EXAMPLES OF DEFORMATIONS OF NEARLY PARALLEL G₂ STRUCTURES ON 7-DIMENSIONAL 3-SASAKIAN MANIFOLDS BY CHARACTERISTIC VECTOR FIELDS

NÜLİFER ÖZDEMİR AND ŞİRİN AKTAY

(Communicated by Yusuf YAYLI)

ABSTRACT. It is known that 7-dimensional 3-Sasakian manifolds admit nearly parallel G_2 structures [6, 1]. In this paper, we consider three of these nearly parallel G_2 structures on a 7-dimensional 3-Sasakian manifold given in [1]. We deform the fundamental 3-forms of the manifold by three characteristic vector fields of the Sasakian structure separately. Then we determine how classes of G_2 structures change.

1. INTRODUCTION

A G_2 structure on a 7-dimensional Riemannian manifold (M, g) is a reduction of the structure group of the frame bundle of M from SO(7) to G_2 . The Riemannian manifolds with G_2 structures are classified by Fernández and Gray. There are 16 classes with different defining relations [5]. An equivalent characterization of each class was done by Cabrera by using $d\varphi$ and $d * \varphi$ in [4].

There are several ways of obtaining new G_2 structures from a fixed G_2 structure. Consider the space of 3-forms on M, denoted by $\Lambda^3 M$. If M has G_2 structure φ , then this space may be written as $\Lambda^3 M = \Lambda_1^3 \oplus \Lambda_7^3 \oplus \Lambda_{27}^3$, where

$$\Lambda_3^1 = \{t\varphi | t \in \mathbb{R}\},\$$
$$\Lambda_7^3 = \{*(\beta \land \varphi) | \beta \in \Lambda^1 M\} = \{\omega \lrcorner * \varphi \mid \omega \in \Gamma(TM)\},\$$
$$\Lambda_{27}^3 = \{\gamma \in \Lambda^3 M | \gamma \land \varphi = 0, \gamma \land * \varphi = 0\}$$

and Λ_k^l denotes a k-dimensional G_2 -irreducible subspace of $\Lambda^l M$ and $\Gamma(TM)$ is the set of smooth vector fields on M. One way of constructing a new G_2 structure is to add an element of a subspace Λ_k^l to the fundamental 3-form φ of the manifold. Adding an element of Λ_3^1 to φ means conformally deforming the 3-form. Conformal deformations were studied by Fernández and Gray. It was observed how conformally changing the fundamental 3-form changes the class the manifold belongs to. In

Date: Received: December 5, 2012 and Accepted: February 17, 2014.

²⁰¹⁰ Mathematics Subject Classification. 53C25, 53C10.

Key words and phrases. G₂ structure, 3-Sasakian manifold.

This study was supported by Anadolu University Scientific Research Projects Commission under the grant no: 1110F170.

\mathcal{P}	$d\varphi = 0$ and $d * \varphi = 0$
\mathcal{W}_1	$d\varphi = k * \varphi$ and $d * \varphi = 0$
\mathcal{W}_2	$d\varphi = 0$
\mathcal{W}_3	$d * \varphi = 0$ and $d\varphi \wedge \varphi = 0$
\mathcal{W}_4	$d\varphi = \alpha \wedge \varphi \text{ and } d * \varphi = \beta \wedge * \varphi$
$\mathcal{W}_1\oplus\mathcal{W}_2$	$d\varphi = k * \varphi \text{ and } * d * \varphi \wedge * \varphi = 0$
$\mathcal{W}_1\oplus\mathcal{W}_3$	$d \ast \varphi = 0$
$\mathcal{W}_2\oplus\mathcal{W}_3$	$d\varphi \wedge \varphi = 0$ and $*d\varphi \wedge \varphi = 0$
$\mathcal{W}_1\oplus\mathcal{W}_4$	$d\varphi = \alpha \wedge \varphi + f * \varphi \text{ and } d * \varphi = \beta \wedge * \varphi$
$\mathcal{W}_2\oplus\mathcal{W}_4$	$d\varphi = \alpha \wedge \varphi$
$\mathcal{W}_3\oplus\mathcal{W}_4$	$d\varphi \wedge \varphi = 0$ and $d * \varphi = \beta \wedge * \varphi$
$\mathcal{W}_1\oplus\mathcal{W}_2\oplus\mathcal{W}_3$	$*d\varphi \wedge \varphi = 0 \text{ or } *d * \varphi \wedge *\varphi = 0$
$\mathcal{W}_1\oplus\mathcal{W}_2\oplus\mathcal{W}_4$	$d\varphi = \alpha \wedge \varphi + f \ast \varphi$
$\mathcal{W}_1\oplus\mathcal{W}_3\oplus\mathcal{W}_4$	$d*\varphi=\beta\wedge *\varphi$
$\mathcal{W}_2\oplus\mathcal{W}_3\oplus\mathcal{W}_4$	$d\varphi \wedge \varphi = 0$
\mathcal{W}	no relation

