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Abstract. We review part of the classical theory of curves and surfaces in
3-dimensional Lorentz-Minkowski space. We focus in spacelike surfaces with
constant mean curvature pointing the differences and similarities with the
Euclidean space.
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The title of this work is motivated by the book of M. P. do Carmo, Differential
Geometry of Curves and Surfaces ([4]), and its origin was a mini-course given by the
author in September 2008 in the Instituto de Matemática e Estat́ıstica (IME-USP)
of the University of Sao Paulo, Brazil. The main purpose is how to approach to
the study of curves and surfaces in Lorentz-Minkowski space when one has basic
concepts of curves and surfaces in Euclidean space. With this in mind, we will
consider some of the topics that appear in [4] and we ask what type of differences
and similarities are between both scenarios. Originally, these notes were posted in
the ArXiv server [18] such as I wrote in a first and quick version. I realize that the
paper has been cited in many articles depicted the number of typographic mistakes
of the original version. In occasion of this special volume dedicated to the memory
of Prof. Franki Dillen by the International Electronic Journal of Geometry, I have
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the opportunity to improve the original draft. Furthermore, this article is a tribute
to the work of Prof. Dillen and its influence, specially in the field of submanifolds
in Lorentz-Minkowski space. In my case, I point out the article [6] on ruled surfaces
in Minkowski space and the set of articles that appeared in the series of volumes
‘Geometry and Topology of Submanifolds’ by World Scientific which took place in
the nineties and where Prof. Dillen had a high activity.

There is not a textbook with a systematic study of curves and surfaces in Lorentz-
Minkowski space such as it occurs in the Euclidean space. Some of the topics of
this paper can be found in some books and articles. For curves, it is usually cited
[28], which it is a doctoral thesis and not easily available. Very recently there is
some space for some type of curves in [13, p. 33]. For surfaces, I refer [8, Part
I] and [29, Ch. 3], although here the focus lies on timelike surfaces. A general
reference including many topics in semi-Riemannian geometry is the classical book
of O’Neill [26]. We begin in section 1 with an introduction to the metric space of
Lorentz-Minkowski space E3

1 with an interest on the isometries of this space. The
second section develops the Frenet equations for curves in E3

1. In section 3 we study
surfaces in E3

1 with special attention on spacelike surfaces. We give the notion of
mean curvature and Gauss curvature and we show many examples of surfaces. In
section 4 we consider spacelike surfaces with constant mean curvature and finally,
section 5 emphasizes the connection between this class of surfaces and the theory
of elliptic equations.

1. The Lorentz-Minkowski space E3
1

1.1. Basic definitions. Let R3 denote the real vector space with its usual vector
structure. Denote by Bu = {E1, E2, E3} the canonical basis of R3, that is,

E1 = (1, 0, 0), E2 = (0, 1, 0), E3 = (0, 0, 1).

We denote (x, y, z) the coordinates of a vector with respect to Bu. We also consider
in R3 its affine structure, and we will say “horizontal” or “vertical” in its usual sense.

Definition 1.1. The Lorentz-Minkowski space is the metric space E3
1 = (R3, ⟨, ⟩)

where the metric ⟨, ⟩ is

⟨u, v⟩ = u1v1 + u2v2 − u3v3, u = (u1, u2, u3), v = (v1, v2, v3),

which is called the Lorentzian metric.

We also use the terminology Minkowski space and Minkowski metric to refer
the space and the metric, respectively. The Lorentzian metric is a non-degenerate
metric of index 1. The vector space R3 also supports the Euclidean metric, which
will be denoted by ⟨, ⟩e. We write the 3-dimensional Euclidean space as E3 =
(R3, ⟨, ⟩e) to distinguish from the Lorentz-Minkowski space.

Definition 1.2. A vector v ∈ E3
1 is said

(1) spacelike if ⟨v, v⟩ > 0 or v = 0,
(2) timelike if ⟨v, v⟩ < 0 and
(3) lightlike if ⟨v, v⟩ = 0 and v ̸= 0.

The light-cone of E3
1 is the set of all lightlike vectors of E3

1:

C = {(x, y, z) ∈ E3
1 : x2 + y2 − z2 = 0} − {(0, 0, 0)}.
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The set of timelike vectors is

T = {(x, y, z) ∈ E3
1 : x2 + y2 − z2 < 0}.

We observe that both T and C have two connected components.
Given U ⊂ R3 a vector subspace, we consider the induced metric ⟨, ⟩U :

⟨u, v⟩U = ⟨u, v⟩, u, v ∈ U.

The metric on U classifies in one of the next three types:

(1) The metric is positive definite and U is called spacelike.
(2) The metric has index 1 and U is said timelike.
(3) The metric is degenerate and U is called lightlike.

The causal character of a vector or a subspace is the property to be spacelike,
timelike or lightlike. In what follows, we give some characterizations and properties
of the causality of a subspace of E3

1.

Proposition 1.1. Let U ⊂ E3
1 be a vector subspace.

(1) dim(U⊥) = 3− dim(U).
(2) (U⊥)⊥ = U .
(3) If U is non-degenerate, then U⊥ is a non-degenerate subspace.
(4) U is timelike (resp. spacelike, lightlike) if and only if U⊥ is spacelike (resp.

timelike, lightlike).
(5) If v is timelike or spacelike, then E3

1 = Span{v} ⊕ Span{v}⊥.

Comparing with Euclidean space E3, the existence of timelike and lightlike vec-
tors give some ‘strange’ properties, as the following:

Proposition 1.2. (1) Two lightlike vectors u, v ∈ E3
1 are linearly dependent if

and only ⟨u, v⟩ = 0.
(2) If u and v are two timelike or lightlike vectors with ⟨u, v⟩ = 0, then they

are lightlike vectors.
(3) If u and v are two timelike vectors, then ⟨u, v⟩ ̸= 0.
(4) If U is a lightlike subspace, then dim(U ∩ U⊥) = 1.

Proposition 1.3. Let P ⊂ E3
1 be a vector plane. The following statements are

equivalent:

(1) P is a timelike subspace.
(2) P contains two linearly independent lightlike vectors.
(3) P contains a timelike vector.

We now characterize lightlike subspaces.

Proposition 1.4. Let U be a vector subspace of E3
1. The following statements are

equivalent:

(1) U is a lightlike subspace.
(2) U contains a lightlike vector but not a timelike one.
(3) U ∩ C = L− {0}, and dim L = 1.

From the Euclidean viewpoint, the next result is useful.

Proposition 1.5. Let P ⊂ E3
1 be a vector plane. Denote by n⃗e an orthogonal

vector with respect to the Euclidean metric. Then P is a spacelike (resp. timelike,
lightlike) plane if and only if n⃗e is a timelike (resp. spacelike, lightlike) vector.
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Proof. If P writes as P = {(x, y, z) ∈ R3 : ax+by+cz = 0}, then n⃗e is proportional
to the vector (a, b, c). We may also write P as

P = {(x, y, z) ∈ R3 : ax+ by − (−c)z = 0} = Span{(a, b,−c)}⊥.
The causal character of (a, b,−c) is the same than n⃗e and Prop. 1.1 proves the
result. �

We define the norm (or modulus) of a vector.

Definition 1.3. Given u ∈ E3
1, the norm of u is |u| =

√
|⟨u, u⟩|. The vector u is

called unitary if its norm is 1.

