EXAMPLES OF DEFORMATIONS OF NEARLY PARALLEL G_{2} STRUCTURES ON 7-DIMENSIONAL 3-SASAKIAN MANIFOLDS BY CHARACTERISTIC VECTOR FIELDS

NÜLİFER ÖZDEMİR AND ŞİRİN AKTAY
(Communicated by Yusuf YAYLI)

Abstract

It is known that 7-dimensional 3-Sasakian manifolds admit nearly parallel G_{2} structures $[6,1]$. In this paper, we consider three of these nearly parallel G_{2} structures on a 7-dimensional 3-Sasakian manifold given in [1]. We deform the fundamental 3 -forms of the manifold by three characteristic vector fields of the Sasakian structure separately. Then we determine how classes of G_{2} structures change.

1. Introduction

A G_{2} structure on a 7 -dimensional Riemannian manifold (M, g) is a reduction of the structure group of the frame bundle of M from $S O(7)$ to G_{2}. The Riemannian manifolds with G_{2} structures are classified by Fernández and Gray. There are 16 classes with different defining relations [5]. An equivalent characterization of each class was done by Cabrera by using $d \varphi$ and $d * \varphi$ in [4].

There are several ways of obtaining new G_{2} structures from a fixed G_{2} structure. Consider the space of 3 -forms on M, denoted by $\Lambda^{3} M$. If M has G_{2} structure φ, then this space may be written as $\Lambda^{3} M=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$, where

$$
\begin{gathered}
\Lambda_{3}^{1}=\{t \varphi \mid t \in \mathbb{R}\}, \\
\left.\Lambda_{7}^{3}=\left\{*(\beta \wedge \varphi) \mid \beta \in \Lambda^{1} M\right\}=\{\omega\lrcorner * \varphi \mid \omega \in \Gamma(T M)\right\}, \\
\Lambda_{27}^{3}=\left\{\gamma \in \Lambda^{3} M \mid \gamma \wedge \varphi=0, \gamma \wedge * \varphi=0\right\}
\end{gathered}
$$

and Λ_{k}^{l} denotes a k-dimensional G_{2}-irreducible subspace of $\Lambda^{l} M$ and $\Gamma(T M)$ is the set of smooth vector fields on M. One way of constructing a new G_{2} structure is to add an element of a subspace Λ_{k}^{l} to the fundamental 3 -form φ of the manifold. Adding an element of Λ_{3}^{1} to φ means conformally deforming the 3-form. Conformal deformations were studied by Fernández and Gray. It was observed how conformally changing the fundamental 3 -form changes the class the manifold belongs to. In

[^0]Table 1. Defining relations for classes of G_{2} structures

\mathcal{P}	$d \varphi=0$ and $d * \varphi=0$
\mathcal{W}_{1}	$d \varphi=k * \varphi$ and $d * \varphi=0$
\mathcal{W}_{2}	$d \varphi=0$
\mathcal{W}_{3}	$d * \varphi=0$ and $d \varphi \wedge \varphi=0$
\mathcal{W}_{4}	$d \varphi=\alpha \wedge \varphi$ and $d * \varphi=\beta \wedge * \varphi$
$\mathcal{W}_{1} \oplus \mathcal{W}_{2}$	$d \varphi=k * \varphi$ and $* d * \varphi \wedge * \varphi=0$
$\mathcal{W}_{1} \oplus \mathcal{W}_{3}$	$d * \varphi=0$
$\mathcal{W}_{2} \oplus \mathcal{W}_{3}$	$d \varphi \wedge \varphi=0$ and $* d \varphi \wedge \varphi=0$
$\mathcal{W}_{1} \oplus \mathcal{W}_{4}$	$d \varphi=\alpha \wedge \varphi+f * \varphi$ and $d * \varphi=\beta \wedge * \varphi$
$\mathcal{W}_{2} \oplus \mathcal{W}_{4}$	$d \varphi=\alpha \wedge \varphi$
$\mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$d \varphi \wedge \varphi=0$ and $d * \varphi=\beta \wedge * \varphi$
$\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}$	$* d \varphi \wedge \varphi=0$ or $* d * \varphi \wedge * \varphi=0$
$\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{4}$	$d \varphi=\alpha \wedge \varphi+f * \varphi$
$\mathcal{W}_{1} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$d * \varphi=\beta \wedge * \varphi$
$\mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$d \varphi \wedge \varphi=0$
\mathcal{W}	no relation