TABLE 1. Defining relations for classes of G_2 structures

addition conformally invariant classes were determined [5]. Adding an element of $\Lambda_7^3 \simeq \{\omega_{\perp} * \varphi \mid \omega \in \Gamma(TM)\}$ gives a new G_2 structure on M with the fundamental 3-form $\tilde{\varphi} = \varphi + \omega_{\perp} * \varphi$ for each vector field ω [7]. These deformations were studied in [7]. The new metric \tilde{g} and the new Hodge-star operator in terms of old ones were obtained as:

$$\widetilde{g}(u,v) = (1 + g(\omega, \omega))^{-2/3} \left(g(u,v) + g(u \times \omega, v \times \omega) \right),$$

where \times is the cross product associated to the first G_2 structure and u, v are any vector fields,

$$\widetilde{\ast}\alpha = (1 + g(\omega, \omega))^{\frac{2-k}{3}} (\ast\alpha + (-1)^{k-1} \omega \lrcorner (\ast(\omega \lrcorner \alpha)))$$

where α is a k-form. Using this formula $\widetilde{*}\widetilde{\varphi}$ was written as:

 $\widetilde{\ast}\widetilde{\varphi} = (1 + g(\omega, \omega)^{-1/3})(\ast\varphi + \ast(\omega \lrcorner \ast \varphi) + \omega \lrcorner \ast (\omega \lrcorner \varphi)).$

It was not studied, however, how deforming φ by an element of Λ_7^3 changes the class the manifold belongs to. In this paper our aim is to investigate how the class the manifold belongs to changes after deforming the fundamental 3-form by a vector field on specific examples.

2. Preliminaries

Let (M, g) be a 7-dimensional Riemannian manifold with G_2 structure φ . It is known that for each $p \in M$, $\nabla \varphi$ belongs to the space

$$W = \{ \alpha \in T_p^* M \otimes \Lambda^3 T_p^* M \mid \alpha(x, y \wedge z \wedge (y \times z)) = 0 \text{ for all } x, y, z \in T_p M \}.$$

The space W can be decomposed as $W = W_1 \oplus W_2 \oplus W_3 \oplus W_4$ where W_i are G_2 irreducible subspaces [5]. A G_2 structure is said to be of type \mathcal{P} , \mathcal{W}_i , $\mathcal{W}_i \oplus \mathcal{W}_j$, $\mathcal{W}_i \oplus \mathcal{W}_j$, $\mathcal{W}_i \oplus \mathcal{W}_j$, $\mathcal{W}_i \oplus \mathcal{W}_j$, $\mathcal{W}_i \oplus \mathcal{W}_j$, $\mathcal{W}_i \oplus \mathcal{W}_j \oplus \mathcal{W}_k$ or \mathcal{W} , if the covariant derivative $\nabla \varphi$ lies in {0}, W_i , $W_i \oplus W_j$, $W_i \oplus W_j \oplus W_k$ or W, respectively, for i, j, k = 1, 2, 3, 4 [4]. Characterization of Cabrera is written in Table1 above. Note that $*d\varphi \wedge \varphi = -*d * \varphi \wedge *\varphi$, $\alpha = -\frac{1}{4} * (*d\varphi \wedge \varphi)$,

 $\beta = -\frac{1}{3} * (*d\varphi \wedge \varphi)$ and $f = \frac{1}{7} * (\varphi \wedge d\varphi)$ [4]. Following definitions and properties can be found in [2, 3].

Definition 2.1. Let (M, g) be a Riemannan manifold with Levi-Civita covariant derivative ∇ of g. (M, g) is called a Sasakian manifold if there exists a Killing vector field of unit length with the property that the endomorphism defined by $\Phi := \nabla \xi$ satisfies

$$(\nabla_x \Phi)(y) = g(\xi, y)x - g(x, y)\xi$$

for all vector fields x, y.