Proposition 1.6. If P = Span{v}⊥ is a spacelike plane, then

|v|e ≥ |v|.
Proof. It suffices if |v| = 1. Assume n⃗e = (a, b, c), with a2 + b2 + c2 = 1. Then

v = ± (a, b,−c)√
c2 − a2 − b2

.

The Euclidean norm |v|e is

|v|2e =
a2 + b2 + c2

c2 − a2 − b2
=

1

c2 − a2 − b2
≥ 1

because c2 − a2 − b2 = 1− 2(a2 + b2) ≤ 1. �
This result justifies why when one draws a unit orthogonal vector to a spacelike

plane, the Euclidean size is greater than 1.

1.2. Timelike vectors. If u is a timelike vector, the timelike cone of u is

C(u) = {v ∈ T : ⟨u, v⟩ < 0}.
This set is non-empty since u ∈ C(u). Moreover, if v is other timelike vector, and
using ⟨u, v⟩ ≠ 0 (Prop. 1.2), then ⟨u, v⟩ < 0 or ⟨u, v⟩ > 0. This means that T is
the disjoint union T .

= C(u) ∪C(−u), with C(u) ∩C(−u) = ∅. Some properties of
timelike cones are:

Proposition 1.7. (1) Two timelike vectors u and v lie in the same timelike
cone if and only if ⟨u, v⟩ < 0.

(2) u ∈ C(v) if and only if C(u) = C(v).
(3) The timelike cones are convex sets.

Remark 1.1. The existence of timelike cones occurs because T has two components.
For lightlike vectors there is a similar situation since C has two components, namely,
C+ = {p ∈ C : z > 0} and C− = {p ∈ C : z < 0}. Given two linearly independent
vectors u, v ∈ C, then ⟨u, v⟩ ̸= 0 by Prop. 1.2. In this case ⟨u, v⟩ < 0 if and only if
both vectors are in the same component of C.

Up an order, a basis {e1, e2, e3} of E3
1 is called a null basis (or null frame) if

e1 is a unit spacelike vector, e2, e3 are lightlike vectors in Span{e1}⊥ such that
⟨e2, e3⟩ = −1. In particular, e2 and e3 belong to the same component of C.

A difference that we find between E3 and E3
1 refers to the Cauchy-Schwarz

inequality. Recall that if u, v ∈ E3, the Cauchy-Schwarz inequality asserts |⟨u, v⟩| ≤
|u||v| and the equality holds if and only if u, v are proportional.

In Minkowski space, and for timelike vectors, there exists a ‘reverse’ inequality
called the backwards Cauchy-Schwarz inequality ([26, p. 144]) .
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Theorem 1.1. Let u, v ∈ E3
1 two timelike vectors. Then

|⟨u, v⟩| ≥ |u||v|

and the equality holds if and only if u and v are proportional. In the case that both
vectors lie in the same timelike cone, there exists a unique number φ ≥ 0 such that

(1.1) ⟨u, v⟩ = −|u||v| coshφ.

The number φ is called the hyperbolic angle between u and v.

Proof. Consider two linearly independent timelike vectors u and v. Then U =
Span{u, v} is a timelike plane. By Prop. 1.3 the equation on λ

⟨u+ λv, u+ λv⟩ = ⟨u, u⟩+ 2λ⟨u, v⟩+ λ2⟨v, v⟩ = 0

has a least two solutions. In particular, the discriminant of the quadratic equation
must be positive, that is,

⟨u, v⟩2 > ⟨u, u⟩⟨v, v⟩.
This shows the inequality in the case that u and v are linearly independent. On
the other hand, if they are proportional, then we obtain directly the equality.

For the second part of the theorem, we write

(1.2)
⟨u, v⟩2

(|u||v|)2
≥ 1.

If u and v lie in the same timelike cone, then ⟨u, v⟩ < 0 and the expression (1.2)
implies

−⟨u, v⟩
|u||v|

≥ 1.

As the hyperbolic cosine function cosh : [0,∞) → [1,∞) is one-to-one, there exists
a unique number φ ∈ [0,∞) such that

coshφ =
−⟨u, v⟩
|u||v|

.

�

After the definition of the angle between two vectors that lie in the same timelike
cone, we ask how to define the angle between two any vectors u, v ∈ E3

1. Assume
that u, v are linearly independent and that u, v are not lightlike. The angle is
defined depending on the plane P determined by u and v. The induced metric on
P can be Riemannian, Lorentzian or degenerate.

(1) If the plane is Riemannian, then the definition of the angle between both
(spacelike) vectors is the usual as in Euclidean space.

(2) If the plane is Lorentzian, then it is isometric to the Lorentz-Minkowski
plane E2

1 and an isometry does not change the definition of angle. We have
defined the angle for two timelike vectors in the same timelike cone. It
suffices to consider that u and v are unitary. The set U2

1 of unit vectors of
E2

1 has four components, namely,

H1
+ = {(x, y) ∈ E2

1 : x2−y2 = −1, y > 0}, H1
− = {(x, y) ∈ E2

1 : x2−y2 = −1, y < 0}

S1+1 = {(x, y) ∈ E2
1 : x2 − y2 = 1, x > 0}, S1−1 = {(x, y) ∈ E2

1 : x2 − y2 = 1, x < 0}.
The vectors in H1

+ ∪H1
− are timelike and in S1+1 ∪ S1−1 are spacelike.
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Remark 1.2. We point out that by changing (x, y) by (y, x), the plane E2
1

changes by R2 equipped with the metric −(dy)2 + (dx)2. Then a spacelike
vector (resp. timelike) of E2

1 converts to a timelike (resp. spacelike) vector
of the new metric space.

Consider two unit spacelike vectors u, v ∈ U2
1 and, in addition, we assume

that they lie in the same component of U2
1, that is, u, v ∈ S1+1 or u, v ∈ S1−1 .

By the above remark, we conclude then that ⟨u, v⟩ ≥ 1.

Definition 1.4. Let u, v ∈ E2
1 be two non-zero spacelike vectors such that

u/|u| and v/|v| lie in the same component of U2
1. Then the angle ∠(u, v) = φ

is the unique number φ ∈ [0,∞) such that

(1.3) coshφ =
⟨u, v⟩
|u||v|

.

We do not define the angle between two unit spacelike (or timelike)
vectors of E2

1 that do not belong to the same component of U2
1, neither the

angle between a spacelike and timelike vectors. See more justifications in
Th. 2.14.

(3) Finally, a third case appears if the plane containing both vectors is lightlike.
Necessarily, u and v are not timelike. Here we do not define the angle
between two (spacelike) vectors.

We give the definition of timelike orientation. First, we recall the notion of orien-
tation in any vector space. For this, in the set of all ordered basis of R3, we consider
the equivalence relation ∼o given by B ∼o B′ if the change of basis matrix has pos-
itive determinant. There exist exactly two equivalence classes, called orientations
of R3. Fix a basis B. Given other basis B′, we say that B′ is positively oriented
if B′ ∼o B; on the contrary, we say that B′ is negatively oriented. Moreover, the
choice of the ordered pair (R3, [B]) reads saying that R3 is oriented (by B),

In Minkowski space E3
1 and since the background space is R3, the notion of

orientation is the same. The timelike orientation that we introduce is a metric
concept because we use the Lorentzian metric ⟨, ⟩ and thus, there is not relation
with the above notion.

