
	970
	60
	180
	167.90
	+12.1
	+6.72

	32
	Ni-B/B
	970
	60
	168
	165.51
	+2.49
	+1.48

	33
	Ni-C/C
	970
	60
	184
	183.92
	+0.08
	+0.04

	34
	Ni-D/D
	970
	60
	190
	193.41
	-3.41
	-1.79

	35
	Ni-E/E
	970
	60
	193
	189.50
	+3.5
	+1.81

	36
	Ni-F/F
	970
	60
	190
	195.00
	-5
	-2.63

	37
	Cu-A/A
	910
	40
	133
	128.97
	+4.03
	+3.03

	38
	Cu-B/B
	910
	40
	143
	141.11
	+1.89
	+1.32

	39
	Cu-C/C
	910
	40
	142
	137.36
	+4.64
	+3.27

	40
	Cu-D/D
	910
	40
	145
	140.20
	+4.8
	+3.31

	41
	Cu-E/E
	910
	40
	147
	150.02
	-3.02
	-2.05

	42
	Cu-F/F
	910
	40
	148
	152.48
	-4.48
	-3.03

	43
	Cu-A/A
	940
	40
	158
	152.26
	+5.74
	+3.63

	44
	Cu-B/B
	940
	40
	167
	164.63
	+2.37
	+1.42

	45
	Cu-C/C
	940
	40
	165
	169.88
	-4.88
	-2.96

	46
	Cu-D/D
	940
	40
	164
	159.74
	+4.26
	+2.60

	47
	Cu-E/E
	940
	40
	160
	159.22
	+0.78
	+0.49

	48
	Cu-F/F
	940
	40
	164
	162.56
	+1.44
	+0.88

	49
	Cu-A/A
	970
	40
	172
	169.17
	+2.83
	+1.65

	50
	Cu-B/B
	970
	40
	178
	175.41
	+2.59
	+1.46

	51
	Cu-C/C
	970
	40
	182
	178.15
	+3.85
	+2.12

	52
	Cu-D/D
	970
	40
	176
	174.19
	+1.81
	+1.03

	53
	Cu-E/E
	970
	40
	172
	176.45
	-4.45
	-2.59

	54
	Cu-F/F
	970
	40
	174
	166.95
	+7.05
	+4.05

	55
	Cu-A/A
	910
	60
	151
	154.38
	-3.38
	-2.24

	56
	Cu-B/B
	910
	60
	150
	148.29
	+1.71
	+1.14

	57
	Cu-C/C
	910
	60
	151
	147.69
	+3.31
	+2.19

	58
	Cu-D/D
	910
	60
	150
	153.75
	-3.75
	-2.50

	59
	Cu-E/E
	910
	60
	155
	154.24
	+0.76
	+0.49

	60
	Cu-F/F
	910
	60
	153
	157.31
	-4.31
	-2.82

	61
	Cu-A/A
	940
	60
	170
	166.57
	+3.43
	+2.02

	62
	Cu-B/B
	940
	60
	153
	150.48
	+2.52
	+1.65

	63
	Cu-C/C
	940
	60
	164
	163.36
	+0.64
	+0.39

	64
	Cu-D/D
	940
	60
	175
	180.03
	-5.03
	-2.87

	65
	Cu-E/E
	940
	60
	172
	167.96
	+4.04
	+2.35

	66
	Cu-F/F
	940
	60
	170
	164.86
	+5.14
	+3.02

	67
	Cu-A/A
	970
	60
	175
	170.92
	+4.08
	+2.33

	68
	Cu-B/B
	970
	60
	174
	179.81
	-5.81
	-3.34

	69
	Cu-C/C
	970
	60
	178
	180.54
	-2.54
	-1.43

	70
	Cu-D/D
	970
	60
	177
	176.26
	+0.74
	+0.42

	71
	Cu-E/E
	970
	60
	185
	181.44
	+3.56
	+1.92

	72
	Cu-F/F
	970
	60
	180
	184.64
	-4.64
	-2.58


c) The Sum-squared error (SSE) graphic trained for 10832 Epochs was presented in Fig.10.
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Figure 10 a- Comparison between the experimental and predicted values
b- Sum-Squared Error curve versus iteration number.

4. CONCLUSION 
The overall performance of the model was quite satisfactory. The low error fractions indicate that ANNs could be a useful tool for modeling and predicting shear strength of bonded interfaces of Ni-Ti-Cu alloys.  Under given conditions, and with prescribed materials predicted shear strength can be utilized by designers and process engineers as and where necessary.  Given and predicted values of the ANN system can also be employed at feasibility programs at no cost. This can be handled as a cost saving item at advanced production planning.
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