The triple (ξ, η, Φ) where η is the metric dual of ξ is called a Sasakian structure on (M, g). The Killing vector field ξ and the one-form η are respectively called the characteristic vector field and the characteristic one-form of the Sasakian structure.

Any Sasakian manifold (M, g) with the Sasakian structure (ξ, η, Φ) satisfies the following relations:

$$\begin{split} \Phi \circ \Phi(y) &= -y + \eta(y)\xi, \\ \Phi(\xi) &= 0, \ \eta(\Phi(y)) = 0, \\ g(x, \Phi(y)) + g(\Phi(x), y) &= 0, \\ g(\Phi(y), \Phi(x)) &= g(y, x) - \eta(y)\eta(x), \\ d\eta(x, y) &= 2g(\Phi(x), y) \end{split}$$

for all vector fields x, y.

Definition 2.2. Let (M, g) be a Riemannan manifold. (M, g) is called a 3-Sasakian manifold if there are three Sasakian structures $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$ such that $g(\xi_i, \xi_j) = \delta_{ij}$, $[\xi_1, \xi_2] = 2\xi_3$, $[\xi_2, \xi_3] = 2\xi_1$ and $[\xi_3, \xi_1] = 2\xi_2$.

Each 3-Sasakian manifold has the properties below:

 Φ_i

$$\eta_i(\xi_j) = \delta_{ij},$$

$$\Phi_i(\xi_j) = -\varepsilon_{ijk}\xi_k,$$

$$\circ \Phi_j - \xi_i \otimes \eta_j = -\varepsilon_{ijk}\Phi_k - \delta_{ij}Id.$$

Let (M, g) be a 7-dimensional 3-Sasakian manifold with Sasakian structures (ξ_i, η_i, Φ_i) for i = 1, 2, 3. The tangent bundle TM can be written as $TM = T^v + T^h$, where T^v is the vertical subbundle spanned by $\{\xi_1, \xi_2, \xi_3\}$ and the horizontal subbundle T^h is the orthogonal complement of T^v [1]. For topological reasons, we assume that M is compact and simply-connected. The structure group of (M, g) is $SU(2) \subset G_2 \subset SO(7)$. In [1], a locally orthonormal frame $\{e_1, \dots, e_7\}$ such that $e_1 = \xi_1, e_2 = \xi_2$ and $e_3 = \xi_3$ was given together with endomorphisms Φ_i acting on T^h by the following matrices:

$$\Phi_1 := \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \Phi_2 := \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \Phi_3 := \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

The corresponding orthonormal coframe is denoted by $\{\eta_1, \dots, \eta_7\}$. According to this frame, the exterior derivatives of characteristic 1-forms are computed as:

$$d\eta_1 = -2(\eta_{23} + \eta_{45} + \eta_{67}), \quad d\eta_2 = 2(\eta_{13} - \eta_{46} + \eta_{57}), \quad d\eta_3 = -2(\eta_{12} + \eta_{47} + \eta_{56}).$$

20

The following three nearly parallel G_2 structures (i.e. $d\varphi_i = -4 * \varphi_i$) on 7-dimensional 3-Sasakian manifolds are expressed in [1]:

$$\varphi_{1} = \frac{1}{2}\eta_{1} \wedge d\eta_{1} - \frac{1}{2}\eta_{2} \wedge d\eta_{2} - \frac{1}{2}\eta_{3} \wedge d\eta_{3},$$

$$\varphi_{2} = -\frac{1}{2}\eta_{1} \wedge d\eta_{1} + \frac{1}{2}\eta_{2} \wedge d\eta_{2} - \frac{1}{2}\eta_{3} \wedge d\eta_{3},$$

$$\varphi_{3} = -\frac{1}{2}\eta_{1} \wedge d\eta_{1} - \frac{1}{2}\eta_{2} \wedge d\eta_{2} + \frac{1}{2}\eta_{3} \wedge d\eta_{3}.$$

