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THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A

REGULAR SURFACE

EMRAH TUNÇ AND EMİN OZYILMAZ

(Communicated by Levent KULA)

Abstract. In this work, we study Differential Geometry of the curves on a

regular surface in Euclidean space R3 by using parameter curves which are
not perpendicular to each other. The aim of this study is to investigate the

formulas between the Darboux Vectors of the curve (c), the parameter curve

(c1) and the parameter curve (c2) which are not intersect perpendicularly.

1. Introduction

Roughly saying, geometry set out with the measurement of distances and angles.
The geometry of curves in R3 can be investigated by the topics which are general
helices, involute-evolute curve couples, spherical curves and Bertrand curves. Such
special curves are used many areas as seen computer graphics, topological com-
binatorics, especially, the modelling of cars, in physics and in some of real world
problems like mechanical design or robotics.

In recent years the theory of degenerate submanifolds has been treated by re-
searchers and some of the classical differential geometry topics have been extended
to Lorentzian manifolds, [6]. In [6], authors had assumed that the parameter curves
of any surface are orthognal. Moreover, some authors have aimed to determine the
Frenet-Serret invariants in higher dimensions.

Another orthonormal frame on surface is the Darboux trihedrons. We use it to
examine the special curves on surface as geodesic curves and asymptotic curves.
By using the Darboux vector, various well-known formulas of differential geometry
had been produced by [1, 4, 5, 2, 3].

In this work, we study to investigate the formulas between the Darboux Vectors
of the curve (c), the parameter curves (c1) and (c2) which are not intersecting
perpendicularly. Thus, we will find an opportunity to investigate regular surface
by taking the parameter curves which are intersect under the angle θ.
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2. Preliminary

To meet the requirements in the next sections, here, the basic elements of the
theory of curves in the space R3 are briefly presented (A more complete elementary
treatment can be found in [1]). The Euclidean space R3 provided with the standard
flat metric given by

<,>= dx2
1 + dx2

2 + dx2
3.(2.1)

where (x1, x2, x3) is a rectangular coordinate system of R3 . Recall that, the norm
of an arbitrary vector a ∈ R3 is given by ‖ ~a ‖=

√
< ~a,~a >. Let φ = φ(s) be a

regular curve in R3. φ is called an unit speed curve if the velocity vector ~v of φ
satisfies ‖ ~v ‖= 1. For the vectors ~u, ~w ∈ R3 it is said to be orthogonal if and only
if < ~u, ~w >= 0. On the other hand, the vector ~w is called angular velocity vector of
motion. If we consider any orthogonal trihedron as {~e1, ~e2, ~e3} we can write their
derivative formulas as follows:

d~e1

dt
= ~w ∧ ~ei , i = 1, 2, 3 ,(2.2)

where ∧ is vectoral product,[1].

Let we take a surface as y = y(u, v). Denote by {~t, ~n,~b} the Frenet-Serret frame
along the curve (c) on y = y(u, v). Another orthogonal frame on y = y(u, v) is

the Darboux trihedron as {~t, ~N,~g} . For an arbitrary curve (c) on surface, the
orientation of the Darboux trihedron is written as

~t ∧ ~N = ~g , ~g ∧ ~t = ~N , ~N ∧ ~g = ~t,(2.3)

and the Darboux vector of this trihedron is written as

~w =
~t

Tg
+

~N

Rg
+

~g

Rn
,(2.4)

where

< ~t,~t >= 1, < ~N, ~N >= 1, < ~g,~g >= 1,

< ~t,~g >= 0, < ~t, ~N >= 0, < ~g, ~N >= 0.

where 1
Tg

, 1
Rn

, 1
Rg

are geodesic torsion, normal curvature , geodesic curvature, and

Tg , Rn , Rg, are radius of geodesic torsion ,radius of normal curvature, radius of
geodesic curvature, respectively.