addition conformally invariant classes were determined [5]. Adding an element of $\left.\Lambda_{7}^{3} \simeq\{\omega\lrcorner * \varphi \mid \omega \in \Gamma(T M)\right\}$ gives a new G_{2} structure on M with the fundamental 3 -form $\widetilde{\varphi}=\varphi+\omega\lrcorner * \varphi$ for each vector field $\omega[7]$. These deformations were studied in [7]. The new metric \widetilde{g} and the new Hodge-star operator in terms of old ones were obtained as:

$$
\widetilde{g}(u, v)=(1+g(\omega, \omega))^{-2 / 3}(g(u, v)+g(u \times \omega, v \times \omega)),
$$

where \times is the cross product associated to the first G_{2} structure and u, v are any vector fields,

$$
\left.\left.\widetilde{*} \alpha=(1+g(\omega, \omega))^{\frac{2-k}{3}}\left(* \alpha+(-1)^{k-1} \omega\right\lrcorner(*(\omega\lrcorner \alpha)\right)\right)
$$

where α is a k-form. Using this formula $\widetilde{*} \widetilde{\varphi}$ was written as:

$$
\left.\left.\left.\widetilde{*} \widetilde{\varphi}=\left(1+g(\omega, \omega)^{-1 / 3}\right)(* \varphi+*(\omega\lrcorner * \varphi)+\omega\right\lrcorner *(\omega\lrcorner \varphi\right)\right) .
$$

It was not studied, however, how deforming φ by an element of Λ_{7}^{3} changes the class the manifold belongs to. In this paper our aim is to investigate how the class the manifold belongs to changes after deforming the fundamental 3 -form by a vector field on specific examples.

2. Preliminaries

Let (M, g) be a 7 -dimensional Riemannian manifold with G_{2} structure φ. It is known that for each $p \in M, \nabla \varphi$ belongs to the space

$$
W=\left\{\alpha \in T_{p}^{*} M \otimes \Lambda^{3} T_{p}^{*} M \mid \alpha(x, y \wedge z \wedge(y \times z))=0 \text { for all } x, y, z \in T_{p} M\right\}
$$

The space W can be decomposed as $W=W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{4}$ where W_{i} are G_{2} irreducible subspaces [5]. A G_{2} structure is said to be of type $\mathcal{P}, \mathcal{W}_{i}, \mathcal{W}_{i} \oplus \mathcal{W}_{j}, \mathcal{W}_{i} \oplus$ $\mathcal{W}_{j} \oplus \mathcal{W}_{k}$ or \mathcal{W}, if the covariant derivative $\nabla \varphi$ lies in $\{0\}, W_{i}, W_{i} \oplus W_{j}, W_{i} \oplus W_{j} \oplus W_{k}$ or W, respectively, for $i, j, k=1,2,3,4$ [4]. Characterization of Cabrera is written in Table1 above. Note that $* d \varphi \wedge \varphi=-* d * \varphi \wedge * \varphi, \alpha=-\frac{1}{4} *(* d \varphi \wedge \varphi)$,
$\beta=-\frac{1}{3} *(* d \varphi \wedge \varphi)$ and $f=\frac{1}{7} *(\varphi \wedge d \varphi)$ [4]. Following definitions and properties can be found in $[2,3]$.
Definition 2.1. Let (M, g) be a Riemannan manifold with Levi-Civita covariant derivative ∇ of $g .(M, g)$ is called a Sasakian manifold if there exists a Killing vector field of unit length with the property that the endomorphism defined by $\Phi:=\nabla \xi$ satisfies

$$
\left(\nabla_{x} \Phi\right)(y)=g(\xi, y) x-g(x, y) \xi
$$

for all vector fields x, y.
The triple (ξ, η, Φ) where η is the metric dual of ξ is called a Sasakian structure on (M, g). The Killing vector field ξ and the one-form η are respectively called the characteristic vector field and the characteristic one-form of the Sasakian structure.

Any Sasakian manifold (M, g) with the Sasakian structure (ξ, η, Φ) satisfies the following relations:

$$
\begin{gathered}
\Phi \circ \Phi(y)=-y+\eta(y) \xi \\
\Phi(\xi)=0, \eta(\Phi(y))=0 \\
g(x, \Phi(y))+g(\Phi(x), y)=0 \\
g(\Phi(y), \Phi(x))=g(y, x)-\eta(y) \eta(x) \\
d \eta(x, y)=2 g(\Phi(x), y)
\end{gathered}
$$

for all vector fields x, y.
Definition 2.2. Let (M, g) be a Riemannan manifold. (M, g) is called a 3-Sasakian manifold if there are three Sasakian structures $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$ such that $g\left(\xi_{i}, \xi_{j}\right)=$ $\delta_{i j},\left[\xi_{1}, \xi_{2}\right]=2 \xi_{3},\left[\xi_{2}, \xi_{3}\right]=2 \xi_{1}$ and $\left[\xi_{3}, \xi_{1}\right]=2 \xi_{2}$.