3. Deformations of one of the nearly parallel G_2 Structures by Characteristic Vector Fields

Let (M, g) be a 7-dimensional 3-Sasakian manifold equipped with Sasakian structures $(\xi_i, \eta_i, \phi_i)_{i=1,2,3}$, having the nearly parallel G_2 structure φ_1 given in the previous section. On an open subset of M, we choose the local orthonormal frame given in [1] with the properties mentioned in the previous section. We denote the corresponding coframe via the Riemannian metric by $\{\eta_1, \dots, \eta_7\}$. Now we deform φ_1 by three characteristic vector fields. We begin by deforming φ_1 by ξ_1 . We write the new deformed 3-form $\tilde{\varphi}_1 = \varphi_1 + \xi_1 \lrcorner * \varphi_1$ by

$$\widetilde{\varphi}_1 = \frac{1}{2}\eta_1 \wedge d\eta_1 - \frac{1}{2}\eta_2 \wedge d\eta_2 - \frac{1}{2}\eta_3 \wedge d\eta_3 + \frac{1}{2}\eta_3 \wedge d\eta_2 - \frac{1}{2}\eta_2 \wedge d\eta_3,$$

locally

$$\widetilde{\varphi}_1 = \eta_{123} - \eta_{145} - \eta_{167} + \eta_{246} - \eta_{257} + \eta_{347} + \eta_{356} + \eta_{357} - \eta_{346} + \eta_{256} + \eta_{247}.$$

Now we investigate the class the Riemannian manifold $\widetilde{M}:=(M,\widetilde{g})$ belongs to. We compute

$$d\widetilde{\varphi}_1 = d\varphi_1 - d(*(\eta_1 \wedge \varphi_1)).$$

Since $*(\eta_1 \wedge \varphi_1) = -\frac{1}{2}\eta_3 \wedge d\eta_2 + \frac{1}{2}\eta_2 \wedge d\eta_3$, $d(*(\eta_1 \wedge \varphi)) = 0$ and thus $d\tilde{\varphi}_1 = d\varphi_1$. This may locally be written as

$$d\widetilde{\varphi}_1 = 4\{-\eta_{1247} - \eta_{1256} + \eta_{1346} - \eta_{1357} + \eta_{2345} + \eta_{2367} - \eta_{4567}\}.$$

Since $d\tilde{\varphi}_1 \neq 0$, the defining relations of G_2 structures imply $M \notin \mathcal{P}$ and $M \notin \mathcal{W}_2$. Assume α is a 1-form on M such that $d\tilde{\varphi}_1 = \alpha \wedge \tilde{\varphi}_1$. This 1-form may be locally written as $\alpha = \sum \alpha_i \eta_i$ for smooth functions α_i . Then

$$\begin{aligned} \alpha \wedge \widetilde{\varphi}_{1} &= -\alpha_{4}\eta_{1234} - \alpha_{5}\eta_{1235} - \alpha_{6}\eta_{1236} - \alpha_{7}\eta_{1237} + \alpha_{2}\eta_{1245} + \alpha_{1}\eta_{1246} \\ &+ \alpha_{1}\eta_{1247} + \alpha_{1}\eta_{1256} - \alpha_{1}\eta_{1257} + \alpha_{2}\eta_{1267} + \alpha_{3}\eta_{1345} - \alpha_{1}\eta_{1346} \\ &+ \alpha_{1}\eta_{1347} + \alpha_{1}\eta_{1356} + \alpha_{1}\eta_{1357} + \alpha_{3}\eta_{1367} + \alpha_{6}\eta_{1456} + \alpha_{7}\eta_{1457} \\ &+ \alpha_{4}\eta_{1467} + \alpha_{5}\eta_{1567} - (\alpha_{2} + \alpha_{3})\eta_{2346} + (\alpha_{2} - \alpha_{3})\eta_{2347} \\ &+ (\alpha_{2} - \alpha_{3})\eta_{2356} + (\alpha_{2} + \alpha_{3})\eta_{2357} + (\alpha_{5} - \alpha_{4})\eta_{2456} + (\alpha_{4} + \alpha_{5})\eta_{2457} \\ &+ (\alpha_{6} - \alpha_{7})\eta_{2467} - (\alpha_{6} + \alpha_{7})\eta_{2567} - (\alpha_{4} + \alpha_{5})\eta_{3456} + (\alpha_{5} - \alpha_{4})\eta_{3457} \\ &+ (\alpha_{6} + \alpha_{7})\eta_{3467} + (\alpha_{6} - \alpha_{7})\eta_{3567}. \end{aligned}$$

