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ABSTRACT. It is known that 7-dimensional 3-Sasakian manifolds admit nearly
parallel G2 structures [6, 1]. In this paper, we consider three of these nearly
parallel G2 structures on a 7-dimensional 3-Sasakian manifold given in [1]. We
deform the fundamental 3-forms of the manifold by three characteristic vector
fields of the Sasakian structure separately. Then we determine how classes of
(g structures change.

1. INTRODUCTION

A G5 structure on a 7-dimensional Riemannian manifold (M, g) is a reduction of
the structure group of the frame bundle of M from SO(7) to G2. The Riemannian
manifolds with Go structures are classified by Fernandez and Gray. There are 16
classes with different defining relations [5]. An equivalent characterization of each
class was done by Cabrera by using dy and d * ¢ in [4].

There are several ways of obtaining new G4 structures from a fixed G structure.
Consider the space of 3-forms on M, denoted by A>M. If M has G structure ¢,
then this space may be written as ASM = A3 @ A3 @ A3, where

A = {tolt € R},
A2 = {+(BA @B € AM} = {wsx ¢ |w € DT},
A3 ={v € A’MIy A = 0,7 Axp =0}
and Al denotes a k-dimensional Ga-irreducible subspace of A!M and I'(T'M) is the
set of smooth vector fields on M. One way of constructing a new Gy structure is
to add an element of a subspace Al to the fundamental 3-form ¢ of the manifold.
Adding an element of A} to ¢ means conformally deforming the 3-form. Conformal

deformations were studied by Ferndndez and Gray. It was observed how conformally
changing the fundamental 3-form changes the class the manifold belongs to. In
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TABLE 1. Defining relations for classes of G structures

P dp=0and d*xp=20

Wi dp=kxgpand d*xp=0

W2 d(,O:O

Ws dxp=0anddpANp=0

Wy dp=aNpand d*xp= 0N *p

Wi & Ws dp=Fk+ypand *d* p A *xp =0

Wi & Ws dxp=0

Wa @ Ws doNp=0and *dp A p =0

W) @ Wy dp=aNp+ frpanddxp =B Axp

Wy & Wy dpo=aAlyp

W3 @ Wy dpNhNp=0and dxp =0 Axp
W1 &We@Ws | xdp A =0o0r xd*xpAxp=0
WidWo @W, |[dp=aNp+ fxo
W1 E&WsDWy | dxp =P Ax*p
Wo@WsEWy | deANp=0

w no relation

addition conformally invariant classes were determined [5]. Adding an element of
A3 ~{wixp | weT(TM)} gives a new Go structure on M with the fundamental
3-form @ = ¢ 4+ w_* ¢ for each vector field w [7]. These deformations were studied
in [7]. The new metric g and the new Hodge-star operator in terms of old ones were
obtained as:

g(u,v) = (1 + g(w,w)) 7> (gu,0) + g(u x w,0 x w)),

where X is the cross product associated to the first G5 structure and u, v are any
vector fields,

o= (1+ g(w,w))%(*a + (—=1)*Lwo(x(waa)))
where « is a k-form. Using this formula *@ was written as:
*p=(1+ g(w,w)fl/g)(*gp + x(wax @) + wax (wap)).

It was not studied, however, how deforming ¢ by an element of A3 changes the class
the manifold belongs to. In this paper our aim is to investigate how the class the
manifold belongs to changes after deforming the fundamental 3-form by a vector
field on specific examples.

2. PRELIMINARIES

Let (M, g) be a 7-dimensional Riemannian manifold with G5 structure . It is
known that for each p € M, Vi belongs to the space

W={ac T;M@AST;M | a(z,y ANz A (y x z)) =0for all z,y,z € T,M}.
The space W can be decomposed as W = W7, @ Wy & W3 & W, where W; are Go
irreducible subspaces [5]. A G structure is said to be of type P, W;, W,@W;, W;®
W;&Wy, or W, if the covariant derivative Vi liesin {0}, W;, W;@W;, W,eW,;eW;
or W, respectively, for ¢,j, k = 1,2, 3,4 [4]. Characterization of Cabrera is written
in Tablel above. Note that xdp A p = —xd*x o A *xp, a = —% x (xdp N @),
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B=—%x(xdpAgp)and f=1x(pAdp) [4]. Following definitions and properties
can be found in [2, 3].

