CURVES OF GENERALIZED $A W(k)$-TYPE IN EUCLIDEAN SPACES

KADRI ARSLAN AND ŞABAN GÜVENÇ
(Communicated by Cihan ÖZGÜR)

Abstract

In this study, we consider curves of generalized $A W(k)$-type of Euclidean n-space. We give curvature conditions of these kind of curves.

1. Introduction

In [7], the first author and A. West defined the notion of submanifolds of $A W(k)$ type. Since then, many works have been done related to these type of manifolds (for example, see [15], [5], [6] and [3]). In [15], the first author and B. Kıliç studied curves and surfaces of $A W(k)$-type. Further, in [27], C. Özgür and F. Gezgin carried out the results for where given in [5] to Bertrand curves and new special curves defined in [13] by S. Izumiya and N. Takeuchi. For example, in [5] and [15], the authors gave curvature conditions and characterizations related to these curves in \mathbb{R}^{n}. Also many results are obtained in Lorentzian spaces in [17], [22], [21], [18] and [8]. In [32], D. Yoon investigate curvature conditions of curves of $A W(k)$-type in Lie group G. Recently, C. Özgür and the second author studied some types of slant curves of pseudo-Hermitian $A W(k)$-type in [26].

In the present study, we give a generalization of AW (k)-type curves in Euclidean n-space \mathbb{E}^{n}. We also give curvature conditions of these type of curves.

2. Basic Notation

Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed curve in \mathbb{E}^{n}. The curve γ is called a Frenet curve of osculating order d if its higher order derivatives $\gamma^{\prime}(s), \gamma^{\prime \prime}(s), \ldots, \gamma^{(d)}(s)$ $(d \leq n)$ are linearly independent and $\gamma^{\prime}(s), \gamma^{\prime \prime}(s), \ldots, \gamma^{(d+1)}(s)$ are no longer linearly independent for all $s \in I$. To each Frenet curve of order d, one can associate an orthonormal d-frame $v_{1}, v_{2}, \ldots, v_{d}$ along γ (such that $\left.\gamma^{\prime}(s)=v_{1}\right)$ called the Frenet d-frame and $(d-1)$ functions $\kappa_{1}, \kappa_{2}, \ldots, \kappa_{d-1}: I \rightarrow \mathbb{R}$ called the Frenet curvatures

[^0]such that the Frenet formulas are defined in the usual way:
\[

$$
\begin{align*}
D_{v_{1}} v_{1}= & \kappa_{1} v_{2} \\
D_{v_{1}} v_{2}= & -\kappa_{1} v_{1}+\kappa_{2} v_{3} \\
& \ldots \tag{2.1}\\
D_{v_{1}} v_{i}= & -\kappa_{i-1} v_{i-1}+\kappa_{i} v_{i+1} \\
D_{v_{1}} v_{d}= & -\kappa_{d-1} v_{d-1}
\end{align*}
$$
\]

where $3 \leq i \leq d-1$.

3. Curves of Generalized $A W(k)$-Type

Let γ be a unit speed curve in n-dimensional Euclidean space \mathbb{E}^{n}. By the use of Frenet formulas (2.1), we obtain the higher order derivatives of γ as follows:

$$
\begin{align*}
\gamma^{\prime \prime}(s)= & \kappa_{1} v_{2}, \\
\gamma^{\prime \prime \prime}(s)= & -\kappa_{1}^{2} v_{1}+\kappa_{1}^{\prime} v_{2}+\kappa_{1} \kappa_{2} v_{3}, \\
\gamma^{(i v)}(s)= & -3 \kappa_{1} \kappa_{1}^{\prime} v_{1}+\left(\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) v_{2} \\
& +\left(2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime}\right) v_{3}+\kappa_{1} \kappa_{2} \kappa_{3} v_{4}, \\
\gamma^{(v)}(s)= & {\left[-3\left(\kappa_{1}^{\prime}\right)^{2}-4 \kappa_{1} \kappa_{1}^{\prime \prime}+\kappa_{1}^{4}+\kappa_{1}^{2} \kappa_{2}^{2}\right] v_{1} } \tag{3.1}\\
& +\left(\kappa_{1}^{\prime \prime}-6 \kappa_{1}^{2} \kappa_{1}^{\prime}-3 \kappa_{1}^{\prime} \kappa_{2}^{2}-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}\right) v_{2} \\
& +\left(3 \kappa_{1}^{\prime \prime} \kappa_{2}+3 \kappa_{1}^{\prime} \kappa_{2}^{\prime}-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}\right) v_{3} \\
& +\left(3 \kappa_{1}^{\prime} \kappa_{2} \kappa_{3}+2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{3}\right) v_{4}+\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{4} v_{5} .
\end{align*}
$$