Also,the Darboux derivative formulas can be written as follows:

d~t

ds
= ~w ∧ ~t, d

~N

ds
= ~w ∧ ~N,

d~g

ds
= ~w ∧ ~g.(2.5)
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3. The Darboux Vector For The Darboux Trihedron Of A Regular
Curve

Let us express the parameter curves u = const. as (c1) and v = const. as (c2)
which are constant on a regular surface y = y(u, v). But, these curves are intersect
under the angle θ (not perpendicular). Let any curve that is passing through a
point P on the surface be (c). Let us take curves which are passing through the
same point P as (c1) and (c2). Let the unit tangent vectors of curves (c), (c1) and
(c2) at the point P be ~t, ~t1 and ~t2, respectively. From [1], the edges of the Darboux
trihedrons of parameter curves are

~ti ∧ ~N = ~gi, ~gi ∧ ~ti = ~N, ~N ∧ ~gi = ~ti, (i = 1, 2).(3.1)

Here, the three Darboux trihedrons are written as below:

[~t, ~N,~g], [~t1, ~N, ~g1], [~t2, ~N, ~g2]

Let the arc-lenght parameter of the curves (c),(c1) and (c2) be s, s1 and s2,
respectively. Thus, we can write

~t1 =
~ru
‖ ~ru ‖

=
~ru√
E
,

~t2 =
~rv
‖ ~rv ‖

=
~rv√
G
,(3.2)

~t = ~ru
du

ds
+ ~rv

dv

ds
.

Moreover,the parameter curves are intersect under the angle θ.Thus, we have

< ~t1, ~t2 >= cosθ.(3.3)

Then, the normal vector of surface is

~N =
~t1 ∧ ~t2
‖ ~t1 ∧ ~t2 ‖

=
~t1 ∧ ~t2
sinθ

.(3.4)

By considering the first two formulas of (3.2) in the third term,

~t = ~ru
du

ds
+ ~rv

dv

ds
= ~t1
√
E
du

ds
+ ~t2
√
G
dv

ds
(3.5)

is written,[1]. On the other hand, let us consider the real angle between ~t and ~t1 as
α, and if we take inner product both side of (3.5) with ~t1 and ~t2 then

< ~t, ~t1 >= cosα =
√
E
du

ds
+ cos θ

√
G
dv

ds
,(3.6)

< ~t, ~t2 >= cos(θ − α) = cosθ
√
E
du

ds
+
√
G
dv

ds
(3.7)
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are obtained. Thus, from (3.6) and (3.7)

sin(θ − α)

sinθ
=
√
E
du

ds
.(3.8)

sinα

sinθ
=
√
G
dv

ds

are written. Finally, if we put (3.8) into (3.5), we have the following equation
between the tangent vectors of the curves (c), (c1) and (c2):

~t =
sin(θ − α)

sinθ
~t1 +

sinα

sinθ
~t2.(3.9)

Here, we shall denote the arc-elements ds, ds1 and ds2 of the parameter curves
which are belongs to regular surface y = y(u, v), and then we express as follows:

ds2 = Edu2 + 2Fdudv +Gdv2 ,

ds2
1 = Edu2 ,(3.10)

ds2
2 = Gdv2.

Thus, considering (3.8) and (3.10), we have

sin(θ − α)

sinθ
=
√
E
du

ds
=
ds1

ds
,(3.11)

sinα

sinθ
=
√
G
dv

ds
=
ds2

ds
.

Corollary 3.1. The third elements ~g, ~g1 and ~g2 of the Darboux trihedrons [~t, ~N,~g]

, [~t1, ~N, ~g1] and [~t2, ~N, ~g2] are linear dependent.

Proof. If we substitute the equation (3.9) in the first equality of (2.3) and consider
the Darboux trihedrons of (c1) and (c2) we have just obtain

~g =
sin(θ − α)

sinθ
~g1 +

sinα

sinθ
~g2.(3.12)

Thus, we get the expression. �

Theorem 3.1. The Darboux trihedrons [~t1, ~N, ~g1] and [~t2, ~N, ~g2]of the parameters
curves (c1) and (c2) of the surface y = y(u, v) are written by Darboux instantaneous
vectors as follows:

∂~ti
ds

= ~wi ∧ ~ti,
∂ ~N

ds
= ~wi ∧ ~N,

∂~gi
ds

= ~wi ∧ ~gi, (i, j = 1, 2).(3.13)

Proof. If we consider the Darboux trihedrons [~t1, ~N, ~g1] and [~t2, ~N, ~g2] of parameter

curves, we see that the normal vector ~N is coincide .Then, considering (3.4)
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~g1 = ~t1 ∧ ~N = ~t1 ∧ (
~t1 ∧ ~t2
sinθ

) =
−~t2(< ~t1, ~t1 >) + ~t1(< ~t1, ~t2 >)

sinθ
(3.14)