Each 3-Sasakian manifold has the properties below:

$$
\begin{gathered}
\eta_{i}\left(\xi_{j}\right)=\delta_{i j}, \\
\Phi_{i}\left(\xi_{j}\right)=-\varepsilon_{i j k} \xi_{k} \\
\Phi_{i} \circ \Phi_{j}-\xi_{i} \otimes \eta_{j}=-\varepsilon_{i j k} \Phi_{k}-\delta_{i j} I d
\end{gathered}
$$

Let (M, g) be a 7-dimensional 3-Sasakian manifold with Sasakian structures $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)$ for $i=1,2,3$. The tangent bundle $T M$ can be written as $T M=T^{v}+T^{h}$, where T^{v} is the vertical subbundle spanned by $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ and the horizontal subbundle T^{h} is the orthogonal complement of T^{v} [1]. For topological reasons, we assume that M is compact and simply-connected. The structure group of (M, g) is $S U(2) \subset G_{2} \subset S O(7)$. In [1], a locally orthonormal frame $\left\{e_{1}, \cdots, e_{7}\right\}$ such that $e_{1}=\xi_{1}, e_{2}=\xi_{2}$ and $e_{3}=\xi_{3}$ was given together with endomorphisms Φ_{i} acting on T^{h} by the following matrices:

$$
\Phi_{1}:=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \Phi_{2}:=\left[\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right], \quad \Phi_{3}:=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

The corresponding orthonormal coframe is denoted by $\left\{\eta_{1}, \cdots, \eta_{7}\right\}$. According to this frame, the exterior derivatives of characteristic 1 -forms are computed as:

$$
d \eta_{1}=-2\left(\eta_{23}+\eta_{45}+\eta_{67}\right), \quad d \eta_{2}=2\left(\eta_{13}-\eta_{46}+\eta_{57}\right), \quad d \eta_{3}=-2\left(\eta_{12}+\eta_{47}+\eta_{56}\right)
$$

The following three nearly parallel G_{2} structures (i.e. $d \varphi_{i}=-4 * \varphi_{i}$) on 7dimensional 3-Sasakian manifolds are expressed in [1]:

$$
\begin{aligned}
\varphi_{1} & =\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3} \\
\varphi_{2} & =-\frac{1}{2} \eta_{1} \wedge d \eta_{1}+\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3} \\
\varphi_{3} & =-\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}+\frac{1}{2} \eta_{3} \wedge d \eta_{3}
\end{aligned}
$$

3. Deformations of one of the nearly parallel G_{2} Structures by Characteristic Vector Fields

Let (M, g) be a 7 -dimensional 3-Sasakian manifold equipped with Sasakian structures $\left(\xi_{i}, \eta_{i}, \phi_{i}\right)_{i=1,2,3}$, having the nearly parallel G_{2} structure φ_{1} given in the previous section. On an open subset of M, we choose the local orthonormal frame given in [1] with the properties mentioned in the previous section. We denote the corresponding coframe via the Riemannian metric by $\left\{\eta_{1}, \cdots, \eta_{7}\right\}$. Now we deform φ_{1} by three characteristic vector fields. We begin by deforming φ_{1} by ξ_{1}. We write the new deformed 3 -form $\left.\widetilde{\varphi}_{1}=\varphi_{1}+\xi_{1}\right\lrcorner * \varphi_{1}$ by

$$
\widetilde{\varphi}_{1}=\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3}+\frac{1}{2} \eta_{3} \wedge d \eta_{2}-\frac{1}{2} \eta_{2} \wedge d \eta_{3}
$$

locally

$$
\begin{aligned}
\widetilde{\varphi}_{1}= & \eta_{123}-\eta_{145}-\eta_{167}+\eta_{246}-\eta_{257}+\eta_{347} \\
& +\eta_{356}+\eta_{357}-\eta_{346}+\eta_{256}+\eta_{247}
\end{aligned}
$$

Now we investigate the class the Riemannian manifold $\widetilde{M}:=(M, \widetilde{g})$ belongs to. We compute

$$
d \widetilde{\varphi}_{1}=d \varphi_{1}-d\left(*\left(\eta_{1} \wedge \varphi_{1}\right)\right)
$$