Let us write

$$
\left.\begin{array}{l}
N_{1}=\kappa_{1} v_{2}, \\
N_{2}=\kappa_{1}^{\prime} v_{2}+\kappa_{1} \kappa_{2} v_{3}, \tag{3.2}\\
N_{3}=\lambda_{2} v_{2}+\lambda_{3} v_{3}+\lambda_{4} v_{4}, \\
N_{4}=\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}+\mu_{5} v_{5},
\end{array}\right\}
$$

where

$$
\begin{align*}
& \lambda_{2}=\kappa_{1}^{\prime \prime}-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2} \\
& \lambda_{3}=2 \kappa_{1}^{\prime} \kappa_{2}+\kappa_{1} \kappa_{2}^{\prime} \tag{3.3}\\
& \lambda_{4}=\kappa_{1} \kappa_{2} \kappa_{3}
\end{align*}
$$

and

$$
\begin{align*}
& \mu_{2}=\kappa_{1}^{\prime \prime \prime}-6 \kappa_{1}^{2} \kappa_{1}^{\prime}-3 \kappa_{1}^{\prime} \kappa_{2}^{2}-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}, \\
& \mu_{3}=3 \kappa_{1}^{\prime \prime} \kappa_{2}+3 \kappa_{1}^{\prime} \kappa_{2}^{\prime}-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}, \tag{3.4}\\
& \mu_{4}=3 \kappa_{1}^{\prime} \kappa_{2} \kappa_{3}+2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}, \\
& \mu_{5}=\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{4}
\end{align*}
$$

are differentiable functions.
We give the following definition:
Definition 3.1. Frenet curves are
i) of generalized $A W(1)$-type if they satisfy $N_{4}=0$,
ii) of generalized $A W(2)$-type if they satisfy

$$
\begin{equation*}
\left\|N_{2}\right\|^{2} N_{4}=\left\langle N_{2}, N_{4}\right\rangle N_{2}, \tag{3.5}
\end{equation*}
$$

iii) of generalized $A W(3)$-type if they satify

$$
\begin{equation*}
\left\|N_{1}\right\|^{2} N_{4}=\left\langle N_{1}, N_{4}\right\rangle N_{1} \tag{3.6}
\end{equation*}
$$

$i v)$ of generalized $A W(4)$-type if they satisfy

$$
\begin{equation*}
\left\|N_{3}\right\|^{2} N_{4}=\left\langle N_{3}, N_{4}\right\rangle N_{3}, \tag{3.7}
\end{equation*}
$$

v) of generalized $A W(5)$-type if they satisfy

$$
\begin{equation*}
N_{4}=a_{1} N_{1}+b_{1} N_{2} \tag{3.8}
\end{equation*}
$$

$v i)$ of generalized $A W(6)$-type if they satisfy

$$
\begin{equation*}
N_{4}=a_{2} N_{1}+b_{2} N_{3} \tag{3.9}
\end{equation*}
$$

vii) of generalized $A W(7)$-type if they satisfy

$$
\begin{equation*}
N_{4}=a_{3} N_{2}+b_{3} N_{3} \tag{3.10}
\end{equation*}
$$

where $a_{i}, b_{i}(1 \leq i \leq 3)$ are non-zero real valued differentiable functions.
Remark 3.1. We use notation $G A W(k)$-type for the curves of generalized $A W(k)$ type.

Geometrically, a curve of $G A W(k)$-type is a curve whose fifth derivative's normal part is either zero or linearly dependent with one or two of its previous derivatives' normal parts.

Firstly, we give the following proposition:
Proposition 3.1. The osculating order of a Frenet curve of any $G A W(k)$-type can not be bigger than or equal to 5 .

Proof. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a Frenet curve of osculating order d. If γ is of any $G A W(k)$-type, since none of $N_{i}(1 \leq i \leq 3)$ contains a component in the direction of v_{5}, we find $\mu_{5}=\kappa_{1} \kappa_{2} \kappa_{3} \kappa_{4}=0$. This concludes $d \leq 4$, which completes the proof.

Using equations 3.2 and Definition 3.1, we obtain the following main theorem:
Theorem 3.1. Let γ be a unit speed Frenet curve of osculating order $d \leq 4$ in n-dimensional Euclidean space \mathbb{E}^{n}. Then γ is
i) of $G A W(1)$-type if and only if

$$
\mu_{2}=\mu_{3}=\mu_{4}=0
$$

ii) of $G A W(2)$-type if and only if

$$
\begin{gathered}
\mu_{4}=0 \\
\kappa_{1} \kappa_{2} \mu_{2}-\kappa_{1}^{\prime} \mu_{3}=0
\end{gathered}
$$

iii) of GAW(3)-type if and only if

$$
\mu_{3}=\mu_{4}=0
$$

iv) of GAW(4)-type if and only if

$$
\begin{aligned}
& \lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}=0 \\
& \lambda_{2} \mu_{4}-\lambda_{4} \mu_{2}=0
\end{aligned}
$$

v) of $G A W(5)$-type if and only if

$$
\begin{gathered}
\mu_{2}=a_{1} \kappa_{1}+b_{1} \kappa_{1}^{\prime}, \\
\mu_{3}=b_{1} \kappa_{1} \kappa_{2}, \\
\mu_{4}=0
\end{gathered}
$$

vi) of $G A W(6)$-type if and only if

$$
\mu_{2}=a_{2} \kappa_{1}+b_{2} \lambda_{2}
$$

$$
\begin{aligned}
& \mu_{3}=b_{2} \lambda_{3}, \\
& \mu_{4}=b_{2} \lambda_{4},
\end{aligned}
$$

vii) of $G A W(7)$-type if and only if

$$
\begin{gathered}
\mu_{2}=a_{3} \kappa_{1}^{\prime}+b_{3} \lambda_{2} \\
\mu_{3}=a_{3} \kappa_{1} \kappa_{2}+b_{3} \lambda_{3} \\
\mu_{4}=b_{3} \lambda_{4}
\end{gathered}
$$