The coefficient of η_{2345} in $d\tilde{\varphi}_1$ is 4, while in $\alpha \wedge \tilde{\varphi}_1$ there does not exist an η_{2345} term. Thus there is no such 1-form α with the property $d\tilde{\varphi}_1 = \alpha \wedge \tilde{\varphi}_1$ even locally. Hence $\widetilde{M} \notin W_4$ and $\widetilde{M} \notin W_2 \oplus W_4$. We apply the Hodge-star formula for a k-form given in the introduction to the 3-form $\tilde{\varphi}_1$ and also the identities given in the appendix of [7] to obtain $\tilde{*}\tilde{\varphi}_1$:

$$\widetilde{\widetilde{\varphi}}_{1} = 2^{-1/3} \{ *\varphi_{1} + *(\xi_{1} \lrcorner *\varphi_{1}) + \xi_{1} \lrcorner *(\xi_{1} \lrcorner \varphi_{1}) \}$$

$$= 2^{-1/3} \{ *\varphi - \eta_{1} \land \varphi_{1} + *(\eta_{1} \land *(\eta_{1} \land *\varphi_{1})) \}$$

$$= 2^{-1/3} \{ -\frac{1}{4} d\eta_{1} \land d\eta_{1} + \frac{1}{8} d\eta_{2} \land d\eta_{2} + \frac{1}{8} d\eta_{3} \land d\eta_{3}$$

$$+ 2 * \eta_{123} + \frac{1}{2} \eta_{12} \land d\eta_{2} + \frac{1}{2} \eta_{13} \land d\eta_{3} \}.$$

Local expression of $\widetilde{*}\widetilde{\varphi}_1$ is

$$\widetilde{\widetilde{\psi}}_{1} = 2^{-1/3} \{ -\eta_{1246} + \eta_{1247} + \eta_{1256} + \eta_{1257} - \eta_{1346} - \eta_{1347} \\ -\eta_{1356} + \eta_{1357} - 2\eta_{2345} - 2\eta_{2367} + 2\eta_{4567} \}.$$

Assume $d\tilde{\varphi}_1 = k \widetilde{\ast} \widetilde{\varphi}_1$ for a non-zero constant k. Comparing the coefficients of η_{1256} and η_{4567} in $d\tilde{\varphi}_1$ and $k \widetilde{\ast} \widetilde{\varphi}_1$ respectively gives $-4 = 2^{-1/3}k$ and $-4 = 2^{2/3}k$, a contradiction. Thus there is no such non-zero constant. This eliminates the classes \mathcal{W}_1 and $\mathcal{W}_1 \oplus \mathcal{W}_2$.

The exterior derivative of $\widetilde{*}\widetilde{\varphi}_1$ is

$$d\widetilde{*}\widetilde{\varphi}_1 = 2^{-1/3} \left\{ \frac{1}{2}\eta_2 \wedge d\eta_1 \wedge d\eta_2 - \frac{1}{2}\eta_1 \wedge d\eta_2 \wedge d\eta_2 \\ + \frac{1}{2}\eta_3 \wedge d\eta_1 \wedge d\eta_3 - \frac{1}{2}\eta_1 \wedge d\eta_3 \wedge d\eta_3 \right\}.$$

This is locally equivalent to $d \widetilde{*} \widetilde{\varphi}_1 = 2^{5/3} \eta_{12345} + 2^{5/3} \eta_{12367} - 2^{8/3} \eta_{14567}$ which is nonzero.

Let β be a smooth 1-form on M satisfying $d \widetilde{*} \widetilde{\varphi}_1 = \beta \wedge \widetilde{*} \widetilde{\varphi}_1$. Then β may be locally written as $\beta = \sum \beta_i \eta_i$ for smooth functions β_i .

$$2^{1/3}\beta \wedge \widetilde{\ast}\widetilde{\varphi} = -2\beta_1\eta_{12345} + (\beta_2 - \beta_3)\eta_{12346} + (\beta_2 + \beta_3)\eta_{12347} \\ + (\beta_2 + \beta_3)\eta_{12356} + (\beta_3 - \beta_2)\eta_{12357} - 2\beta_1\eta_{12367} \\ + (\beta_4 + \beta_5)\eta_{12456} + (\beta_4 - \beta_5)\eta_{12457} - (\beta_6 + \beta_7)\eta_{12467} \\ + (\beta_7 - \beta_6)\eta_{12567} + (\beta_5 - \beta_4)\eta_{13456} + (\beta_4 + \beta_5)\eta_{13457} \\ + (\beta_6 - \beta_7)\eta_{13467} - (\beta_6 + \beta_7)\eta_{13567} + 2\beta_1\eta_{14567} \\ - 2\beta_6\eta_{23456} - 2\beta_7\eta_{23457} - 2\beta_4\eta_{23467} \\ - 2\beta_5\eta_{23567} + 2\beta_2\eta_{24567} + 2\beta_3\eta_{34567}.$$