In E3
1 we consider the set B of all ordered orthonormal basis where if B =

{e1, e2, e3} ∈ B, then e3 is a timelike vector. If B = {e1, e2, e3} and B′ = {e′1, e′2, e′3}
are two basis, we define the equivalence relation ∼ by

B ∼ B′ if e3 and e′3 lies in the same timelike cone,

that is, if ⟨e3, e′3⟩ < 0. The equivalence relation ∼ determines two equivalence
classes, which are called timelike orientations. Moreover, each class determines a
unique timelike cone which is defined by the third vector e3 of B. Conversely, given
a timelike cone, there exists a unique timelike orientation in such way that any
basis B that belongs to this orientation has the last vector e3 lies in such timelike
cone.

We say that E3
1 is timelike oriented if we fix a timelike orientation, that is, we

consider an ordered pair (E3
1, [B]) for some B.

Definition 1.5. Let E3 = (0, 0, 1). Given a timelike vector v, we say that v is
future-directed (resp. past-directed) if v ∈ C(E3), that is, if ⟨v,E3⟩ < 0 (resp.
v ∈ C(−E3), or ⟨v,E3⟩ > 0).
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In coordinates, v = (v1, v2, v3) is future-directed if v3 > 0. Thus if we fix the
timelike cone C(E3) then we have associated a timelike orientation. Then we say
that an orthonormal basis B = {e1, e2, e3} is future-directed if e3 is future-directed,
or equivalently, if e3 ∈ C(E3).

We end this introduction with the definition of the vector product.

Definition 1.6. If u, v ∈ E3
1, the Lorentzian vector product of u and v is to the

unique vector denoted by u× v that satisfies

(1.4) ⟨u× v, w⟩ = det (u, v, w),

where det(u, v, w) is the determinant of the matrix obtained by placing by columns
the coordinates of the three vectors u, v and w with respect to Bu.

The bilinearity of the metric assures the existence and uniqueness of this vector
u×v. By taking w in (1.4) each one of the vectors Ei of Bu, we obtain the expression
of u× v in coordinates with respect to Bu:

u× v =

∣∣∣∣∣ i j −k
u1 u2 u3
v1 v2 v3

∣∣∣∣∣.
Thus, if we denote by u×ev the Euclidean vector product, then u×v is the reflection
of u×e v with respect to the plane of equation z = 0. Let us observe that if u and
v are two non-degenerate vectors, then B = {u, v, u× v} is a basis of E3

1. However,
and in contrast to the Euclidean space, the causal character of u and v determines
if the basis is or is not positively oriented. Exactly, if u, v are spacelike, then u× v
is timelike and B is negatively oriented because det(u, v, u×v) = ⟨u×v, u×v⟩ < 0.
If u and v have different causal character, then B is positively oriented.

1.3. Isometries of E3
1. We consider O1(3) the set of all vector isometries of E3

1.
The matrix expression A of an isometry with respect to an orthonormal basis
satisfies AtGA = G, where

G =

 1 0 0
0 0 1
0 0 −1

 .

In other terms, we express O1(3) as the set of matrices

O1(3) = {A ∈ Gl(3,R) : AtGA = G}.
In particular, det(A) = ±1. This means that O1(3) has at least two connected
components. Denote by SO1(3) the set of isometries with determinant 1. The
set SO1(3) is called the special Lorentz group and it is related with the notion of
orientation of R3. Exactly, given an orientation B ∈ B, B′ ∈ B is positively oriented
if the matrix A of change of basis belongs to SO1(3).

We define the ortocrone group by

O+
1 (3) = {A ∈ O1(3) : A preserves the timelike orientation}.

We say that A preserves the timelike orientation if A carries a future-directed basis
B in other future-directed basis. The set O+

1 (3) is a group with two components,
one of them is O+

1 (3)∩SO1(3). This proves that O1(3) has exactly four components.

This contrast with the isometries O(3) of Euclidean space E3, which has exactly
two connected components, being one of them, the special orthogonal group SO(3).
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The special Lorentz ortocrone group is the set O++
1 (3) = SO1(3) ∩O+

1 (3). This
set is a group and I ∈ O++

1 (3). From a topological viewpoint, O++
1 (3) is not a

compact set, in contrast to SO(3) ⊂ O(3), which is compact.

Theorem 1.2. The connected components of O1(3) are O
++
1 (3) and

O+−
1 (3) = {A ∈ SO1(3) : a33 < 0}

O−+
1 (3) = {A ∈ O+

1 (3) : det(A) = −1}
O−−

1 (3) = {A ∈ O1(3) : det(A) = −1, a33 < 0}

If we denote by T1 and T2 the isometries of E3
1 defined by

T1 =

 1 0 0
0 −1 0
0 0 1

 , T2 =

 1 0 0
0 1 0
0 0 −1

 ,

then the three last components that appear in Th. 1.2 correspond, respectively,
with T2 · T1 ·O++

1 (3), T1 ·O++
1 (3) and T2 ·O++

1 (3).
In order to clarify why there appear four connected components, we compute the

isometries in the two-dimensional case, that is, in E2
1. Let A =

(
a b
c d

)
. Then

A ∈ O1(2) if and only if G = AtGA, where G =

(
1 0
0 −1

)
. This leads to the

next three equations

(1.5) a2 − c2 = 1, b2 − d2 = −1, ab− cd = 0.

If we compare with the isometries O(2) of the Euclidean plane E2, the difference
lies in the first two equations, because in E2 change by a2+ b2 = 1 and c2+d2 = 1.
The solution is a = cos θ and b = sin θ.

However in (1.5) we have a2−b2 = 1, which describes a hyperbola, in particular,
there are two branches (two components). The same occurs with the third equation
and combining all the cases, we obtain the four components. Exactly, we have:

(1) There exists t such that a = cosh(t) and c = sinh(t). From b2 − d2 = −1,
it appears two cases again:
(a) There exists s such that b = sinh(s) and d = cosh(s). Using the third

equation in (1.5), we conclude s = t.
(b) There exists s such that b = sinh(s) and d = − cosh(s). Now we have

s = −t.
(2) There exists t such that a = − cosh(t) and c = sinh(t). Equation b2 − d2 =

−1 in (1.5) yields two possibilities:
(a) There exists s such that b = sinh(s) and d = cosh(s). The third

equation of (1.5) concludes that s = −t.
(b) There exists s such that b = sinh(s) and d = − cosh(s). From ab−cd =

0, we have s = t.

As conclusion, we obtain four kinds of isometries. In the same order that we have
obtained them, they are the following:(

cosh(t) sinh(t)
sinh(t) cosh(t)

)
,

(
cosh(t) − sinh(t)
sinh(t) − cosh(t)

)
,(

− cosh(t) − sinh(t)
sinh(t) cosh(t)

)
,

(
− cosh(t) sinh(t)
sinh(t) − cosh(t)

)
.
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By using the notation as in Theorem 1.2, each one of the matrices that have ap-
peared belong to O++

1 (2), O−−
1 (2), O−+

1 (2) and O+−
1 (2), respectively.

We end the study of isometries with the family of isometries that leave pointwise
fixed a straight-line L. This kind of isometries are called boosts of axis L ([26, p.
236]) and they are the counterpart of the groups of rotations of E3. Depending on
the causal character of L, there are three types of such isometries.

(1) The axis L is timelike. Assume L = Span{E3}. Since the restriction of the
isometry to L⊥ is an isometry in a vector plane which it is positive definite,
the isometry is

A =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 .