Since $*\left(\eta_{1} \wedge \varphi_{1}\right)=-\frac{1}{2} \eta_{3} \wedge d \eta_{2}+\frac{1}{2} \eta_{2} \wedge d \eta_{3}, \quad d\left(*\left(\eta_{1} \wedge \varphi\right)\right)=0$ and thus $d \widetilde{\varphi}_{1}=d \varphi_{1}$. This may locally be written as

$$
d \widetilde{\varphi}_{1}=4\left\{-\eta_{1247}-\eta_{1256}+\eta_{1346}-\eta_{1357}+\eta_{2345}+\eta_{2367}-\eta_{4567}\right\}
$$

Since $d \widetilde{\varphi}_{1} \neq 0$, the defining relations of G_{2} structures imply $\widetilde{M} \notin \mathcal{P}$ and $\widetilde{M} \notin \mathcal{W}_{2}$.
Assume α is a 1 -form on M such that $d \widetilde{\varphi}_{1}=\alpha \wedge \widetilde{\varphi}_{1}$. This 1-form may be locally written as $\alpha=\sum \alpha_{i} \eta_{i}$ for smooth functions α_{i}. Then

$$
\begin{aligned}
\alpha \wedge \widetilde{\varphi}_{1}= & -\alpha_{4} \eta_{1234}-\alpha_{5} \eta_{1235}-\alpha_{6} \eta_{1236}-\alpha_{7} \eta_{1237}+\alpha_{2} \eta_{1245}+\alpha_{1} \eta_{1246} \\
& +\alpha_{1} \eta_{1247}+\alpha_{1} \eta_{1256}-\alpha_{1} \eta_{1257}+\alpha_{2} \eta_{1267}+\alpha_{3} \eta_{1345}-\alpha_{1} \eta_{1346} \\
& +\alpha_{1} \eta_{1347}+\alpha_{1} \eta_{1356}+\alpha_{1} \eta_{1357}+\alpha_{3} \eta_{1367}+\alpha_{6} \eta_{1456}+\alpha_{7} \eta_{1457} \\
& +\alpha_{4} \eta_{1467}+\alpha_{5} \eta_{1567}-\left(\alpha_{2}+\alpha_{3}\right) \eta_{2346}+\left(\alpha_{2}-\alpha_{3}\right) \eta_{2347} \\
& +\left(\alpha_{2}-\alpha_{3}\right) \eta_{2356}+\left(\alpha_{2}+\alpha_{3}\right) \eta_{2357}+\left(\alpha_{5}-\alpha_{4}\right) \eta_{2456}+\left(\alpha_{4}+\alpha_{5}\right) \eta_{2457} \\
& +\left(\alpha_{6}-\alpha_{7}\right) \eta_{2467}-\left(\alpha_{6}+\alpha_{7}\right) \eta_{2567}-\left(\alpha_{4}+\alpha_{5}\right) \eta_{3456}+\left(\alpha_{5}-\alpha_{4}\right) \eta_{3457} \\
& +\left(\alpha_{6}+\alpha_{7}\right) \eta_{3467}+\left(\alpha_{6}-\alpha_{7}\right) \eta_{3567} .
\end{aligned}
$$

The coefficient of η_{2345} in $d \widetilde{\varphi}_{1}$ is 4 , while in $\alpha \wedge \widetilde{\varphi}_{1}$ there does not exist an η_{2345} term. Thus there is no such 1-form α with the property $d \widetilde{\varphi}_{1}=\alpha \wedge \widetilde{\varphi}_{1}$ even locally. Hence $\widetilde{M} \notin \mathcal{W}_{4}$ and $\widetilde{M} \notin \mathcal{W}_{2} \oplus \mathcal{W}_{4}$.

We apply the Hodge-star formula for a k-form given in the introduction to the 3 -form $\widetilde{\varphi}_{1}$ and also the identities given in the appendix of [7] to obtain $\widetilde{*} \widetilde{\varphi}_{1}$:

$$
\begin{aligned}
\widetilde{*} \widetilde{\varphi}_{1}= & \left.\left.\left.2^{-1 / 3}\left\{* \varphi_{1}+*\left(\xi_{1}\right\lrcorner * \varphi_{1}\right)+\xi_{1}\right\lrcorner *\left(\xi_{1}\right\lrcorner \varphi_{1}\right)\right\} \\
= & 2^{-1 / 3}\left\{* \varphi-\eta_{1} \wedge \varphi_{1}+*\left(\eta_{1} \wedge *\left(\eta_{1} \wedge * \varphi_{1}\right)\right)\right\} \\
= & 2^{-1 / 3}\left\{-\frac{1}{4} d \eta_{1} \wedge d \eta_{1}+\frac{1}{8} d \eta_{2} \wedge d \eta_{2}+\frac{1}{8} d \eta_{3} \wedge d \eta_{3}\right. \\
& \left.+2 * \eta_{123}+\frac{1}{2} \eta_{12} \wedge d \eta_{2}+\frac{1}{2} \eta_{13} \wedge d \eta_{3}\right\} .
\end{aligned}
$$