Comparing the coefficients of η_{12345} and η_{14567} in $2^{1/3}d\tilde{*}\tilde{\varphi}_1$ and $2^{1/3}\beta \wedge \tilde{*}\tilde{\varphi}_1$ respectively gives $\beta_1 = -2$, $\beta_1 = -4$. This is a contradiction. Hence there does not exist a 1-form β satisfying the defining relation $d\tilde{*}\tilde{\varphi}_1 = \beta \wedge \tilde{*}\tilde{\varphi}_1$. This means that $\widetilde{M} \notin \mathcal{W}_1 \oplus \mathcal{W}_4$.

If we take $\alpha = -2\eta_1$ and $f = -2^{4/3}$, then direct computation yields the equality $d\widetilde{\varphi}_1 = \alpha \wedge \widetilde{\varphi}_1 + f \widetilde{\ast} \widetilde{\varphi}_1$. Hence $\widetilde{M} \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_4$.

Next we deform the 3-form φ_1 by ξ_2 . The new deformed 3-form $\tilde{\varphi}_1 = \varphi_1 + \xi_2 \lrcorner * \varphi_1$ is

$$\widetilde{\varphi}_{1} = \frac{1}{2}\eta_{1} \wedge d\eta_{1} - \frac{1}{2}\eta_{2} \wedge d\eta_{2} - \frac{1}{2}\eta_{3} \wedge d\eta_{3} + \frac{1}{2}\eta_{3} \wedge d\eta_{1} + \frac{1}{2}\eta_{1} \wedge d\eta_{3}$$

which is locally

$$\widetilde{\varphi}_1 = \eta_{123} - \eta_{145} - \eta_{167} + \eta_{246} - \eta_{257} + \eta_{347} + \eta_{356} - \eta_{345} - \eta_{367} - \eta_{147} - \eta_{156}.$$

We compute $\widetilde{*}\widetilde{\varphi}_1$:

$$\widetilde{\ast}\widetilde{\varphi}_1 = 2^{-1/3} \{ \ast \varphi_1 + \ast (\xi_2 \lrcorner \ast \varphi_1) + \xi_2 \lrcorner \ast (\xi_2 \lrcorner \varphi_1) \} \\ = 2^{-1/3} \{ \ast \varphi - \eta_2 \land \varphi_1 + \ast (\eta_2 \land \ast (\eta_2 \land \ast \varphi_1)) \}.$$

Note that

$$*\varphi_1 = -\frac{1}{8}d\eta_1 \wedge d\eta_1 + \frac{1}{8}d\eta_2 \wedge d\eta_2 + \frac{1}{8}d\eta_3 \wedge d\eta_3,$$
$$\eta_2 \wedge \varphi_1 = \frac{1}{4}d\eta_1 \wedge d\eta_3$$

and

$$*(\eta_1 \wedge *(\eta_1 \wedge *\varphi_1)) = \frac{1}{8}d\eta_2 \wedge d\eta_2.$$

This yields $d * \widetilde{\varphi}_1 = 0$. The new G_2 structure can be an element of \mathcal{P} , \mathcal{W}_1 , \mathcal{W}_3 or $\mathcal{W}_1 \oplus \mathcal{W}_3$. The exterior derivative of $\widetilde{\varphi}_1$ is

$$d\widetilde{\varphi}_1 = \frac{1}{2}d\eta_1 \wedge d\eta_1 - \frac{1}{2}d\eta_2 \wedge d\eta_2 - \frac{1}{2}d\eta_3 \wedge d\eta_3 + d\eta_1 \wedge d\eta_3$$

This may locally be written as

$$d\widetilde{\varphi}_{1} = 4\{\eta_{1245} - \eta_{1247} + \eta_{1267} - \eta_{1256} + \eta_{1346} - \eta_{1357} + \eta_{2345} + \eta_{2347} + \eta_{2356} + \eta_{2367} - \eta_{4567}\}.$$

Since $d\widetilde{\varphi}_1 \neq 0$, the class \mathcal{P} is eliminated.