(2) The axis L is spacelike. Let L = Span{E1}. Now L⊥ is a Lorentzian plane
and the restriction of the isometry to L⊥ belongs to O++

1 (2). Then the
isometry is

A =

 1 0 0
0 cosh θ sinh θ
0 sinh θ cosh θ

 .

(3) The axis L is lightlike. Suppose L = Span{E2 + E3}. A straightforward
computations gives

A =

 1 θ −θ
−θ 1− θ2

2
θ2

2

−θ − θ2

2 1 + θ2

2

 .

The boosts allow to define a circle in E3
1. In Euclidean space E3, there are

different ways to define a circle. A first assumption is that the circle is included in
a plane and that the curve is complete. We have the next possibilities: a) the set
of points equidistant from a given point; b) a curve with constant curvature; c) the
orbit of a point under a group of rotations of E3.

In Lorentz-Minkowski space E3
1, we follow the last approximation but replacing

rotations by boosts. Let L be a fixed straight-line of E3
1 and let GL = {ϕθ : θ ∈ R}

be the group of boost that leave pointwise fixed L. A circle is the orbit {ϕθ(p0) :
ϕθ ∈ GL} of a point p0 ̸∈ L, p0 = (x0, y0, z0). We distinguish three cases depending
on the causal character of L. After an isometry of E3

1, we have:

(1) The axis L is timelike. Consider L = Span{E3}. Then the set {ϕθ(p0) :
θ ∈ R} is the Euclidean circle that lies in the plane of equation z = z0 and

radius
√
x20 + y20 .

(2) The axis L is spacelike. We take L = Span{E1}. Here we suppose y20−z20 ̸=
0 since on the contrary, we get a straight-line. Then the orbit of p0 is a
branch of the hyperbola y2 − z2 = y20 − z20 in the plane of equation x = x0.
Depending if y20 − z20 > 0 or y20 − z20 < 0, we will have four possibilities.

(3) The axis L is lightlike. Assume that L = Span{E2 + E3} and consider the
plane L⊥ = Span{E1, E2+E3}. The orbit of a point p0 = (x0, y0, z0) ̸∈ L⊥

is a plane curve included in the plane y−z = y0−z0. If X = x0+θ(y0−z0)
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and Y = y0−x0θ− (y0−z0)θ2/2, then the orbit of p0 satisfies the equation

Y =
−X2 + 2y0(y0 − z0) + x20

2(z0 − y0)
.

This means that the circle {ϕθ(p0) : θ ∈ R} is a parabola.

We point out that the orbits are Euclidean circles, hyperbolas and parabolas only
in the case that the axis of the group of boosts is one of the above ones. In general,
they are affine ellipse, hyperbola or parabola, depending on the case. For example,
we consider the rotations with respect to the timelike line L = Span{(0, 1, 2)}.
Then L⊥ = Span{E1, (0, 2, 1)/

√
3}. If p = (1, 0, 0) ∈ L⊥, then

ϕθ(p) = cos θE1 + sin θ
1√
3
(0, 2, 1),

which is an affine ellipse included in L⊥

2. Curves in Minkowski space

In this section we develop the theory of the Frenet trihedron for curves in E3
1. A

(smooth) curve is a differentiable map α : I ⊂ R → E3
1 where I is an open interval.

We also say that α is a parametrized curve. A curve is said to be regular if α′(t) ̸= 0
for all t ∈ I. Here we do not use that E3

1 is a metric space, but that the codomain
is R3, that is, a 3-dimensional manifold. In other words, a regular curve is an
immersion between the (one-dimensional) manifold I and the (three-dimensional)
manifold R3.

2.1. The local theory of curves. Let α : I → E3
1 a regular curve. If t ∈ I, the

tangent space TtI identifies with R and the differential map (dα)t : TtI ≡ R →
Tα(t)E

3
1 ≡ R3 is

(dα)t(s) =
d

du

∣∣∣
u=0

α(t+ su) = s · α′(t).

Thus the linear map (dα)t is a homothety from R to R3 given by t 7−→ s · α′(t).
Here we identify (dα)t by α

′(t), or in other words, if ∂/∂t is the unit tangent vector
on TtI, then

(dα)t(
∂

∂t
) = α′(t).

We now endow R3 with the Lorentzian metric ⟨, ⟩. On I we consider the induced
metric of E3

1 by the map α which converts

α : (I, α∗⟨, ⟩) → E3
1 = (R3, ⟨, ⟩)

in an isometric immersion. The pullback metric α∗⟨, ⟩ is now
α∗⟨, ⟩t(m,n) = ⟨(dα)t(m), (dα)t(n)⟩ = mn⟨α′(t), α′(t)⟩, m, n ∈ R,

or if we take the basis {∂/∂t} in TtI,

α∗⟨, ⟩t(
∂

∂t
,
∂

∂t
) = ⟨α′(t), α′(t)⟩.

In order to classify the manifold (I, α∗⟨, ⟩) and since I is a one-dimensional manifold,
we need to know the sign of ⟨α′(t), α′(t)⟩. Thus

(1) If ⟨α′(t), α′(t)⟩ > 0, (I, α∗⟨, ⟩) is a Riemannian manifold.
(2) If ⟨α′(t), α′(t)⟩ < 0, (I, α∗⟨, ⟩) is a Lorentzian manifold, that is, the induced

metric is non-degenerate with index 1.
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(3) If ⟨α′(t), α′(t)⟩ = 0, (I, α∗⟨, ⟩) is a degenerate manifold.

This classification justifies the following definition.

Definition 2.1. A curve α in E3
1 is said spacelike (resp. timelike, lightlike) at t if

α′(t) is a spacelike (resp. timelike, lightlike) vector. The curve α is spacelike (resp.
timelike, lightlike) if it is spacelike (resp. timelike, lightlike) for all t ∈ I.

In particular, a timelike or a lightlike curve is regular. We point out that a curve
in E3

1 may not be of one of the above types. For example, we consider the curve

α : R → E3
1, α(t) = (cosh(t),

t2

2
, sinh(t)).

Since α′(t) = (sinh(t), t, cosh(t), α is a regular curve. As ⟨α′(t), α′(t)⟩ = t2 − 1,
then the curve is spacelike in (−∞,−1) ∪ (1,∞), timelike in the interval (−1, 1)
and lightlike in {−1, 1}. Observe that |α′(±1)| = 0, but α is regular at t = ±1.

However the spacelike (or timelike) condition is an open property, that is, if α
is spacelike (or timelike) at t0 ∈ I, there exists an interval (t0 − δ, t0 + δ) around
t0 where α is spacelike (or timelike): if at t0 ∈ I we have ⟨α′(t0), α

′(t0)⟩ ̸= 0, the
continuity assures the existence of an interval around t0 where ⟨α′(t), α′(t)⟩ has the
same sign than at t = t0.

Example 2.1. Consider plane curves, that is, curves included in an affine plane of
R3 and we study its causal character.

(1) The straight-line α(t) = p+ tv, p, v ∈ R3, v ̸= 0. This curve has the same
causal character than the vector v.

(2) The circle α(t) = r(cos t, sin t, 0) is a spacelike curve included in the space-
like plane of equation z = 0.

(3) The hyperbola α(t) = r(0, sinh t, cosh t) is a spacelike curve in the timelike
plane of equation x = 0.

(4) The hyperbola α(t) = r(0, cosh t, sinh t) is a timelike curve in the timelike
plane of equation x = 0.