Definition 2.1. Let (M, g) be a Riemannan manifold with Levi-Civita covariant
derivative V of g. (M, g) is called a Sasakian manifold if there exists a Killing vector
field of unit length with the property that the endomorphism defined by ® := V¢
satisfies

(Va®)(y) = 9(&; 9)x — g(x, y)§
for all vector fields x, y.

The triple (¢, 7, ®) where 7 is the metric dual of ¢ is called a Sasakian structure
on (M, g). The Killing vector field £ and the one-form 7 are respectively called the
characteristic vector field and the characteristic one-form of the Sasakian structure.

Any Sasakian manifold (M, g) with the Sasakian structure (&, 7, ®) satisfies the
following relations:

Pod(y) = y+n(y)§
(&) =0, n(®(y)) =
9(z, 2(y)) + g(® (m),y) =
9(2(y), ®(2)) = g(y,z) — n(y) ( )
dn(z,y) = 29(®(z),y)
for all vector fields x, y.

Definition 2.2. Let (M, g) be a Riemannan manifold. (M, g) is called a 3-Sasakian
manifold if there are three Sasakian structures (&;, 7;, ®;);=1,2,3 such that g(&;, fj) =

dij, (61, &) = 263, [€2,€3] = 2&; and [£3,&1] = 2&2.

Each 3-Sasakian manifold has the properties below:
ni(&5) = dij,
(&) = —€ijnés
D0®; — & RN = —€4jpPr — di51d.
Let (M, g) be a 7-dimensional 3-Sasakian manifold with Sasakian structures (&;, 7;, ®;)
for i = 1,2,3. The tangent bundle TM can be written as TM = T? + T", where
TV is the vertical subbundle spanned by {&1,&2,€3} and the horizontal subbun-
dle T" is the orthogonal complement of 7% [1]. For topological reasons, we as-
sume that M is compact and simply-connected. The structure group of (M, g) is
SU(2) € G2 € SO(7). In [1], a locally orthonormal frame {ey,--- ,e7} such that

e1 = &1, ea = & and ez = &3 was given together with endomorphisms ®; acting on
T" by the following matrices:

0 -1 0 O 0 0 -1 0 00 0 -1
1 0 0 O 0o 0 0 1 00 -1 0
P1=00 0 0 <10 2T o0 0 o T o1 0 o
0 0 1 0 0 -1 0 0 10 0 O

The corresponding orthonormal coframe is denoted by {1, ,n7}. According to

this frame, the exterior derivatives of characteristic 1-forms are computed as:

dm = —2(n2s + a5 + n67), dnz = 2(ms — Nae + N57),  dns = —2(N12 + Naz + Ns6)-
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The following three nearly parallel G structures (i.e. dyp; = —4 * ;) on 7-
dimensional 3-Sasakian manifolds are expressed in [1]:

1 1 1
=—m Adnp — = Adng — =m3 N d
¥1 2771 m 2772 72 2773 13,

1 1 1
P2 =—gmA dm + 3 A dng — 37 A dns,

1 1 1
Y3 =—3m Adny — 3" A dnz + 38 A dns.

3. DEFORMATIONS OF ONE OF THE NEARLY PARALLEL (G5 STRUCTURES BY
CHARACTERISTIC VECTOR FIELDS

Let (M, g) be a 7-dimensional 3-Sasakian manifold equipped with Sasakian struc-
tures (&, Mi, i)i=1,2,3, having the nearly parallel G structure ¢, given in the pre-
vious section. On an open subset of M, we choose the local orthonormal frame
given in [1] with the properties mentioned in the previous section. We denote the
corresponding coframe via the Riemannian metric by {n1,--- ,n7}. Now we deform
1 by three characteristic vector fields. We begin by deforming ¢, by &1. We write
the new deformed 3-form @7 = 1 + &1 1% @1 by

- 1 1 1 1 1
P1=35m Adm — 3 Adng — 3" A dns + 573 Adng — 3 A dns,

locally

©1 = N123 — M145 — N67 + N246 — N257 + 347
+M356 + N357 — N346 + N256 + M2a7-

Now we investigate the class the Riemannian manifold M = (M, g) belongs to. We
compute

dpy = dp1 — d(x(n1 A p1)).