Proof. i) Let γ be of $G A W$ (1)-type. Then, from equations (3.2) and Definition 3.1, we have $N_{4}=\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}=0$. Since v_{2}, v_{3} and v_{4} are linearly independent, we get $\mu_{2}=\mu_{3}=\mu_{4}=0$. The sufficiency is trivial.
ii) Let γ be of $G A W(2)$-type. If we calculate $\left\|N_{2}\right\|^{2}$ and $\left\langle N_{2}, N_{4}\right\rangle$, by the use of equations (3.2) and (3.5), we obtain

$$
\left[\left(\kappa_{1}^{\prime}\right)^{2}+\kappa_{1}^{2} \kappa_{2}^{2}\right]\left(\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}\right)=\left(\kappa_{1}^{\prime} \mu_{2}+\kappa_{1} \kappa_{2} \mu_{3}\right)\left(\kappa_{1}^{\prime} v_{2}+\kappa_{1} \kappa_{2} v_{3}\right)
$$

Since v_{2}, v_{3} and v_{4} are linearly independent, we find $\mu_{4}=0$ and $\kappa_{1} \kappa_{2} \mu_{2}-\kappa_{1}^{\prime} \mu_{3}=0$. Conversely, if $\mu_{4}=0$ and $\kappa_{1} \kappa_{2} \mu_{2}-\kappa_{1}^{\prime} \mu_{3}=0$, one can easily show that equation (3.5) is satisfied.
iii) Let γ be of $G A W(3)$-type. We get $\left\|N_{1}\right\|^{2}=\kappa_{1}^{2}$ and $\left\langle N_{1}, N_{4}\right\rangle=\kappa_{1} \mu_{2}$. So, if we write these equations in (3.6), we have

$$
\kappa_{1}^{2}\left(\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}\right)=\kappa_{1} \mu_{2}\left(\kappa_{1} v_{2}\right)
$$

Thus, $\mu_{3}=\mu_{4}=0$. Converse theorem is clear.
iv) Let γ be of $G A W(4)$-type. We can easily calculate $\left\|N_{3}\right\|^{2}=\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}$ and $\left\langle N_{3}, N_{4}\right\rangle=\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}+\lambda_{4} \mu_{4}$. So equation (3.7) gives us $\left(\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right)\left(\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}\right)=\left(\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}+\lambda_{4} \mu_{4}\right)\left(\lambda_{2} v_{2}+\lambda_{3} v_{3}+\lambda_{4} v_{4}\right)$.
Hence, we can write

$$
\begin{align*}
& \left(\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right) \mu_{2}=\left(\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}+\lambda_{4} \mu_{4}\right) \lambda_{2} \tag{3.11}\\
& \left(\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right) \mu_{3}=\left(\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}+\lambda_{4} \mu_{4}\right) \lambda_{3} \tag{3.12}\\
& \left(\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right) \mu_{4}=\left(\lambda_{2} \mu_{2}+\lambda_{3} \mu_{3}+\lambda_{4} \mu_{4}\right) \lambda_{4} \tag{3.13}
\end{align*}
$$

If we multiply (3.11) with λ_{3} and use equation (3.12), we find $\lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}=0$. Multiplying (3.11) with λ_{4} and using equation (3.13), we have $\lambda_{2} \mu_{4}-\lambda_{4} \mu_{2}=0$. Conversely, it is easy to show that equation (3.7) is satisfied if $\lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}=0$ and $\lambda_{2} \mu_{4}-\lambda_{4} \mu_{2}=0$.
v) Let γ be of $G A W(5)$-type. Then, in view of equations (3.8) and (3.2), we can write

$$
\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}=a_{1}\left(\kappa_{1} v_{2}\right)+b_{1}\left(\kappa_{1}^{\prime} v_{2}+\kappa_{1} \kappa_{2} v_{3}\right)
$$

which gives us $\mu_{2}=a_{1} \kappa_{1}+b_{1} \kappa_{1}^{\prime}, \mu_{3}=b_{1} \kappa_{1} \kappa_{2}$ and $\mu_{4}=0$. Conversely, if these last three equations are satisfied, one can show that $N_{4}=a_{1} N_{1}+b_{1} N_{2}$.
vi) Let γ be of $G A W(6)$-type. By definition, we have $N_{4}=a_{2} N_{1}+b_{2} N_{3}$, that is,

$$
\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}=a_{2}\left(\kappa_{1} v_{2}\right)+b_{2}\left(\lambda_{2} v_{2}+\lambda_{3} v_{3}+\lambda_{4} v_{4}\right)
$$