(5) The parabola α(t) = (t, t2, t2) is a spacelike curve in the lightlike plane of
equation y − z = 0.

Example 2.2. Consider spatial curves.

(1) The helix α(t) = (r cos t, r sin t, ht), h ̸= 0, of radius r > 0 and pitch 2πh.
This curve is included in the cylinder of equation x2 + y2 = r2. If r2 > h2

(resp. r2 − h2 < 0, r2 = h2), α is a spacelike (resp. timelike, lightlike)
curve.

(2) Let α(t) = (ht, r sinh t, r cosh t), h ̸= 0, r > 0. This curve is spacelike and
included in the hyperbolic cylinder of equation y2 − z2 = −r2.

(3) Let α(t) = (ht, r cosh t, r sinh t), h ̸= 0, r > 0. Here if h2 − r2 > 0 (resp.
< 0, = 0), the curve is spacelike (resp. timelike, lightlike). Moreover, the
curve α is included in the hyperbolic cylinder of equation y2 − z2 = r2.

It is well known that a regular curve in Euclidean space E3 is locally the graph
(on a coordinate axis of R3) of two differentiable functions defined on a coordinate
axis of R3. This is a consequence of the regularity of the curve and the inverse
function theorem and it is not depend on the metric. If the curve is included in
E3

1, the causal character of the curve informs what is the axis where the above two
functions are defined.
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Proposition 2.1. Let α : I → E3
1 be a timelike (resp. lightlike) curve and t0 ∈ I.

Then there exists ϵ > 0 and smooth functions f, g : J ⊂ R → R such that t = ϕ(s)
and β(s) = α(ϕ(s)) = (f(s), g(s), s).

Proof. Writing α(t) = (x(t), y(t), z(t)), we know that x′(t)2 + y′(t)2 − z′(t)2 ≤ 0.
Then z′(t0) ̸= 0. By the inverse function theorem, there exist δ, ϵ > 0 such that
z : (t0 − δ, t0 + δ) → (z(t0)− ϵ, z(t0) + ϵ) is a diffeomorphism. Denote J = (z(t0)−
ϵ, z(t0) + ϵ) and ϕ = z−1. Then the curve β = α ◦ ϕ satisfies

α(ϕ(s)) = β(s) = ((x ◦ ϕ)(s), (y ◦ ϕ)(s), s).

Take f = x ◦ ϕ and g = y ◦ ϕ. �

In Euclidean plane E2 there is a rich theory of closed curves involving classical
topics, as for example, the isoperimetric inequality, the four vertex theorem or the
theorem of turning tangent (see [4, sect. 1.7]). We see how the causal character of
a curve in E3

1 imposes restrictions on planar closed curves.
A closed curve α : R → E3

1 is a parametrized curve that is periodic. If the curve
is regular, there exists a minimum value T > 0 such that α(t + T ) = α(t). In
particular, the trace of α is a compact set.

Theorem 2.1. Let α be a closed regular curve in E3
1 included in a plane P . If α

is spacelike, then P is a spacelike plane.

Proof. We distinguish cases according the causal character of P .

(1) The plane P is timelike. After a rigid motion of E3
1, we assume that P is

the plane of equation x = 0. Then α(t) = (0, y(t), z(t)). Since the function
y : R → R is periodic, it attains a maximum at some point t0. Then
y′(t0) = 0 and so α′(t0) = (0, 0, z′(t0)). As α is regular, z′(t0) ̸= 0 and
this implies that α is timelike at t = t0, a contradiction with the spacelike
property of α.

(2) The plane P is lightlike. Suppose that P is the plane of equation y−z = 0.
Then α(t) = (x(t), y(t), y(t)). Let t0 be the maximum of the function x(t).
This implies x′(t0) = 0 and so, α′(t0) = (0, y′(t0), y

′(t0)). Again, y′(t0) ̸= 0
by regularity, but his implies that α′(t0) is lightlike, a contradiction.

From the above discussion, we conclude that P is necessarily a spacelike plane. �

Therefore, and after an isometry, a plane closed spacelike curve is a closed curve
in an Euclidean plane E2. This means that the theory of plane closed spacelike
curves is the same than in Euclidean plane.

With the same arguments, we have:

Theorem 2.2. There are not closed curves in E3
1 that are timelike or lightlike.

Proof. By contradiction, assume that the curve is closed. Using the same notation
and because the function z = z(t) is periodic, there exists t = t0 such that z′(t0) = 0.
Then

⟨α′(t0), α
′(t0)⟩ = x′(t0)

2 + y′(t0) ≥ 0.

This is a contradiction if α is timelike. If α is lightlike, then x′(t0) = y′(t0) = 0
and so, α′(t0) = 0. In particular, α is not regular at t = t0, a contradiction. �
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Again, we conclude that there is no a theory of closed timelike or lightlike curves.
In Euclidean space, a regular curve α can be parameterized by the arc-length,

that is, ⟨α′(s), α′(s)⟩ = 1 for all s. The same result holds for spacelike and timelike
curves of E3

1.

Proposition 2.2. Let α : I → E3
1 be a spacelike or timelike curve. Given t0 ∈ I,

there is δ, ϵ > 0 and a diffeomorphism ϕ : (−ϵ, ϵ) → (t0 − δ, t0 + δ) such that the
curve β : (−ϵ, ϵ) → E3

1 given by β = α ◦ ϕ satisfies |β′(s)| = 1 for all s ∈ (−ϵ, ϵ).

Proof. We do the proof for timelike curves. Define the function

S : I → R, S(t) =

∫ t

t0

|α′(u)| du.

Since S′(t0) > 0, the function S is a local diffeomorphism around t = t0. Be-
cause S(t0) = 0, there exist δ, ϵ > 0 such that S : (t0 − δ, t0 + δ) → (−ϵ, ϵ) is a
diffeomorphism. The map that we are looking for is ϕ = S−1. �

For a lightlike curve, there is not sense reparametrize by the arc-length. How-
ever a differentiation of ⟨α′(t), α′(t)⟩ = 0 gives ⟨α′′(t), α′(t)⟩ = 0. By Prop. 1.1,
Span{α′(t)}⊥ is a lightlike plane. We distinguish the next cases:

(1) If α′′(t) is lightlike, then α′′(t) is proportional to α′(t) by Prop. 1.2. If this
holds for all t, then an easy integration yields

α(t) = eta+ b, a, b ∈ R3, ⟨a, a⟩ = 0.

This means that α is a parametrization of a (lightlike) straight-line.
(2) If α′′(t) is spacelike, then we can parametrize α to get |α′′(t)| = 1. This is

given in the next result.

Lemma 2.1. Let α : I → E3
1 be a lightlike curve such that the trace of α is not a

straight-line. There exists a reparametrization of α given by β(s) = α(ϕ(s)) such
that |β′′(s)| = 1. We say that α is pseudo-parametrized by arc length.

Proof. We write β(s) = α(ϕ(s)). Then

β′′(s) = ϕ′′(s)α′(t) + ϕ′(s)2α′′(t) ⇒ ⟨β′′(s), β′′(s)⟩ = ϕ′(s)4|α′′(t)|2.

It suffices by defining ϕ as the solution of the differential equation

ϕ′(s) =
1√

|α′′(ϕ(s))|
.

�

Remark 2.1. If α = α(t) is a regular curve and β = α ◦ ϕ is a reparametrization of
α, the causal character of α and β coincides.