Local expression of $\widetilde{*} \widetilde{\varphi}_{1}$ is

$$
\begin{aligned}
\widetilde{*}^{\widetilde{\varphi}_{1}}= & 2^{-1 / 3}\left\{-\eta_{1246}+\eta_{1247}+\eta_{1256}+\eta_{1257}-\eta_{1346}-\eta_{1347}\right. \\
& \left.-\eta_{1356}+\eta_{1357}-2 \eta_{2345}-2 \eta_{2367}+2 \eta_{4567}\right\} .
\end{aligned}
$$

Assume $d \widetilde{\varphi}_{1}=k \approx \widetilde{\varphi}_{1}$ for a non-zero constant k. Comparing the coefficients of η_{1256} and η_{4567} in $d \widetilde{\varphi}_{1}$ and $k \widetilde{\kappa}^{(} \widetilde{\varphi}_{1}$ respectively gives $-4=2^{-1 / 3} k$ and $-4=2^{2 / 3} k$, a contradiction. Thus there is no such non-zero constant. This eliminates the classes \mathcal{W}_{1} and $\mathcal{W}_{1} \oplus \mathcal{W}_{2}$.

The exterior derivative of $\widetilde{*} \widetilde{\varphi}_{1}$ is

$$
\begin{aligned}
d \widetilde{*} \widetilde{\varphi}_{1}= & 2^{-1 / 3}\left\{\frac{1}{2} \eta_{2} \wedge d \eta_{1} \wedge d \eta_{2}-\frac{1}{2} \eta_{1} \wedge d \eta_{2} \wedge d \eta_{2}\right. \\
& \left.+\frac{1}{2} \eta_{3} \wedge d \eta_{1} \wedge d \eta_{3}-\frac{1}{2} \eta_{1} \wedge d \eta_{3} \wedge d \eta_{3}\right\}
\end{aligned}
$$

This is locally equivalent to $d \not \approx \widetilde{\varphi}_{1}=2^{5 / 3} \eta_{12345}+2^{5 / 3} \eta_{12367}-2^{8 / 3} \eta_{14567}$ which is nonzero.

Let β be a smooth 1 -form on M satisfying $d \widetilde{*} \widetilde{\varphi}_{1}=\beta \wedge \widetilde{\star}_{\varphi}$. Then β may be locally written as $\beta=\sum \beta_{i} \eta_{i}$ for smooth functions β_{i}.

$$
\begin{aligned}
2^{1 / 3} \beta \wedge \widetilde{*} \widetilde{\varphi}= & -2 \beta_{1} \eta_{12345}+\left(\beta_{2}-\beta_{3}\right) \eta_{12346}+\left(\beta_{2}+\beta_{3}\right) \eta_{12347} \\
& +\left(\beta_{2}+\beta_{3}\right) \eta_{12356}+\left(\beta_{3}-\beta_{2}\right) \eta_{12357}-2 \beta_{1} \eta_{12367} \\
& +\left(\beta_{4}+\beta_{5}\right) \eta_{12456}+\left(\beta_{4}-\beta_{5}\right) \eta_{12457}-\left(\beta_{6}+\beta_{7}\right) \eta_{12467} \\
& +\left(\beta_{7}-\beta_{6}\right) \eta_{12567}+\left(\beta_{5}-\beta_{4}\right) \eta_{13456}+\left(\beta_{4}+\beta_{5}\right) \eta_{13457} \\
& +\left(\beta_{6}-\beta_{7}\right) \eta_{13467}-\left(\beta_{6}+\beta_{7}\right) \eta_{13567}+2 \beta_{1} \eta_{14567} \\
& -2 \beta_{6} \eta_{23456}-2 \beta_{7} \eta_{23457}-2 \beta_{4} \eta_{23467} \\
& -2 \beta_{5} \eta_{23567}+2 \beta_{2} \eta_{24567}+2 \beta_{3} \eta_{34567} .
\end{aligned}
$$

Comparing the coefficients of η_{12345} and η_{14567} in $2^{1 / 3} d \widetilde{*} \widetilde{\varphi}_{1}$ and $2^{1 / 3} \beta \wedge \widetilde{*}_{1}$ respectively gives $\beta_{1}=-2, \beta_{1}=-4$. This is a contradiction. Hence there does not exist a 1-form β satisfying the defining relation $d \widetilde{*} \widetilde{\varphi}_{1}=\beta \wedge \widetilde{\star}^{\boldsymbol{\varphi}} \widetilde{\varphi}_{1}$. This means that $\widetilde{M} \notin \mathcal{W}_{1} \oplus \mathcal{W}_{4}$.