Since v_{2}, v_{3} and v_{4} are linearly independent, we can write

$$
\begin{gathered}
\mu_{2}=a_{2} \kappa_{1}+b_{2} \lambda_{2} \\
\mu_{3}=b_{2} \lambda_{3}
\end{gathered}
$$

$$
\mu_{4}=b_{2} \lambda_{4}
$$

Conversely, if these last equations are satisfied, then we easily show that $N_{4}=$ $a_{2} N_{1}+b_{2} N_{3}$.
vii) Let γ be of $G A W(7)$-type. Then using equations (3.10) and (3.2), we obtain

$$
\mu_{2} v_{2}+\mu_{3} v_{3}+\mu_{4} v_{4}=a_{3}\left(\kappa_{1}^{\prime} v_{2}+\kappa_{1} \kappa_{2} v_{3}\right)+b_{3}\left(\lambda_{2} v_{2}+\lambda_{3} v_{3}+\lambda_{4} v_{4}\right)
$$

Thus

$$
\begin{gathered}
\mu_{2}=a_{3} \kappa_{1}^{\prime}+b_{3} \lambda_{2} \\
\mu_{3}=a_{3} \kappa_{1} \kappa_{2}+b_{3} \lambda_{3} \\
\mu_{4}=b_{3} \lambda_{4}
\end{gathered}
$$

Conversely, let γ be a curve satisfying the last three equations. It is easily found that $N_{4}=a_{3} N_{2}+b_{3} N_{3}$.

From now on, we consider Frenet curves whose first curvature κ_{1} is a constant. We give curvature conditions of such a curve to be of $G A W(k)$-type. We can state following propositions:

Proposition 3.2. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of GAW(1)-type if and only if it is a straight line or a circle.

Proof. Let γ be of $G A W$ (1)-type. Since $\kappa_{1}=$ constant, using (3.4) and Theorem 3.1, we find

$$
\begin{gather*}
\mu_{2}=-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}=0, \tag{3.14}\\
\mu_{3}=-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}=0, \tag{3.15}\\
\mu_{4}=2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}=0 . \tag{3.16}
\end{gather*}
$$

If $\kappa_{1}=0$, then γ is a straight line and above three equations are satisfied. Let κ_{1} be a non-zero constant. If $\kappa_{2}=0$, then γ is a circle and equations (3.14), (3.15) and (3.16) are satisfied again. Assume that $\kappa_{2} \neq 0$. Then (3.14) gives us $\kappa_{2}^{\prime}=0$, that is, κ_{2} is a constant. In this case, from equation (3.15), we get $\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)=0$, which means $\kappa_{1}=\kappa_{2}=\kappa_{3}=0$. This is a contradiction. So $\kappa_{2}=0$.

Conversely, let γ be a straight line or a circle. Thus $\kappa_{1}=0$; or $\kappa_{1}=$ constant and $\kappa_{2}=0$. So $\mu_{2}=\mu_{3}=\mu_{4}=0$, which completes the proof.

Proposition 3.3. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of $G A W(2)$-type if and only if
i) it is a straight line; or
ii) it is a circle; or
iii) it is a helix of order 3 or 4 .

Proof. Let γ be of $G A W(2)$-type. Since $\kappa_{1}=$ constant, using (3.4) and Theorem 3.1, we obtain

$$
\begin{gather*}
\mu_{4}=2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}=0 \tag{3.17}\\
\kappa_{1} \kappa_{2}\left(-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}\right)=0 \tag{3.18}
\end{gather*}
$$

One can easily see that κ_{2} and κ_{3} must be constants. Thus, γ can be a straight line, a circle or a helix of order 3 or 4 . Conversely, if γ is one of these curves, the proof is clear using Theorem 3.1.

Proposition 3.4. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of $G A W(3)$-type if and only if
i) it is a straight line; or
ii) it is a circle; or
iii) it is a Frenet curve of osculating order 3 satisfying the second order nonlinear ODE

$$
\kappa_{2}^{\prime \prime}=\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) ; \text { or }
$$

iv) it is a Frenet curve of osculating order 4 with

$$
\kappa_{2}=\frac{c}{\sqrt{\kappa_{3}}}
$$

and its third curvature satisfies the second order non-linear $O D E$

$$
\begin{equation*}
\kappa_{3}^{\prime \prime}-\frac{3\left(\kappa_{3}^{\prime}\right)^{2}}{2 \kappa_{3}}+2 \kappa_{3}\left(\kappa_{1}^{2}+\kappa_{3}^{2}\right)+2 c^{2}=0 \tag{3.19}
\end{equation*}
$$

and where $c>0$ is an arbitrary constant.
Proof. Let γ be of $G A W(3)$-type. Since $\kappa_{1}=$ constant, using (3.4) and Theorem 3.1, we have

$$
\begin{gather*}
\mu_{3}=-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}=0 \tag{3.20}\\
\mu_{4}=2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}=0 \tag{3.21}
\end{gather*}
$$