2.2. Curvature and torsion. Frenet equations. We want to assign a basis of
E3

1 for each point of a regular curve α(s) whose variation describes the geometry
of the curve. This will be given by the Frenet trihedron {T(s),N(s),B(s)}. In
Euclidean space, the Frenet frame is a positively oriented orthonormal basis, with
B = T×N.

We assume that the curve is parameterized by the arc length or the pseudo arc
length. Recall that the vector T(s) is the velocity of α. In Minkowski space there
appear some problems.
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(1) If the curve is lightlike, T(s) is a lightlike vector and so, {T,N,B} is not an
orthonormal basis. In this situation, we will use the concept of null frame.

(2) Assume that {T,N,B} is an orthonormal basis of E3
1. The binormal vec-

tor B will be always defined as T × N. Now the basis {T,N,B} is not
necessarily positively oriented, as for example, if T,N are spacelike vectors.

(3) It would be desirable that in the case that {T,N,B} is an orthonormal
basis, this basis is future-directed. This can not assure a priori. Even in the
case that α is a timelike curve, α′(s) = T(s) could not be future-directed.

The simplest example of a curve is a straight-line. If p ∈ E3
1 and v ̸= 0 , the

straight-line through the point p in the direction v is parametrized by α(s) = p+sv.
Then α′′(s) = 0. In such a case, we say that the curvature is 0.

Conversely, if α is a regular curve that satisfies α′′(s) = 0 for any s, an integration
gives α(s) = p + sv, for some p, v ∈ E3

1, v ̸= 0. This means that α parametrizes
a straight-line through the point p along the direction given by v. Let us observe
that given a straight-line (as a set of E3

1), there are other parametrizations. For
example, α(s) = (s3 + s, 0, 0) is a parametrization of the straight-line Span{E1}
where α′′(s) ̸= 0.

Consider α : I → E3
1 a regular curve parametrized by arc length or by the pseudo

arc length depending on the case. We call

T(s) = α′(s)

the tangent vector at s. Since ⟨T(s),T(s)⟩ is constant, indeed, 1, −1 or 0, by
differentiating with respect to s, we have ⟨T(s),T′(s)⟩ = 0 and T′(s) is orthogonal
to T(s). We shall restrict to curves such that T′(s) ̸= 0 for all s and that T′(s) is
not proportional to T(s) for each s. This avoids that the curve is a straight-line.

We distinguish three cases depending on the causal character of T(s).

The curve is timelike.

As T(s) is a timelike vector, Prop. 1.1 asserts that T′(s) is a spacelike vector.
Then T′(s) ̸= 0 is a spacelike vector linearly independent with T(s). We define the
curvature of α at s as

κ(s) = |T′(s)|.
The normal vector N(s) is defined by

N(s) =
T′(s)

κ(s)
⇒ T′(s) = κ(s)N(s).

Moreover κ(s) = ⟨T′(s),N(s)⟩. We define the binormal vector B(s) as

B(s) = T(s)×N(s).

The vector B(s) is unitary and spacelike. For each s, {T(s),N(s),B(s)} is an
orthonormal basis of E3

1 which is called the Frenet trihedron of α at s. The basis
{T,N,B} is positively oriented because det(T,N,B) = ⟨T × N,B⟩ = ⟨B,B⟩ =
1 > 0.

We define the torsion τ of α at s as

τ(s) = ⟨N′(s),B(s)⟩.

By differentiation each one of the vector functions of the Frenet trihedron and
writing in coordinates with the same Frenet basis, we obtain the Frenet equations
(or Frenet formula), namely,
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(2.1)

 T′

N′

B′

 =

 0 κ 0
κ 0 τ
0 −τ 0

 T
N
B

 .

The curve is spacelike.

Since T′(s) is orthogonal to the spacelike vector T(s), T′(s) may be spacelike,
timelike or lightlike by Prop. 1.1. We analyse the three cases.

(1) The vector T′(s) is spacelike. Again, we write the curvature κ(s) = |T′(s)|,
N(s) = T′(s)/κ(s) and B(s) = T(s) × N(s). The vectors N and B are
called the normal vector and the binormal vector respectively. Here B(s)
is a timelike vector. The Frenet equations are

(2.2)

 T′

N′

B′

 =

 0 κ 0
−κ 0 τ
0 τ 0

 T
N
B

 .

The torsion of α is τ = −⟨N′,B⟩. Here the basis {T,N,B} is negatively
oriented because det(T,N,B) = ⟨T×N,B⟩ = ⟨B,B⟩ = −1 < 0.

(2) The vector T′(s) is timelike. The curvature is

κ(s) = |T′(s)| =
√

−⟨T′(s),T′(s)⟩

and the normal vector isN(s) = T′(s)/κ(s). The binormal vector is B(s) =
T(s)×N(s), which is a spacelike vector. The Frenet equations are

(2.3)

 T′

N′

B′

 =

 0 κ 0
κ 0 τ
0 τ 0

 T
N
B

 .

The torsion of α is τ = ⟨N′,B⟩. The Frenet basis is now positively oriented.
(3) The vector T′(s) is lightlike for all s. We define the normal vector as

N(s) = T′(s), which is linearly independent with T(s). Let B(s) be the
unique lightlike vector such that ⟨N(s),B(s)⟩ = −1 and it is orthogonal to
T. The vector B(s) is the binormal vector of α at s. The Frenet equations
are

(2.4)

 T′

N′

B′

 =

 0 1 0
0 τ 0
1 0 −τ

 T
N
B

 .

The function τ is called the pseudo-torsion of α and it is obtained by
τ = −⟨N′,B⟩. There is not a definition of the curvature of α. Moreover,
{T,N,B} is not an orthonormal basis of E3

1 since N and B are lightlike.
Let us observe that {T,N,B} is a null frame and that a priori we do not
know if it is positively oriented.

Remark 2.2. We know that T′(s) is spacelike, timelike or lightlike, but it may occur
that this does not hold in all the interval I, that is, the causal character of T′(s)
may be change in I. Thus, in the above discussion of cases, we have assumed that
the causal character of α′′(s) is the same in I. As an example, for s ∈ (1,∞), let

α(s) =

(
cos(s) + s sin(s), sin(s)− s cos(s),

1

2

(
s
√
s2 − 1− log(s+

√
s2 − 1)

))
.
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Then

T(s) = (s cos(s), s sin(s),
√
s2 − 1)

T′(s) =

(
cos(s)− s sin(s), sin(s) + s cos(s),

s√
s2 − 1

)
.

The causal character of T′(s) is given by the sign of s4 − s2 − 1 since

⟨α′′(s), α′′(s)⟩ = s4 − s2 − 1

s2 − 1
.

Thus T′(s) is spacelike if s >
√

1 +
√
5/
√
2 and timelike if 1 < s <

√
1 +

√
5/

√
2.

In both cases, the curvature and the torsion are

κ(s) =

√
|s4 − s2 − 1|

s2 − 1
, τ(s) =

s6 − 2s4 − 2s2 + 2

(s4 − s2 − 1)
√
s2 − 1

.

The curve is lightlike.

Let α be a lightlike curve parametrized by the pseudo arc length. The tangent
vector is T(s) = α′(s). Define the normal vector as N(s) = T′(s), which it is a unit
spacelike vector. The binormal vector is the unique lightlike vector is orthogonal
to N(s) such that ⟨T(s),B(s)⟩ = −1. Thus {T,N,B} is a null frame of E3

1. The
Frenet equations are:

(2.5)

 T′

N′

B′

 =

 0 1 0
τ 0 1
0 τ 0

 T
N
B

 .