Assume $d\widetilde{\varphi}_1 = k \widetilde{\ast} \widetilde{\varphi}_1$ for a on-zero constant k. Since

$$\widetilde{\ast}\widetilde{\varphi}_{1} = 2^{-1/3} \{ -\frac{1}{8} d\eta_{1} \wedge d\eta_{1} + \frac{1}{8} d\eta_{2} \wedge d\eta_{2} + \frac{1}{8} d\eta_{3} \wedge d\eta_{3} -\frac{1}{4} d\eta_{1} \wedge d\eta_{3} + \frac{1}{8} d\eta_{2} \wedge d\eta_{2} \}$$

or, locally

$$\widetilde{\widetilde{\psi}}_{1} = 2^{-1/3} \{ -\eta_{1245} + \eta_{1247} + \eta_{1256} - \eta_{1267} - 2\eta_{1346} + 2\eta_{1357} - \eta_{2345} - \eta_{2347} - \eta_{2356} - \eta_{2367} + 2\eta_{4567} \},\$$

comparing the coefficients of η_{1245} and η_{1346} in $d\tilde{\varphi}_1$ and $k \approx \tilde{\varphi}_1$ respectively gives $4 = -2^{-1/3}k$ and $4 = -2^{2/3}k$, a contradiction. Thus there is no such non-zero constant. This excludes the class W_1 .

Computed locally, $d\tilde{\varphi}_1 \wedge \tilde{\varphi}_1 = -44 \ \eta_{1234567} \neq 0$ and hence $M \notin \mathcal{W}_3$. Therefore M is in the class $\mathcal{W}_1 \oplus \mathcal{W}_3$ with the new G_2 structure $\tilde{\varphi}_1$.

Finally we deform the 3-form φ_1 by ξ_3 . The new deformed 3-form $\tilde{\varphi}_1 = \varphi_1 + \xi_3 \lrcorner * \varphi_1$ is

$$\widetilde{\varphi}_{1} = \frac{1}{2}\eta_{1} \wedge d\eta_{1} - \frac{1}{2}\eta_{2} \wedge d\eta_{2} - \frac{1}{2}\eta_{3} \wedge d\eta_{3} - \frac{1}{2}\eta_{2} \wedge d\eta_{1} - \frac{1}{2}\eta_{1} \wedge d\eta_{2}$$

which is locally

$$\widetilde{\varphi}_1 = \eta_{123} - \eta_{145} - \eta_{167} + \eta_{246} - \eta_{257} + \eta_{347} \\ + \eta_{356} + \eta_{267} + \eta_{245} - \eta_{157} + \eta_{146}.$$

We compute $\widetilde{*}\widetilde{\varphi}_1$:

$$\begin{aligned} \widetilde{\varphi}_1 &= 2^{-1/3} \{ *\varphi_1 + *(\xi_3 \lrcorner *\varphi_1) + \xi_3 \lrcorner *(\xi_3 \lrcorner \varphi_1) \} \\ &= 2^{-1/3} \{ *\varphi_1 - \eta_3 \land \varphi_1 + *(\eta_3 \land *(\eta_3 \land *\varphi_1)) \}. \end{aligned}$$

Since

$$*\varphi_1 = -\frac{1}{8}d\eta_1 \wedge d\eta_1 + \frac{1}{8}d\eta_2 \wedge d\eta_2 + \frac{1}{8}d\eta_3 \wedge d\eta_3,$$
$$\eta_3 \wedge \varphi_1 = -\frac{1}{4}d\eta_1 \wedge d\eta_2$$

and

$$*(\eta_3 \wedge *(\eta_3 \wedge *\varphi_1)) = \frac{1}{8}d\eta_3 \wedge d\eta_3,$$

we have $d \approx \widetilde{\varphi}_1 = 0$. The new G_2 structure can be an element of \mathcal{P} , \mathcal{W}_1 , \mathcal{W}_3 or $\mathcal{W}_1 \oplus \mathcal{W}_3$. The exterior derivative of $\widetilde{\varphi}_1$ is

$$d\widetilde{\varphi}_1 = \frac{1}{2}d\eta_1 \wedge d\eta_1 - \frac{1}{2}d\eta_2 \wedge d\eta_2 - \frac{1}{2}d\eta_3 \wedge d\eta_3 - d\eta_1 \wedge d\eta_2.$$

This may be locally written as

$$d\widetilde{\varphi}_{1} = 4\{-\eta_{1247} - \eta_{1256} + \eta_{1345} + \eta_{1346} - \eta_{1357} + \eta_{1367} + \eta_{2345} - \eta_{2346} + \eta_{2357} + \eta_{2367} - \eta_{4567}\}.$$

Since $d\tilde{\varphi}_1 \neq 0$, the class \mathcal{P} is eliminated.