If we take $\alpha=-2 \eta_{1}$ and $f=-2^{4 / 3}$, then direct computation yields the equality $d \widetilde{\varphi}_{1}=\alpha \wedge \widetilde{\varphi}_{1}+f \widetilde{*} \widetilde{\varphi}_{1}$. Hence $\widetilde{M} \in \mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{4}$.

Next we deform the 3-form φ_{1} by ξ_{2}. The new deformed 3-form $\left.\widetilde{\varphi}_{1}=\varphi_{1}+\xi_{2}\right\lrcorner * \varphi_{1}$ is

$$
\widetilde{\varphi}_{1}=\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3}+\frac{1}{2} \eta_{3} \wedge d \eta_{1}+\frac{1}{2} \eta_{1} \wedge d \eta_{3}
$$

which is locally

$$
\begin{aligned}
\widetilde{\varphi}_{1}= & \eta_{123}-\eta_{145}-\eta_{167}+\eta_{246}-\eta_{257}+\eta_{347} \\
& +\eta_{356}-\eta_{345}-\eta_{367}-\eta_{147}-\eta_{156} .
\end{aligned}
$$

We compute $\widetilde{*} \widetilde{\varphi}_{1}$:

$$
\begin{aligned}
\tilde{\vartheta}_{\varphi} & \left.\left.\left.=2^{-1 / 3}\left\{* \varphi_{1}+*\left(\xi_{2}\right\lrcorner * \varphi_{1}\right)+\xi_{2}\right\lrcorner *\left(\xi_{2}\right\lrcorner \varphi_{1}\right)\right\} \\
& =2^{-1 / 3}\left\{* \varphi-\eta_{2} \wedge \varphi_{1}+*\left(\eta_{2} \wedge *\left(\eta_{2} \wedge * \varphi_{1}\right)\right)\right\} .
\end{aligned}
$$

Note that

$$
\begin{gathered}
* \varphi_{1}=-\frac{1}{8} d \eta_{1} \wedge d \eta_{1}+\frac{1}{8} d \eta_{2} \wedge d \eta_{2}+\frac{1}{8} d \eta_{3} \wedge d \eta_{3} \\
\eta_{2} \wedge \varphi_{1}=\frac{1}{4} d \eta_{1} \wedge d \eta_{3}
\end{gathered}
$$

and

$$
*\left(\eta_{1} \wedge *\left(\eta_{1} \wedge * \varphi_{1}\right)\right)=\frac{1}{8} d \eta_{2} \wedge d \eta_{2}
$$

This yields $d \widetilde{*} \widetilde{\varphi}_{1}=0$. The new G_{2} structure can be an element of $\mathcal{P}, \mathcal{W}_{1}, \mathcal{W}_{3}$ or $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$. The exterior derivative of $\widetilde{\varphi}_{1}$ is

$$
d \widetilde{\varphi}_{1}=\frac{1}{2} d \eta_{1} \wedge d \eta_{1}-\frac{1}{2} d \eta_{2} \wedge d \eta_{2}-\frac{1}{2} d \eta_{3} \wedge d \eta_{3}+d \eta_{1} \wedge d \eta_{3}
$$

This may locally be written as

$$
\begin{aligned}
d \widetilde{\varphi}_{1}= & 4\left\{\eta_{1245}-\eta_{1247}+\eta_{1267}-\eta_{1256}+\eta_{1346}-\eta_{1357}\right. \\
& \left.+\eta_{2345}+\eta_{2347}+\eta_{2356}+\eta_{2367}-\eta_{4567}\right\} .
\end{aligned}
$$

Since $d \widetilde{\varphi}_{1} \neq 0$, the class \mathcal{P} is eliminated.
Assume $d \widetilde{\varphi}_{1}=k \widetilde{*} \widetilde{\varphi}_{1}$ for a on-zero constant k. Since

$$
\begin{aligned}
\widetilde{*}^{\widetilde{\varphi}_{1}}= & 2^{-1 / 3}\left\{-\frac{1}{8} d \eta_{1} \wedge d \eta_{1}+\frac{1}{8} d \eta_{2} \wedge d \eta_{2}+\frac{1}{8} d \eta_{3} \wedge d \eta_{3}\right. \\
& \left.-\frac{1}{4} d \eta_{1} \wedge d \eta_{3}+\frac{1}{8} d \eta_{2} \wedge d \eta_{2}\right\}
\end{aligned}
$$