The pseudo-torsion of α is τ = −⟨N′,B⟩. As in the case that α is spacelike with T′

lightlike, we do not define the curvature of the curve. We point out the reader that
for lightlike curves there exists a variety of possibilities of concepts where not all
authors coincide. This is essentially due to different the possibilities in the choice
of the Frenet frame. We refer [3, 7, 8, 10].

Example 2.3. (1) Let α(s) = r(cos(s/r), sin(s/r), 0). Then

T(s) =
(
− sin(

s

r
), cos(

s

r
), 0
)
, T′(s) =

1

r

(
− cos(

s

r
),− sin(

s

r
), 0
)
.

Then κ = 1/r, and

N(s) =
(
− cos(

s

r
),− sin(

s

r
), 0
)
, B(s) = (0, 0,−1).

As B′ = 0, τ = 0. This basis is not positively oriented nor future directed.
(2) Let α(s) = r(0, sinh(s/r), cosh(s/r)). Then

T(s) =
(
0, cosh(

s

r
), sinh(

s

r
)
)
, T′(s) =

1

r

(
0, sinh(

s

r
), cosh(

s

r
)
)
.

Then κ = 1/r. Moreover,

N(s) =
(
0, sinh(

s

r
), cosh(

s

r
)
)
, B(s) = (1, 0, 0).

Here τ = 0.
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(3) Let α(s) = r(0, cosh(s/r), sinh(s/r)). Then

T(s) =
(
0, sinh(

s

r
), cosh(

s

r
)
)
, T′(s) =

1

r

(
0, cosh(

s

r
), sinh(

s

r
)
)
.

Here κ = 1/r. Moreover

N(s) = (0, cosh(
s

r
), sinh(

s

r
)), B(s) = (−1, 0, 0).

Again, τ = 0.
(4) Let α(s) = (hs/

√
r2 − h2, r cosh(s/

√
r2 − h2), r sinh(s/

√
r2 − h2)), where

r2 − h2 > 0. Then

T(s) =
1√

r2 − h2

(
h, r sinh(

s√
r2 − h2

), r cosh(
s√

r2 − h2
)

)
.

This vector is timelike and future-directed. We have

T′(s) =
r

r2 − h2

(
0, cosh(

s√
r2 − h2

), sinh(
s√

r2 − h2
)

)
κ =

r

r2 − h2
.

Hence

N(s) =

(
0, cosh(

s√
r2 − h2

), sinh(
s√

r2 − h2
)

)
B(s) =

1√
r2 − h2

(
−r,−h sinh( s√

r2 − h2
),−h cosh( s√

r2 − h2
)

)
.

The torsion is τ = h/(r2 − h2).
(5) Let α(s) = r(s/r, (s/r)2, (s/r)2). This curve is spacelike with

T(s) =

(
1,

2s

r
,
2s

r

)
, T′(s) = N(s) =

(
0,

2

r
,
2

r

)
.

Then B(s) = (0,−r/4, r/4) and τ = 0.
(6) Consider a curve α constructed by the boosts about the lightlike axis

Span{(0, 1, 1)}. Take the orbit β of the point (0, 1,−1). Then β(s) =
(2s, 1 − s2,−1 − s2). Hence β′(s) = (2,−2s,−2s) and β is spacelike. As
|β′(s)| = 2, we reparametrize by the pseudo arc length changing s by s/2.
Thus let α(s) = (s, 1 − s2/4,−1 − s2/4). Then T(s) = (1,−s/2,−s/2)
and T′(s) = (0,−1/2,−1/2). This means that the curve is spacelike with
lightlike normal vector. Thus

N(s) =

(
0,−1

2
,−1

2

)
, B(s) =

(
s, 1− s2

4
,−1− s2

4

)
.

Then τ = 0. We point out that α is included in the plane of equation
y − z = 2.

(7) Consider the lightlike curve

α(s) =
1

r2
(cosh(rs), rs, sinh(rs)) .

Then

T(s) =
1

r
(sinh(rs), 1, cosh(rs)) , N(s) = T′(s) = (cosh(rs), 0, sinh(rs)).
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Hence that α is pseudo arc length. Then

B(s) =
r

2
(sinh(rs),−1, cosh(rs)) , N′(s) = r(sinh(rs), 0, cosh(rs)).

The pseudo-torsion is τ = −r2/2.
(8) Define

α(s) =
1

r2
(cos(rs), sin(rs), rs) .

Then

T(s) =
1

r
(− sin(rs), cos(rs), 1) , T′(s) = (− cos(rs),− sin(rs), 0) .

This curve is lightlike and parametrized by the pseudo arc length. Here

B(s) =
r

2
(sin(rs),− cos(rs), 1) .

We deduce that τ = −r2/2.

Timelike curves and spacelike curves with spacelike or timelike normal vector
are called Frenet curves. In this case, the Frenet equations write in a unified way.
If ⟨T,T⟩ = ϵ and ⟨N,N⟩ = δ, then T′

N′

B′

 =

 0 κ 0
−δκ 0 τ
0 ϵτ 0

 T
N
B

 .

We point out that for these curves, the curvature κ is defined as the function
such that T′ is proportional to N. Similarly, the torsion τ is defined as the third
coordinate of N′ with respect to the Frenet basis.

For spacelike curves with lightlike normal vector or lightlike curves, the Frenet
equations write as follows: let ⟨T,T⟩ = ϵ, ⟨N,N⟩ = δ where ϵ, δ ∈ {0, 1} and ϵ ̸= δ.
Then  T′

N′

B′

 =

 0 1 0
δτ ϵτ δ
ϵ δτ −ϵτ

 T
N
B

 .

The torsion is

τ(s) = −ϵδ⟨N′(s),B(s)⟩.
In Euclidean space, the torsion measures how far is a curve to be planar in such
way that a curve is planar if and only if its torsion is zero. In Minkowski space, we
obtain the same result for Frenet curves.

Theorem 2.3. Let α : I → E3
1 be a Frenet curve parametrized by the arc length.

Then α is included in an affine plane if and only if the torsion vanishes.

The proof is the same and we omit it. However, there are more curves to consider.

Theorem 2.4. Let α be a spacelike curve with lightlike vector normal or a lightlike
curve.

(1) If the pseudo-torsion is zero, then the curve is included in a plane.
(2) If a lightlike curve is included in a plane, then it is a straight-line. There

are spacelike plane curves with lightlike vector normal with non-zero pseudo-
torsion.
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Proof. For the first part, we do the arguments assuming that α is a spacelike curve
with lightlike vector normal (analogous if α is lightlike). If τ = 0, then N′ = 0
and so, N(s) = v ∈ E3

1 for all s. Let s0 ∈ I and define the function f(s) =
⟨α(s)−α(s0), v⟩. Then f(s0) = 0 and f ′(s) = ⟨T(s), v⟩ = 0. This implies that f(s)
is a constant point, proving that the curve is planar.