Since *(m1 A 1) = —3m3 Adnz + 312 Adnz, d(x(m A ) =0 and thus dg; = dey.
This may locally be written as

dpr = 4{—771247 — M1256 + M1346 — N1357 + 1M2345 + 2367 — 7]4567}-

Since dpy # 0, the defining relations of Go structures imply M ¢ P and M ¢ Ws.
Assume « is a 1-form on M such that dp; = a A @1. This 1-form may be locally
written as o = > a;n; for smooth functions «;. Then

aANPr = —0ouNi234 — O5N1235 — Q6N1236 — Q71237 + Q21245 + Q171246
+a1ni247 + a1ni2s6 — @1M1257 + Q21267 + Q311345 — Q111346
+a1masar + @1M1356 + @¥1N1357 + A3N1367 + AN1456 + A7N1457
+ounaer + asmiser — (02 + a3)n23as + (2 — a3)12347
+(aa—a3)nasse + (a2 + a3)nessy + (s — aq)noase + (s + as)n24s7
(g —ar)n2a67 — (6 + a7)n2ser — (g + @5) 13456+ (5 — g ) 3457
+(a6 + ar)nzaer + (a6 — a7)n3s67-

The coefficient of 79345 in dp; is 4, while in a A @1 there does not exist an 792345
term. Thus there is no such 1-form o with the property do1 = a A ¢1 even locally.
Hence M ¢ Wy and M ¢ Wa @ W.
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We apply the Hodge-star formula for a k-form given in the introduction to the
3-form @; and also the identities given in the appendix of [7] to obtain *@; :

o1 = 273k + x(EGax o) + E1ax (Goer)}
= 2730k —m A+ x(m A x(m A xe1))}
= 27V3{—Ldn, Adn + Ldna A dns + Ldns A dns
+2 % 1123 + 5112 A dnz 4+ 3713 A dns}

Local expression of *@; is

*pp = 2_1/3{_771246 + M1247 + MN1256 + N1257 — M1346 — N1347
—M1356 + M357 — 2M2345 — 212367 + 274567 -

Assume dp; = k*@; for a non-zero constant k. Comparing the coefficients of
Mase and Nase7 in d@y and k%@ respectively gives —4 = 271/3k and —4 = 22/3k, a
contradiction. Thus there is no such non-zero constant. This eliminates the classes
Wl and Wl S>) WQ.

The exterior derivative of *@; is

dkgr = 273 {no Admy Adny — S Adna A diy
+3n3 Adm Adns — $m1 Adns Adns )

This is locally equivalent to d%@; = 253119345 + 25/3n19367 — 28/3114567 which is
nonzero.

Let 8 be a smooth 1-form on M satisfying d*@; = 8 A *@;. Then S may be
locally written as = 8;n; for smooth functions 5;.

2BBAFKG = —2B1m12345 + (B2 — B3)Miazas + (B + Bs)niazar
+(52 + 53)7712356 + (53 - 52)7712357 — 21112367
+(Ba + Bs)ma2ase + (Ba — Bs)m2ast — (B6 + B7)M2467
+(B7 — Bs)naser + (85 — Ba)maase + (Ba + Bs)m3as7
+(Bs — Br)nizaer — (B + Br)msser + 281114567
—2B6M23456 — 287123457 — 2B4M23467
—285m23567 + 2B2M24567 + 283734567

Comparing the coefficients of 112345 and 14567 in 2Y/3d%3; and 236 A %3 re-

spectively gives §; = —2, 81 = —4. This is a contradiction. Hence there does not
exist a 1-form 3 satisfying the defining relation d*¥@1 = B A*@1. This means that
M ¢ Wi @ Wy.

If we take « = —2m; and f i_24/ 3, then direct computation yields the equality
d@l = /\ @1 + f;@l Hence M E Wl @ W2 @ W4'
Next we deform the 3-form ¢ by £&;. The new deformed 3-form @1 = ¢1+E&x 1%
is
~ 1 1 1 1 1
Pr=gmAdm = gm Ndne — gng Adis + 5ns Adny+ 5m A dis
which is locally

$1 = M123 — M145 — N67 + N2a6 — N257 + N347
+1N356 — 1345 — 1367 — 1147 — 1156-
We compute *@ :

g1 = 27V3xpr 4 #(Ea0% 1) + L0 % (S2up1)}
= 27130k —ma Ap1 + x(n2 Ax(m2 A xp1))}.