Assume $d\widetilde{\varphi}_1 = k \widetilde{\ast} \widetilde{\varphi}_1$ for a non-zero constant k. Since

$$\widetilde{\widetilde{\varphi}}_{1} = 2^{-1/3} \{ -\frac{1}{8} d\eta_{1} \wedge d\eta_{1} + \frac{1}{8} d\eta_{2} \wedge d\eta_{2} + \frac{1}{8} d\eta_{3} \wedge d\eta_{3} + \frac{1}{4} d\eta_{1} \wedge d\eta_{2} + \frac{1}{8} d\eta_{3} \wedge d\eta_{3} \}$$

or, locally

$$\widetilde{\ast}\widetilde{\varphi}_{1} = 2^{-1/3} \{ 2\eta_{1247} + 2\eta_{1256} - \eta_{1345} - \eta_{1346} + \eta_{1357} - \eta_{1367} - \eta_{2345} + \eta_{2346} - \eta_{2357} - \eta_{2367} + 2\eta_{4567} \},\$$

comparing the coefficients of η_{1247} and η_{1357} in $d\tilde{\varphi}_1$ and $k \approx \tilde{\varphi}_1$ respectively gives $4 = -2^{2/3}k$ and $4 = -2^{-1/3}k$, a contradiction. Thus there is no such non-zero constant. This excludes the class W_1 .

Computed locally, $d\tilde{\varphi}_1 \wedge \tilde{\varphi}_1 = -44 \eta_{1234567} \neq 0$ and hence $M \notin \mathcal{W}_3$. Therefore M is in the class $\mathcal{W}_1 \oplus \mathcal{W}_3$ with the new G_2 structure $\tilde{\varphi}_1$.

To sum up, if we take the nearly parallel structure φ_1 in a 7-dimensional 3-Sasakian manifold and deform this structure by the characteristic vector fields ξ_1 , ξ_2 , ξ_3 of the Sasakian structure, we get new G_2 structures of types $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_4$, $\mathcal{W}_1 \oplus \mathcal{W}_3$ and $\mathcal{W}_1 \oplus \mathcal{W}_3$ respectively. Similarly, if we deform φ_2 (respectively φ_3) by ξ_1 and ξ_3 (resp. by ξ_1 and ξ_2), we get G_2 structures of type $\mathcal{W}_1 \oplus \mathcal{W}_3$. If we deform φ_2 (resp. φ_3) by ξ_2 (resp. ξ_3), we get G_2 structures of type $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_4$ such that $d\tilde{\varphi}_i = \alpha \wedge \tilde{\varphi}_i + f * \tilde{\varphi}_i$ hold for $\alpha = -2\eta_i$ and $f = -2^{4/3}$, for i = 2, 3.

References

- Agricola, I. and Friedrich, T., 3-Sasakian Manifolds in Dimension Seven, Their Spinors and G₂ Structures, Journal of Geometry and Physics 60 (2010) 326-332.
- Boyer, C. P and Galicki, K., 3-Sasakian Manifolds, Surveys Diff. Geom. 7 (1999) 123-184, arXiv:hep-th/ 9810250.
- [3] Boyer, C. P and Galicki, K., Sasakian Geometry, Oxford Mathematical Monogrphs, Oxford University Press, 2008.
- [4] Cabrera, F. M., On Riemannian Manifolds with G_2 -Structure, Bolletino U.M.I (7) 10-A (1996) 99-112.
- [5] Fernández, M. and Gray, A., Riemannian manifolds with structure group G₂, Ann. Mat. Pura Appl. (4) 132 (1982) 19-25.
- [6] Friedrich, T., Kath, I., Moroianu, A. and Semmelmann, U., On Nearly Parallel G₂ structures, J. Geom. Phys., 23 (1997) 256-286.
- [7] Karigiannis, S., Deformations of G₂ and Spin(7) Structures on Manifolds, Canadian Journal of Mathematics 57 (2005), 1012-1055.

DEPARTMENT OF MATHEMATICS, ANADOLU UNIVERSITY, 26470 ESKIŞEHIR, TURKEY *E-mail address*: nozdemir@anadolu.edu.tr

DEPARTMENT OF MATHEMATICS, ANADOLU UNIVERSITY, 26470 ESKIŞEHIR, TURKEY *E-mail address*: sirins@anadolu.edu.tr