or, locally

$$
\begin{aligned}
\widetilde{*}_{\varphi}= & 2^{-1 / 3}\left\{-\eta_{1245}+\eta_{1247}+\eta_{1256}-\eta_{1267}-2 \eta_{1346}+2 \eta_{1357}\right. \\
& \left.-\eta_{2345}-\eta_{2347}-\eta_{2356}-\eta_{2367}+2 \eta_{4567}\right\}
\end{aligned}
$$

comparing the coefficients of η_{1245} and η_{1346} in $d \widetilde{\varphi}_{1}$ and $k \widetilde{*} \widetilde{\varphi}_{1}$ respectively gives $4=-2^{-1 / 3} k$ and $4=-2^{2 / 3} k$, a contradiction. Thus there is no such non-zero constant. This excludes the class \mathcal{W}_{1}.

Computed locally, $d \widetilde{\varphi}_{1} \wedge \widetilde{\varphi}_{1}=-44 \eta_{1234567} \neq 0$ and hence $M \notin \mathcal{W}_{3}$. Therefore M is in the class $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ with the new G_{2} structure $\widetilde{\varphi}_{1}$.

Finally we deform the 3 -form φ_{1} by ξ_{3}. The new deformed 3 -form $\widetilde{\varphi}_{1}=\varphi_{1}+$ $\left.\xi_{3}\right\lrcorner * \varphi_{1}$ is

$$
\widetilde{\varphi}_{1}=\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3}-\frac{1}{2} \eta_{2} \wedge d \eta_{1}-\frac{1}{2} \eta_{1} \wedge d \eta_{2}
$$

which is locally

$$
\begin{aligned}
\widetilde{\varphi}_{1}= & \eta_{123}-\eta_{145}-\eta_{167}+\eta_{246}-\eta_{257}+\eta_{347} \\
& +\eta_{356}+\eta_{267}+\eta_{245}-\eta_{157}+\eta_{146}
\end{aligned}
$$

We compute $\widetilde{*} \widetilde{\varphi}_{1}$:

$$
\begin{aligned}
\widetilde{*} \widetilde{\varphi}_{1} & \left.\left.\left.=2^{-1 / 3}\left\{* \varphi_{1}+*\left(\xi_{3}\right\lrcorner * \varphi_{1}\right)+\xi_{3}\right\lrcorner *\left(\xi_{3}\right\lrcorner \varphi_{1}\right)\right\} \\
& =2^{-1 / 3}\left\{* \varphi_{1}-\eta_{3} \wedge \varphi_{1}+*\left(\eta_{3} \wedge *\left(\eta_{3} \wedge * \varphi_{1}\right)\right)\right\} .
\end{aligned}
$$

Since

$$
\begin{gathered}
* \varphi_{1}=-\frac{1}{8} d \eta_{1} \wedge d \eta_{1}+\frac{1}{8} d \eta_{2} \wedge d \eta_{2}+\frac{1}{8} d \eta_{3} \wedge d \eta_{3} \\
\eta_{3} \wedge \varphi_{1}=-\frac{1}{4} d \eta_{1} \wedge d \eta_{2}
\end{gathered}
$$

and

$$
*\left(\eta_{3} \wedge *\left(\eta_{3} \wedge * \varphi_{1}\right)\right)=\frac{1}{8} d \eta_{3} \wedge d \eta_{3}
$$

we have $d \widetilde{*} \widetilde{\varphi}_{1}=0$. The new G_{2} structure can be an element of $\mathcal{P}, \mathcal{W}_{1}, \mathcal{W}_{3}$ or $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$. The exterior derivative of $\widetilde{\varphi}_{1}$ is

$$
d \widetilde{\varphi}_{1}=\frac{1}{2} d \eta_{1} \wedge d \eta_{1}-\frac{1}{2} d \eta_{2} \wedge d \eta_{2}-\frac{1}{2} d \eta_{3} \wedge d \eta_{3}-d \eta_{1} \wedge d \eta_{2}
$$

This may be locally written as

$$
\begin{aligned}
d \widetilde{\varphi}_{1}= & 4\left\{-\eta_{1247}-\eta_{1256}+\eta_{1345}+\eta_{1346}-\eta_{1357}+\eta_{1367}\right. \\
& \left.+\eta_{2345}-\eta_{2346}+\eta_{2357}+\eta_{2367}-\eta_{4567}\right\} .
\end{aligned}
$$