EXAMPLES OF DEFORMATIONS OF NEARLY PARALLEL G2 STRUCTURES...

Note that

and

1 1 1
*p] = —§d771 Ndm + §d772 Ndng + gd% A dns,

1
NN\ = de A dns

1
*(nL A*(n A xpr)) = gdﬁz A dns.

23

This yields d¥@; = 0. The new G5 structure can be an element of P, Wy, W3 or
Wi @ Ws. The exterior derivative of ¢ is

. 1 1 1
dp; = §d771 Adn — §d772 Adny — idﬁs Adnz + dny A dns.

This may locally be written as

do1 = 4{ni245 — M2ar + Ni267 — Mi256 + N1346 — N1357
+12345 + 12347 + M2356 + 12367 — Na567 }-

Since dp; # 0, the class P is eliminated.
Assume dp; = k¥, for a on-zero constant k. Since

o1 = 273 —Ldm Admy + §dna Adnp + Edng A dns
—%dn Adns + %dﬁz Adna}
or, locally
xp1 = 27Y3{—mios5 4+ moar + mase — Maer — 2Mi346 + 2Mi357

comparing the coefficients of 71245 and 11346 in d@; and k*@; respectively gives
4 = =273k and 4 = —2%2/3k, a contradiction. Thus there is no such non-zero

—1)2345 — 12347 — 72356 — 12367 1 2774567]’,

constant. This excludes the class W;.

Computed locally, dp; A @1 = —44 n1234567 7 0 and hence M ¢ Ws. Therefore

M is in the class Wi @ W3 with the new G structure ;.

Finally we deform the 3-form ¢; by 5. The new deformed 3-form @1 = @1 +

§3J * Q1 is

1 1 1 1 1
P01 == ANdn — =no Adny — =n3 Adns — =mao Adny — =m A d
©1 2771 Uil 2772 72 2773 73 2772 Uil 2771 Up)

which is locally

©1 = M123 — M45 — Ne7 + N246 — N257 + 347
41356 + N267 + 245 — N157 + N146-

We compute *@ :

Since

and

g1 = 273w 4 #(E30 % 1) + &30 % (S3001)}
= 2713{xp1 — m3 A1 + *(n3 A x(n3 A xp1))}

1 1 1
*501 = *gd’l]l A d?’]l + gdﬁg A d?]g + gd’rlg A d’r]g,

1
N3N\ p1 = —idm A dna

1
#(n3 A x(ng A xp1)) = g A dns,
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we have dxp; = 0. The new G5 structure can be an element of P, Wi, W5 or
W1 @ Ws. The exterior derivative of ¢ is

~ 1 1 1
dipy = Sdm A dm — Sdne Adng — Sdng A dng — dny A dns.
This may be locally written as

do1 = 4{—n1247 — M256 + N1345 + N1346 — M1357 + N1367
+12345 — 12346 + M2357 + 12367 — Na567 }-
Since dpy # 0, the class P is eliminated.
Assume dp; = k*@; for a non-zero constant k. Since

g1 = 273 —Ldm Adm + Sdno N diy + Sdns A dns
+3dm Adny + gdns Adns}
or, locally

¥p1 = 27Y3{2m1947 + 21256 — Mi3a5 — Mi346 + M35 — M3er
—M2345 + 12346 — M2357 — M2367 + 2774567};

comparing the coefficients of 71247 and 171357 in dp; and kx@; respectively gives
4 = —22/3k and 4 = —27/3k, a contradiction. Thus there is no such non-zero
constant. This excludes the class W;.

Computed locally, dg1 A ¢1 = —44 n1234567 # 0 and hence M ¢ Ws. Therefore
M is in the class Wi @ W3 with the new G structure ;.

To sum up, if we take the nearly parallel structure ¢; in a 7-dimensional 3-
Sasakian manifold and deform this structure by the characteristic vector fields &y,
&, &3 of the Sasakian structure, we get new G structures of types Wy @ Wy @ Wy,
Wi @ W53 and Wy @ W respectively. Similarly, if we deform o (respectively ¢3)
by & and &5 (resp. by & and &), we get Gg structures of type Wy @ Ws. If we
deform o (resp. 3) by & (resp. &3), we get Go structures of type Wy @ Wa @ W,
such that d@; = a A @; + f*@; hold for o« = —2n; and f = —2%/3, for i = 2,3.
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