=
~t1cosθ − ~t2

sinθ
,

~g2 = ~t2 ∧ ~N = ~t2 ∧ (
~t1 ∧ ~t2
sinθ

) =
−~t2 < (~t1, ~t2) > +~t1(< ~t2, ~t2 >)

sinθ
(3.15)

=
−~t2cosθ + ~t1

sinθ

are obtained. From (2.2), we write

∂~t1
ds1

= ~w1 ∧ ~t1,
∂ ~N

ds1
= ~w1 ∧ ~N,

∂ ~g1

ds1
= ~w1 ∧ ~g1,(3.16)

∂~t2
ds2

= ~w2 ∧ ~t2,
∂ ~N

ds2
= ~w2 ∧ ~N,

∂ ~g2

ds2
= ~w2 ∧ ~g2.(3.17)

If (3.14) is substituted in the third equality (3.16),we get

∂ ~g1

∂s1
=
∂[ 1

sin θ (cos θ~t1 − ~t2)]

∂s1
=

1

sin θ
(
∂~t1
∂s1

cos θ − ∂~t2
∂s1

) =(3.18)

1

sin θ
[( ~w1 ∧ ~t1) cos θ − ∂~t2

ds1
],

∂ ~g1

∂s1
= ~w1 ∧ ~g1 = ~w1 ∧ [

1

sin θ
(cos θ~t1 − ~t2)](3.19)

=
1

sin θ
(( ~w1 ∧ ~t1) cos θ − ( ~w1 ∧ ~t2)).

Then, from (3.18) and (3.19), we have

∂~t2
ds1

= ~w1 ∧ ~t2.(3.20)

Thus, the derivative of ~t2 with respect to ~s1 is written by the vectoral product of
~w1 and ~t2. �

Similarly, it is easy to see that the other vectors can be written by the same
metod.

Corollary 3.2. By using the vectors ~t1,~t2 and ~N ,we can express ~w, ~w1 and ~w2 as
follows:

~w =
~t1

sin θ
[
sin(θ − α)

Tg
+

cos(θ − α)

Rn
] +

~t2
sin θ

[
sinα

Tg
− cosα

Rn
] +

~N

Rg
,(3.21)
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~w1 = ~t1[
1

(Tg)1
+

cos θ

sin θ(Rn)1
]−

~t2
sin θ(Rn)1

+
~N

(Rg)1
,(3.22)

~w2 =
~t1

sin θ(Rn)2
+ [

1

(Tg)2
− cos θ

sin θ(Rn)2
]~t2 +

~N

(Rg)2
.(3.23)

Proof. From (2.4), we can write the Darboux vectors of the [~t, ~N,~g] , [~t1, ~N, ~g1]

and [~t2, ~N, ~g2] as

~w =
~t

Tg
+

~N

Rg
+

~g

Rn
,

~w1 =
~t1

(Tg)1
+

~N

(Rg)1
+

~g1

(Rn)1
,(3.24)

~w2 =
~t2

(Tg)2
+

~N

(Rg)2
+

~g2

(Rn)2
.

Then, if we consider the equation(3.9),(3.14) and (3.15) according to the vectors ~t1
and ~t2 and substitute in (3.24), we get (3.21),(3.22) and (3.23). �

Theorem 3.2. If we consider the tangent vectors ~t1 and ~t2 of the parameter curves
(c1) and (c2) on the surface y = y(u, v), then we obtain the following relations:

i) < ~t1,
∂~t2
∂s1

>= − < ~t2,
∂~t1
∂s1

>=
(
√
E)v − cos θ(

√
G)u√

EG
,(3.25)

ii) < ~t2,
∂~t1
∂s2

>= − < ~t1,
∂~t2
∂s2

>=
(
√
G)u − cos θ(

√
E)v√

EG
.(3.26)

Proof. From (3.2), ~t2 = ~ru√
E

and ~t2 = ~rv√
G

are written. And also, we know that

< ~t1, ~t2 >= cosθ ⇒< ~ru, ~rv >= cosθ
√
E
√
G,(3.27)

E = (
√
E)2 = ~ru

2 ⇒
√
E(
√
E)v = ~ruv

~ru,(3.28)

G = (
√
G)2 = ~rv

2 ⇒
√
G(
√
G)u = ~rvu ~rv.(3.29)

By taking differential from ~t1 = ~ru√
E

and ~t2 = ~rv√
G

, we obtain

∂~t1
∂v

=
~ruv (
√
E)− (

√
E)v ~ru

E
,

∂~t2
∂u

=
~ruv

(
√
G− (

√
G)u ~rv

G
.