Since $d \widetilde{\varphi}_{1} \neq 0$, the class \mathcal{P} is eliminated.
Assume $d \widetilde{\varphi}_{1}=k \widetilde{*} \widetilde{\varphi}_{1}$ for a non-zero constant k. Since

$$
\begin{aligned}
\widetilde{*}_{1}= & 2^{-1 / 3}\left\{-\frac{1}{8} d \eta_{1} \wedge d \eta_{1}+\frac{1}{8} d \eta_{2} \wedge d \eta_{2}+\frac{1}{8} d \eta_{3} \wedge d \eta_{3}\right. \\
& \left.+\frac{1}{4} d \eta_{1} \wedge d \eta_{2}+\frac{1}{8} d \eta_{3} \wedge d \eta_{3}\right\}
\end{aligned}
$$

or, locally

$$
\begin{aligned}
\tilde{*}^{\varphi_{1}}= & 2^{-1 / 3}\left\{2 \eta_{1247}+2 \eta_{1256}-\eta_{1345}-\eta_{1346}+\eta_{1357}-\eta_{1367}\right. \\
& \left.-\eta_{2345}+\eta_{2346}-\eta_{2357}-\eta_{2367}+2 \eta_{4567}\right\}
\end{aligned}
$$

comparing the coefficients of η_{1247} and η_{1357} in $d \widetilde{\varphi}_{1}$ and $k * \widetilde{\varphi}_{1}$ respectively gives $4=-2^{2 / 3} k$ and $4=-2^{-1 / 3} k$, a contradiction. Thus there is no such non-zero constant. This excludes the class \mathcal{W}_{1}.

Computed locally, $d \widetilde{\varphi}_{1} \wedge \widetilde{\varphi}_{1}=-44 \eta_{1234567} \neq 0$ and hence $M \notin \mathcal{W}_{3}$. Therefore M is in the class $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ with the new G_{2} structure $\widetilde{\varphi}_{1}$.

To sum up, if we take the nearly parallel structure φ_{1} in a 7-dimensional 3Sasakian manifold and deform this structure by the characteristic vector fields ξ_{1}, ξ_{2}, ξ_{3} of the Sasakian structure, we get new G_{2} structures of types $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{4}$, $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ and $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ respectively. Similarly, if we deform φ_{2} (respectively φ_{3}) by ξ_{1} and ξ_{3} (resp. by ξ_{1} and ξ_{2}), we get G_{2} structures of type $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$. If we deform φ_{2} (resp. φ_{3}) by ξ_{2} (resp. ξ_{3}), we get G_{2} structures of type $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{4}$ such that $d \widetilde{\varphi}_{i}=\alpha \wedge \widetilde{\varphi}_{i}+f \widetilde{*} \widetilde{\varphi}_{i}$ hold for $\alpha=-2 \eta_{i}$ and $f=-2^{4 / 3}$, for $i=2,3$.

References

[1] Agricola, I. and Friedrich, T., 3-Sasakian Manifolds in Dimension Seven, Their Spinors and G_{2} Structures, Journal of Geometry and Physics 60 (2010) 326-332.
[2] Boyer, C. P and Galicki, K., 3-Sasakian Manifolds, Surveys Diff. Geom. 7 (1999) 123-184, arXiv:hep-th/ 9810250.
[3] Boyer, C. P and Galicki, K., Sasakian Geometry, Oxford Mathematical Monogrphs, Oxford University Press, 2008.
[4] Cabrera, F. M., On Riemannian Manifolds with G_{2}-Structure, Bolletino U.M.I (7) 10-A (1996) 99-112.
[5] Fernández, M. and Gray, A., Riemannian manifolds with structure group G_{2}, Ann. Mat. Pura Appl. (4) 132 (1982) 19-25.
[6] Friedrich, T., Kath, I., Moroianu, A. and Semmelmann, U., On Nearly Parallel G_{2} structures, J. Geom. Phys., 23 (1997) 256-286.
[7] Karigiannis, S., Deformations of G_{2} and $\operatorname{Spin}(7)$ Structures on Manifolds, Canadian Journal of Mathematics 57 (2005), 1012-1055.

Department of Mathematics, Anadolu University, 26470 Eskişehir, Turkey
E-mail address: nozdemir@anadolu.edu.tr
Department of Mathematics, Anadolu University, 26470 Eskişehir, Turkey
E-mail address: sirins@anadolu.edu.tr

[^0]: Date: Received: December 5, 2012 and Accepted: February 17, 2014.
 2010 Mathematics Subject Classification. 53C25, 53C10.
 Key words and phrases. G_{2} structure, 3-Sasakian manifold.
 This study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1110F170.