If $d=1$ or $d=2$, we obtain line and circle cases, both of which do not contradict above two equations. Let $d=3$. Then $\kappa_{1}=$ constant $>0, \kappa_{2}>0$ and $\kappa_{3}=0$. (3.21) is satisfied directly and (3.20) gives us

$$
\kappa_{2}^{\prime \prime}=\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)
$$

which is a second order non-linear ODE. Now, let $d=4$. Thus, $\kappa_{1}=$ constant >0, $\kappa_{2}>0$ and $\kappa_{3}>0$. If we solve (3.21), we find

$$
\begin{equation*}
\kappa_{2}=\frac{c}{\sqrt{\kappa_{3}}}, \tag{3.22}
\end{equation*}
$$

where $c>0$ is an arbitrary constant. Then

$$
\begin{gather*}
\kappa_{2}^{\prime}=\frac{-c \kappa_{3}^{\prime}}{2 \kappa_{3}^{3 / 2}} \\
\kappa_{2}^{\prime \prime}=c \cdot\left[\frac{3\left(\kappa_{3}^{\prime}\right)^{2}}{4 \kappa_{3}^{5 / 2}}-\frac{\kappa_{3}^{\prime \prime}}{2 \kappa_{3}^{3 / 2}}\right] . \tag{3.23}
\end{gather*}
$$

If we multiply equation (3.20) with $\frac{\kappa_{2}}{\kappa_{1}}$, using (3.22) and (3.23), we obtain the second order non-linear ODE (3.19). Conversely, if γ is one of these curves, one can show that $\mu_{3}=\mu_{4}=0$.

Proposition 3.5. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of $G A W(4)$-type if and only if
i) it is a straight line; or
ii) it is a circle; or
iii) it is a Frenet curve of osculating order 3 satisfying the second order nonlinear ODE

$$
\begin{equation*}
3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}=\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)\left[\kappa_{2}^{\prime \prime}-\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)\right] ; \text { or } \tag{3.24}
\end{equation*}
$$

iv) it is a Frenet curve of osculating order 4 with

$$
\begin{equation*}
\kappa_{2}^{2} \kappa_{3}=c .\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)^{3 / 2} \tag{3.25}
\end{equation*}
$$

and its curvatures satify

$$
3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}=\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)\left[\kappa_{2}^{\prime \prime}-\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)\right]
$$

Here, c is an arbitrary constant.
Proof. Let γ be of $G A W(4)$-type. Since $\kappa_{1}=$ constant, using (3.3), (3.4) and Theorem 3.1, we find

$$
\begin{equation*}
\left(-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right)\left(-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}\right)-\left(\kappa_{1} \kappa_{2}^{\prime}\right)\left(-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}\right)=0 \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
\left(-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right)\left(2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}\right)-\left(\kappa_{1} \kappa_{2} \kappa_{3}\right)\left(-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}\right)=0 \tag{3.27}
\end{equation*}
$$

(3.26) and (3.27) give us

$$
\begin{gather*}
3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}=\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)\left[\kappa_{2}^{\prime \prime}-\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)\right] \tag{3.28}\\
\left(2 \kappa_{1}^{2}-\kappa_{2}^{2}\right) \kappa_{3} \kappa_{2}^{\prime}+\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) \kappa_{3}^{\prime}=0 \tag{3.29}
\end{gather*}
$$

Now, if $\kappa_{1}=0$, then γ is a straight line and equations (3.26) and (3.27) are satisfied. Let κ_{1} be a non-zero constant. If $\kappa_{2}=0$, then γ is a circle. Let $\kappa_{2}>0$ and $\kappa_{3}=0$. Then, from equation (3.28), we obtain (3.24). Now, let $d=4$. Then, using equation (3.29), we can write

$$
\int \frac{\left(2 \kappa_{1}^{2}-\kappa_{2}^{2}\right)}{\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)} d \kappa_{2}+\int \frac{1}{\kappa_{3}} d \kappa_{3}=\ln c .
$$

Remember that $\kappa_{1}>0$ is a constant. So we find

$$
2 \ln \left(\kappa_{2}\right)-\frac{3}{2} \ln \left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)+\ln \left(\kappa_{3}\right)=\ln c
$$

which gives us (3.25). Furthermore, γ must also satisfy (3.28). Conversely, if γ is one of the curves above, we can show that (3.26) and (3.27) are satisfied.

Proposition 3.6. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of $G A W(5)$-type if and only if
i) it is a straight line; or
ii) it is a Frenet curve of osculating order 3 with

$$
\kappa_{2} \neq \text { constant }
$$

and

$$
\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) ; \text { or }
$$

iii) it is a Frenet curve of osculating order 4 with

$$
\begin{gathered}
\kappa_{2} \neq \text { constant }, \kappa_{3} \neq \text { constant } \\
\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)
\end{gathered}
$$

and

$$
\kappa_{2}=\frac{c}{\sqrt{\kappa_{3}}}
$$

where $c>0$ is an arbitrary constant.