Thus, we write
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< ~t2,
∂~t1
∂v

>=
~rv√
G

( ~ruv

√
E − (

√
E)v ~ru

E
) =

(
√
G)u − cosθ(

√
E)v√

E
,(3.30)

< ~t1,
∂~t2
∂u

>=
~ru√
E

(
~ruv

(
√
G)− (

√
G)u ~rv

G
) =

(
√
E)v − cosθ(

√
G)u√

G
.(3.31)

On the other hand, we have

∂~t1
∂s2

=
∂~t1
∂v

dv

ds2
=

1√
G

∂~t1
∂v

.(3.32)

∂~t2
∂s1

=
∂~t2
∂u

du

ds1
=

1√
E

∂~t2
∂u

.(3.33)

Thus, taking inner product of (3.32) and (3.33) by the vector ~t2 and the vector ~t1
,and considering (3.30)and(3.31), we have (3.26) and(3.25). �

The other cases can be seen easily.

Corollary 3.3. If we take differential from < ~t1, ~t2 >= cos θ with respect to
u and v, we get

< ~t1,
∂~t2
∂v

>= − < ~t2,
~t1
∂v

>= −[
(
√
G)u − cos θ(

√
E)v√

E
],(3.34)

The same holds for

< ~t1,
∂~t2
∂u

>=
(
√
E)v − cos θ(

√
G)u√

G
.(3.35)

Thus, we have

∂

∂v
(< ~t1,

∂~t2
∂u

> − ∂

∂u
(< ~t1,

∂~t2
∂v

>) =(3.36)

∂

∂v
(
(
√
E)v − cos θ(

√
G)u√

G
) +

∂

∂u
(
(
√
G)u − cos θ(

√
E)v√

E
).

Theorem 3.3. The following geodesic curvature equalities are satisfied for the
parameter curves (c1) and (c2)

1

(Rg)1
=

1

sinθ
√
EG

(cosθ(
√
G)u − (

√
E)v),(3.37)

1

(Rg)2
=

1

sinθ
√
EG

((
√
Gu)− cosθ(

√
E)v).(3.38)
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Proof. i) From (3.25) and (3.20), we write

< ~t1,
∂~t2
∂s1

>= (
(
√
E)v − cosθ(

√
G)u√

EG
) ,

∂~t2
∂s1

= ~w1 ∧ ~t2.

It follows that we have

(
√
E)v − cos θ(

√
G)u√

EG
=< ~t1, ~w1 ∧ ~t2 >=< ~w1, ~t2 ∧ ~t1 >= −sinθ < ~N, ~w1 > .

Then, from (3.24), if we take inner product both of side ~w1 with −sinθ ~N we obtain

−sinθ < ~N, ~w1 >= −sinθ <
~N, ~N >

(Rg)1
⇒ ~N ~w1 =

1

(Rg)1
.

Thus
1

(Rg)1
=

1

sinθ
√
EG

(cosθ(
√
G)u − (

√
E)v)

is obtained. Similarly, (ii) can be proven. �

Theorem 3.4. Let us consider any curve (c) on the surface and the arc elements
of curves (c), (c1) and (c2) is ds, ds1 and ds2, respectively. Let the Darboux in-
stantaneous rotation vectors of (c1) and (c2) be ~w1, ~w2 and if the real angle between
the tangent ~t of curve (c) and ~t1 is α, then

(
sin(θ − α)

sinθ
~w1 +

sinα

sinθ
~w2) ∧ ~t1 = ~A ∧ ~t1,(3.39)

and

d~t1
ds

= ~A ∧ ~t1,
d~t2
ds

= ~A ∧ ~t2,
d ~N

ds
= ~A ∧ ~N,(3.40)

are satisfied.

Proof. If we consider (3.11) and (3.13), then

∂~t1
∂s

=
∂~t1
∂s1

ds1

ds
+
∂~t1
∂s2

ds2

ds
=
sin(θ − α)

sinθ
( ~w1 ∧ ~t1) +

sinα

sinθ
( ~w2 ∧ ~t1) =

(
sin(θ − α)

sinθ
~w1 +

sinα

sinθ
~w2) ∧ ~t1 = ~A ∧ ~t1

is obtained. Similarly,the others are satisfied. �

Corollary 3.4. The following equality

< ~t2,
d~t1
ds

>= − < ~t1,
d~t2
ds

>= sinθ < ~A,N >(3.41)

is hold.
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Theorem 3.5. Let us consider the curves (c), (c1) and (c2) which are intersect a
point P on the surface y = y(u, v). Let the Darboux instantaneous rotation vectors
of these curves at the point P be ~w, ~w1 and ~w2, respectively. We obtain following
equality between the Darboux vectors ~w, ~w1 and ~w2:

~w =
sin(θ − α)

sinθ
~w1 +

sinα

sinθ
~w2 + ~N

dα

ds
.(3.42)

Proof. From (3.9)

~t =
sin(θ − α)

sinθ
~t1 +

sinα

sinθ
~t2,(3.43)

can be written. Then, by taking derivatives with respect to s from equation (3.43),
we obtain

d~t

ds
=
sin(θ − α)

sinθ

d~t1
ds

+
sinα

sinθ

dt2
ds

+ [−cos(θ − α)

sinθ
~t1 +

cosα

sinθ
~t2]
dα

ds
.(3.44)

On the other hand, considering the Darboux trihedrons [~t1, ~N, ~g1] and [~t2, ~N, ~g2],
we write

~t1 = ~N ∧ ~g1, ~t2 = ~N ∧ ~g2.(3.45)

From (3.14) and (3.15) , if ~g1 and ~g2 are substituted in (3.45) we obtain

~t1 = ~N ∧ 1

sinθ
(cosθ~t1 − ~t2), ~t2 = ~N ∧ 1

sinθ
(−cosθ~t2 + ~t1).(3.46)

By substituting the equations (3.46) in (3.44), we have

d~t

ds
=
sin(θ − α)

sinθ

d~t1
ds

+
sinα

sinθ

dt2
ds

+ [−cos(θ − α)

sin2θ
N ∧ (cosθ~t1 − ~t2)(3.47)

+
cosα

sin2θ
N ∧ (~t1 − ~t2cosθ)]

dα

ds
.

According to the theorem 4,

d~t1
ds

= ~A ∧ ~t1,
~t2
ds

= ~A ∧ ~t2, ~A =
sin(θ − α)

sinθ
~w1 +

sinα

sinθ
~w2,

are known. And, by using the trigonometric expression, we find

d~t

ds
=
sin(θ − α)

sinθ
~A ∧ ~t1 +

sinα

sinθ
~A ∧ ~t2 +N ∧ [

sin(θ − α)

sinθ
~t1 +

sinα

sinθ
~t2]
dα

ds

= ~A ∧ [
sin(θ − α)

sinθ
~t1 +

sinα

sinθ
~t2] +N ∧ [

sin(θ − α)

sinθ
~t1 +

sinα

sinθ
~t2]
dα

ds

= ~A ∧ ~t+ ( ~N ∧ ~t)dα
ds

= [ ~A+ ~N
dα

ds
] ∧ ~t.
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Thus

d~t

ds
= ~k ∧ ~t,(3.48)

where

~k = [ ~A+ ~N
dα

ds
].(3.49)

After that,

~A = ~k − ~N
dα

ds
(3.50)

is obtained. By writing (3.49) in the third expression of (3.40) we obtain

d ~N

ds
= ~A ∧ ~N = (~k − dα

ds
~N) ∧ ~N = ~k ∧ ~N.(3.51)

Since ~W is the Darboux vector, we have

d~t

ds
= ~w ∧ ~t, dN

ds
= ~w ∧ ~N.(3.52)

Then, considering (2.5) , (3.47) , (3.50) and (3.51)

d~t

ds
= ~w ∧ ~t = ~k ∧ ~t⇒ 0 = ~k ∧ ~t− ~w ∧ ~t = (~k − ~w) ∧ ~t,

(~k − ~w) = λ ~t,(3.53)

and

d ~N

ds
= ~w ∧ ~N = ~k ∧ ~N ⇒ 0 = ~k ∧ ~t− ~w ∧ ~N = (~k − ~w) ∧ ~N,

~k − ~w = µ ~N,(3.54)

are written. At the end, if we make equal (3.52) to (3.53), we have

~k − ~w = λ~t = µ ~N ⇒ λ = µ = 0.(3.55)

Finally, ~k − ~w = ~0 can be written. Thus, we get the theorem.
�
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