Proof. Let γ be of $G A W(5)$-type. Since $\kappa_{1}=$ constant, by the use of Theorem 3.1 and equations (3.4), we have

$$
\begin{gather*}
-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}=a_{1} \kappa_{1} \tag{3.30}\\
-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}=b_{1} \kappa_{1} \kappa_{2} \tag{3.31}\\
2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}=0 . \tag{3.32}
\end{gather*}
$$

If $d=1$, then γ is a straight line and above equations are satisfied. If $d=2$, then γ is a circle. From (3.30), we find $a_{1}=0$, which contradicts the definition. Now, let $d=3$. Then, using (3.30) and (3.31), we find

$$
\begin{gathered}
a_{1}=-3 \kappa_{2} \kappa_{2}^{\prime} \\
b_{1}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}}-\kappa_{1}^{2}-\kappa_{2}^{2} .
\end{gathered}
$$

Since a_{1} and b_{1} are non-zero functions, then $\kappa_{2} \neq$ constant and $\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)$.
Finally, let $d=4$. Then, equation (3.32) gives us

$$
\begin{equation*}
\kappa_{2}=\frac{c}{\sqrt{\kappa_{3}}} \tag{3.33}
\end{equation*}
$$

where $c>0$ is an arbitrary constant. In this case, from (3.30) and (3.31), we find

$$
\begin{gather*}
a_{1}=-3 \kappa_{2} \kappa_{2}^{\prime}, \tag{3.34}\\
b_{1}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}}-\kappa_{1}^{2}-\kappa_{2}^{2}-\kappa_{3}^{2} . \tag{3.35}
\end{gather*}
$$

Thus, (3.33) and (3.34) give us

$$
\begin{equation*}
\kappa_{2} \neq \text { constant }, \kappa_{3} \neq \text { constant. } \tag{3.36}
\end{equation*}
$$

Also, from (3.35), we can write

$$
\begin{equation*}
\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right) \tag{3.37}
\end{equation*}
$$

Converse proposition is trivial.
Proposition 3.7. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of $G A W(6)$-type if and only if
i) it is a straight line; or
ii) it is a circle; or
iii) it is a Frenet curve of osculating order 3 with

$$
\begin{gathered}
\kappa_{2} \neq \text { constant } \\
\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)
\end{gathered}
$$

and

$$
\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)+\frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}} ; \text { or }
$$

iv) it is a Frenet curve of osculating order 4 with

$$
\begin{gathered}
\kappa_{2} \neq \text { constant }, \\
\kappa_{2} \neq \frac{c}{\sqrt{\kappa_{3}}} \\
\frac{2 \kappa_{2}^{\prime}}{\kappa_{2}}+\frac{\kappa_{3}^{\prime}}{\kappa_{3}}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}^{\prime}}-\frac{\kappa_{2}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)
\end{gathered}
$$

and

$$
\begin{equation*}
\kappa_{2}^{\prime \prime} \neq \kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right)+\frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}} \tag{3.38}
\end{equation*}
$$

Here, $c>0$ is an arbitrary constant.
Proof. Let γ be of $G A W(6)$-type. Since $\kappa_{1}=$ constant, by the use of equations (3.3), (3.4) and Theorem 3.1, we have

$$
\begin{gather*}
-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}=a_{2} \kappa_{1}+b_{2}\left(-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) \tag{3.39}\\
-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}=b_{2} \kappa_{1} \kappa_{2}^{\prime} \tag{3.40}\\
2 \kappa_{1} \kappa_{2}^{\prime} \kappa_{3}+\kappa_{1} \kappa_{2} \kappa_{3}^{\prime}=b_{2} \kappa_{1} \kappa_{2} \kappa_{3} \tag{3.41}
\end{gather*}
$$

If $\kappa_{1}=0$, then γ is a straight line. Let $d=2$. Then γ is a circle and from (3.39), we obtain

$$
a_{2}-b_{2} \kappa_{1}^{2}=0
$$

which is satisfied for some a_{2}, b_{2} non-zero differentiable functions. (3.40) and (3.41) are also satisfied. Now, let $d=3$. Then we have

$$
\begin{gather*}
-3 \kappa_{2} \kappa_{2}^{\prime}=a_{2}-b_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right), \tag{3.42}\\
\kappa_{2}^{\prime \prime}-\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)=b_{2} \kappa_{2}^{\prime} . \tag{3.43}
\end{gather*}
$$

Thus κ_{2} can not be constant. So (3.42) and (3.43) give us

$$
\begin{gathered}
b_{2}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}^{\prime}}-\frac{\kappa_{2}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) \\
a_{2}=-3 \kappa_{2} \kappa_{2}^{\prime}+\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)-\frac{\kappa_{2}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)^{2}
\end{gathered}
$$

both of which must be non-zero. Finally, let $d=4$. From (3.40), $\kappa_{2} \neq$ constant. In this case, by the use of (3.39), (3.40) and (3.41), we obtain

$$
\begin{gather*}
b_{2}=\frac{2 \kappa_{2}^{\prime}}{\kappa_{2}}+\frac{\kappa_{3}^{\prime}}{\kappa_{3}}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}^{\prime}}-\frac{\kappa_{2}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right), \tag{3.44}\\
a_{2}=-3 \kappa_{2} \kappa_{2}^{\prime}+\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)-\frac{\kappa_{2}}{\kappa_{2}^{\prime}}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right) . \tag{3.45}
\end{gather*}
$$

Thus, from equation (3.44), we have

$$
\kappa_{2} \neq \frac{c}{\sqrt{\kappa_{3}}}
$$

where $c>0$ is an arbitrary constant. We also have (3.38) from (3.45).
Converse proposition is done easily.
Proposition 3.8. Let $\gamma: I \subseteq \mathbb{R} \rightarrow \mathbb{E}^{n}$ be a unit speed Frenet curve of osculating order $d \leq 4$ with $\kappa_{1}=$ constant. Then γ is of $G A W(7)$-type if and only if
i) it is a straight line; or
ii) it is a Frenet curve of osculating order 3 satisying

$$
\begin{gathered}
\kappa_{2} \neq \text { constant } \\
\kappa_{2}^{\prime \prime} \neq \frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}}+\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right) ; \text { or }
\end{gathered}
$$

$i v)$ it is a Frenet curve of osculating order 4 satisfying

$$
\begin{gathered}
\kappa_{2} \neq \text { constant }, \\
\kappa_{2} \neq \frac{c}{\sqrt{\kappa_{3}}}, \\
\frac{3 \kappa_{2} \kappa_{2}^{\prime}}{\kappa_{1}^{2}+\kappa_{2}^{2}}=\frac{2 \kappa_{2}^{\prime}}{\kappa_{2}}+\frac{\kappa_{3}^{\prime}}{\kappa_{3}}, \\
\kappa_{2}^{\prime \prime} \neq \frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}}+\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right),
\end{gathered}
$$

where c is an arbitrary constant.
Proof. Let γ be of $G A W$ (7)-type. If we use equations (3.3), (3.4) and Theorem 3.1, we obtain

$$
\begin{gather*}
-3 \kappa_{1} \kappa_{2} \kappa_{2}^{\prime}=b_{3}\left(-\kappa_{1}^{3}-\kappa_{1} \kappa_{2}^{2}\right) \tag{3.46}\\
-\kappa_{1}^{3} \kappa_{2}-\kappa_{1} \kappa_{2}^{3}+\kappa_{1} \kappa_{2}^{\prime \prime}-\kappa_{1} \kappa_{2} \kappa_{3}^{2}=a_{3} \kappa_{1} \kappa_{2}+b_{3} \kappa_{1} \kappa_{2}^{\prime} \tag{3.47}
\end{gather*}
$$

If $d=1, \gamma$ is a straight line. Let $d=2$. Then, from (3.46), we find $\kappa_{1}=0$. This is a contradiction. Let $d=3$. Then, using (3.46), κ_{2} can not be constant. By the use of (3.46) and (3.47), we get

$$
\begin{gather*}
b_{3}=\frac{3 \kappa_{2} \kappa_{2}^{\prime}}{\kappa_{1}^{2}+\kappa_{2}^{2}} \tag{3.49}\\
a_{3}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}}-\frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)}-\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right),
\end{gather*}
$$

both of which are non-zero differentiable functions. Again, equation (3.49) requires κ_{2} is not a constant. We also have

$$
\kappa_{2}^{\prime \prime} \neq \frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}}+\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)
$$

Now, let $d=4$. Then, using equations (3.46), (3.47) and (3.48), we obtain

$$
\begin{gather*}
b_{3}=\frac{3 \kappa_{2} \kappa_{2}^{\prime}}{\kappa_{1}^{2}+\kappa_{2}^{2}}=\frac{2 \kappa_{2}^{\prime}}{\kappa_{2}}+\frac{\kappa_{3}^{\prime}}{\kappa_{3}} \tag{3.50}\\
a_{3}=\frac{\kappa_{2}^{\prime \prime}}{\kappa_{2}}-\frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}\right)}-\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right),
\end{gather*}
$$

which give us

$$
\begin{gathered}
\kappa_{2} \neq \text { constant }, \\
\kappa_{2} \neq \frac{c}{\sqrt{\kappa_{3}}}, \\
\kappa_{2}^{\prime \prime} \neq \frac{3 \kappa_{2}\left(\kappa_{2}^{\prime}\right)^{2}}{\kappa_{1}^{2}+\kappa_{2}^{2}}+\kappa_{2}\left(\kappa_{1}^{2}+\kappa_{2}^{2}+\kappa_{3}^{2}\right) .
\end{gathered}
$$

Here, c is an arbitrary constant.
Converse proposition is trivial.

References

[1] Arslan, K. Thesis, The University of Leeds, 1993.
[2] Arslan, K., Aydın, Y., Öztürk, G. and Ugail, H., Biminimal Curves in Euclidean Spaces, International Electronic Journal of Geometry, Volume 2 No. 2 (2009), pp. 46-52.
[3] Arslan, K., Çelik, Y., Deszcz, R., Özgür, C., Submanifolds all of whose normal sections are W-curves, Far East J. Math. Sci. 5, 4 (1997), 537-544.
[4] Arslan, K., Çelik, Y. and Hacısalihoğlu, H., On harmonic Curvatures of a Frenet Curve, Common. Fac. Sci. Univ. Ank. Series A1 49 (2000), 15-23.
[5] Arslan, K. and Özgür C., Curves and surfaces of AW(k)-type, in: F. Defever (Ed.), J.M. Morvan (Ed.), I.V. Woestijne (Ed.), L. Verstraelen (Ed.), G. Zafindratafa (Ed.), Geometry and Topology of Submanifolds IX (Valenciennes/Lyan/Leuven, 1997), World. Sci. Publishing, 1999, pp. 21-26.
[6] Arslan, K. and Özgür, C., On normal sections of Veronese submanifold, Balkan J. Geom. Appl. 4, 1 (1999), 1-8.
[7] Arslan, K. and West, A., Product submanifolds with pointwise 3-planar normal sections, Glasgow Math. J. 37(1) (1995), 73-81.
[8] Ersoy, S., Masal, M. and Tosun, M., On Mannheim Partner Curves of AW(k)-type, arXiv:1001.1267.
[9] Gezgin, F., AW(k)-Type Curves, MSc. Thesis, Balıkesir University, 2005.
[10] Gray, A., Modern differential geometry of curves and surfaces, Crc Press, 1993.
[11] Güvenç, S., Curves on Contact Pseudo-Hermitian 3-Manifolds, MSc. Thesis, Balıkesir University, 2011.
[12] Inoguchi, J-I and Lee J-E., Almost contact curves in normal almost contact 3-manifolds, Accepted in J. Geom.
[13] Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2004), no. 2, 153-163.
[14] Kılıç, B., Finite type curves and surfaces, PhD. Thesis, Hacettepe University, 2002.
[15] Kılıç, B. and Arslan, K., On curves and surfaces of AW(k) type, BAÜ Fen Bil. Enst. Der., 6.1 (2004), 52-61.
[16] Körpınar T., Timelike Biharmonic Curves Of AW(k)-Type In The Lorentzian Heisenberg Group Heis ${ }^{3}$, Int. J. Open Problems Compt. Math., Vol. 4, No. 1, 184-190.
[17] Körpinar T. and Turhan, E., Spacelike Biharmonic Curves of AW(k)-type in the Lorentzian Heisenberg Group Heis3, Journal of Vectorial Relativity 5 (2010) 4, 1-7.
[18] Külahcı, M. and Ergüt, M., Bertrand curves of AW(k)-type in Lorentzian space, Nonlinear Anal. Theor. Meth. App. 70 (2009), No: 4, 1725-1731.
[19] Külahcı, M., Bektaş M. and Ergüt, M., Curves of AW(k)-type in 3-dimensional null cone, Phys. Lett., A 371 (2007), 275-277.
[20] Külahcı, M, Bektaş, M. and Ergüt M., On harmonic curvatures of null curves of AW(k)-type in Lorentzian space, Zeitschrift für Naturforschung, 63a: (2008), 248-252.
[21] Külahcı, M., Bektaş, M. and Ergüt, M., On harmonic curvatures of a Frenet curve in Lorentzian space, Chaos, Solitons and Fractals 41 (2009) 1668-1675.
[22] Külahcı, M. and Ergüt, M., Bertrand Curves of AW(k)-type in Lorentzian Space, Nonlinear Anal., 70 (2009), 1725-1731.
[23] Lee, J.E., On Legendre Curves in Contact Pseudo-Hermitian 3-manifolds, Bull. Aust. Math. Soc. 81 (2010), 156-164.
[24] Öğrenmiş, A.Ö., On curvatures of a frenet curve in the pseudo - Galilean space G_{3}^{1}, International Journal of the Physical Sciences, Vol. 5 (15), pp. 2363-2368.
[25] Öğrenmiş, A.O., Öztekin, H. and Ergüt, M., Some Properties of Mannheim Curves in Galilean and Pseudo - Galilean space, arXiv:1111.0424.
[26] Özgür, C. and Güvenç, Ş., On Some Types of Slant Curves in Contact Pseudo-hermitian 3-manifolds, Ann. Polon. Math. 104 (2012), 217-228.
[27] Özgür, C. and Gezgin, F. On Some Curves of AW(k)-type, Differ. Geom. Dyn. Syst., 7 (2005), 74-80.
[28] Özgür, C. and Triphathi, M.M., On Legendre Curves in α-Sasakian Manifolds, Bull. Malays. Math. Sci. Soc. (2) 31 (1) (2008), 91-96.
[29] Öztekin, H., Null Bertrand Curves of the AW(k)-type in Minkowski 3-Space, e-Journal of New World Sciences Academy NWSA-Physical Sciences, 3A0054, 7, (3) (2012), 87-92.
[30] Struik, G. J., Lectures on Classical Differential Geometry, Dover, New York, NY, USA, 1988.
[31] Sun, J. and Pei, D., Null Cartan Bertrand curves of AW(k)-type in Minkowski 4-space, Physics Letters A 376 (2012) 2230-2233.
[32] Yoon, D.W., General helices of AW(k)-type in Lie group, Journal of Applied Mathematics, Accepted on 2 December 2012.

Department of Mathematics, Uludag University, Görükle Campus, Bursa-TURKEY E-mail address: arslan@uludag.edu.tr

Department of Mathematics, Balikesir University, Çağiş Campus, Balikesir-TURKEY E-mail address: sguvenc@balikesir.edu.tr

[^0]: Date: Received: April 13, 2013 and Accepted: June 17, 2014.
 2010 Mathematics Subject Classification. 53C40, 53C42.
 Key words and phrases. Curves of $A W(k)$-type, curves of osculating order d.