Assume that α is a lightlike curve included in a plane. Then this plane must be
timelike or lightlike. In the first case, there are only two linearly independent light-
like directions, and in the second one, there is only one. Thus T(s) is proportional
to a fixed direction, proving that the curve is a straight-line. �

The reverse of the above theorem is false for spacelike curves with lightlike
vector normal. An example is the following. Let α(s) = (s, s3/3, s3/3), s > 0,
which is included in the plane y − z = 0. To compute the Frenet frame, we
have T(s) = (1, s2, s2) and N(s) = T′(s) = (0, 2s, 2s). As N′(s) = (0, 2, 2) and
B(s) = (s/2,−1/(4s), 1/(4s)), the pseudo-torsion is τ(s) = −⟨N′(s),B(s)⟩ = 1/s.

The rest of this subsection is devoted to prove the invariance of κ and τ by rigid
motions of E3

1 and the theorem of existence and uniqueness. As in [4, Ex. 6, p.
23], we have:

Theorem 2.5. For a Frenet curve, the curvature is invariant under a rigid motion
and the torsion is invariant up a sign depending if the motion is direct or inverse.
In the case that the curve is spacelike with lightlike normal vector or that it is
lightlike, then the pseudo-torsion is invariant by rigid motions.

Proof. The proof is the same than in Euclidean case. Let Mx = Ax+ b be a rigid
motion, A ∈ O1(3), b ∈ E3

1, and β =M ◦ α. Suppose that α is Frenet curve. Then
the relation between the Frenet basis is

Tβ = ATα, Nβ = ANα, Bβ = ±ABα

depending of the sign of det(A). This proves that κβ = κα and τβ = ±τα.
Assume now that α is a spacelike curve with lightlike normal vector. Then Tβ =

ATα and T′
β = AT′

α is lightlike, and so, Nβ = T′
β = AT′

α = ANα. The vector
ABα is a lightlike vector orthogonal to Tβ and ⟨ABα,Nβ⟩ = ⟨ABα, ANα⟩ = −1.
Thus Bβ = ABα. This implies

τβ = −⟨N′
β ,Bβ⟩ = −⟨AN′

α, ABα⟩ = τα.

Consider now that α is lightlike. Then β =M◦α is a lightlike curve parametrized
by the pseudo arc length. Again Tβ = ATα, Nβ = ANα and Bβ = ABα, proving
τβ = τα. �

In Euclidean space, the theorem of existence and uniqueness asserts that given
two functions κ > 0, τ , there exists a unique curve, up a rigid motion, with curvature
κ and torsion τ . In Minkowski space, the result of existence is the same but the
uniqueness is not true by the causal character of the curve. For example, the curves
α(s) = (cos(s), sin(s), 0) and β(s) = (0, cosh(s), sinh(s)) have κ = 1 and τ = 0 (see
Example 2.1). However, there is not a rigid motion carrying α into β because α is
spacelike and β is timelike. Even if both curves have the same causal character, we
have to pay attention on the causal character of the other vectors of the trihedron
of Frenet. For example, the curve γ(s) = (0, sinh(s), cosh(s)) has κ = 1, τ = 0, but
there is not a rigid motion between α and γ. Let us observe that for α, T and N
are spacelike but γ is a spacelike curve with timelike normal vector.
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In Minkowski space, the result of existence is the same, although now the initial
conditions will impose the causal character of the curve α. We analyse the different
cases. First we consider Frenet curves.

Theorem 2.6. Let κ(s) > 0 and τ(s), s ∈ I, two differentiable maps. Then
there exists three different regular parametrized curves α : I → E3

1, α = α(s), with
curvature κ and torsion τ .

By different we mean that there exist not a rigid motion carrying one in another
one.

Proof. Let s0 ∈ I and let {e1, e2, e3} be an orthonormal basis, which it will be the
initial conditions of an ODE system. Depending on the causal character of the
vectors ei we will obtain the different cases. First assume that e1 is timelike and
that the basis is positively oriented. In such a case, we solve the next ODE system
of 9 equations

T′(s) = κ(s)N(s)

N′(s) = κ(s)T(s) + τ(s)B(s)

B′(s) = −τ(s)N(s)

with initial conditions

T(s0) = e1

N(s0) = e2

B(s0) = e3

Let {T,N,B} be the unique solution and define

(2.6) α(s) =

∫ s

s0

T(u) du.

We prove that this curve is timelike with curvature κ and torsion τ . We first show
that {T(s),N(s),B(s)} is an orthonormal basis with the same causal properties
that the initial basis {e1, e2, e3}. Consider the ODE system:

⟨T,T⟩′ = 2κ⟨T,N⟩
⟨N,N⟩′ = 2κ⟨T,N⟩+ 2τ⟨B,N⟩
⟨B,B⟩′ = −2τ⟨B,N⟩
⟨T,N⟩′ = κ⟨N,N⟩+ κ⟨T,T⟩+ τ⟨T,B⟩
⟨T,B⟩′ = κ⟨N,B⟩ − τ⟨N,T⟩
⟨N,B⟩′ = κ⟨T,B⟩+ τ⟨B,B⟩ − τ⟨N,N⟩

with initial conditions at s = s0 given by (−1, 1, 1, 0, 0, 0). On the other hand, the
functions

f1 = −1, f2 = 1, f3 = 1, f4 = 0, f5 = 0, f6 = 0

satisfy the same ODE system and initial conditions. By uniqueness,

−⟨T,T⟩ = ⟨N,N⟩ = ⟨B,B⟩ = 1, ⟨T,N⟩ = ⟨T,B⟩ = ⟨N,B⟩ = 0.

This implies that {T,N,B} is an orthonormal basis of E3
1, where T is timelike.

From (2.6), α′(s) = T(s), and so α is a timelike curve parametrized by arc length.
Now we are in conditions to prove that the curvature and torsion of α is κ and τ ,
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respectively. The steps to follow are similar as in Euclidean space and we omit the
details.

We can say a bit more. If the vector e1 is future directed, then α is future-
directed: since T(s) and E3 are unit timelike vectors, then ⟨T(s), E3⟩ ≥ 1 in I
or ⟨T(s), E3⟩ ≤ −1 in I. As ⟨T(s0), E3⟩ ≤ −1, the same occurs for all s ∈ I by
connectedness.

If we want to obtain a spacelike curve with spacelike normal vector and curvature
κ and torsion τ , consider the initial conditions

T(s0) = e1, N(s0) = e2, B(s0) = e3,

where {e1, e2, e3} is a negatively oriented orthonormal basis and e3 is timelike.
The ODE system that we solve is (2.2). Finally, if we are looking for a spacelike
curve with timelike normal vector, the initial condition is a positively oriented
orthonormal basis {e1, e2, e3}, where e2 is timelike and the ODE system is (2.3). �

We analyse the remaining two cases. We prove the existence of a spacelike curve
with lightlike normal vector or a lightlike curve. Let τ : I → R be a smooth
function and we ask for curves with the above causal character with pseudo-torsion
τ . The situation is similar than Frenet curves and the solution depends on the
initial conditions.

Theorem 2.7. Let τ : I → R be a smooth function. Then there are a spacelike
curve with lightlike normal vector and a lightlike curve with pseudo-torsion τ .

Proof. Let {e1, e2, e3} be a null frame of E3
1 such that e1 is spacelike. We pose the

ODE system (2.4) with initial conditions

T(s0) = e1, N(s0) = e2, B(s0) = e3.

Let {T,N,B} be the unique solution and define

(2.7) α(s) =

∫ s

s0

T(u) du.

We prove that α is a spacelike curve with lightlike normal vector. First we consider
the next ODE system of 6 equations:

⟨T,T⟩′ = 2⟨T,N⟩
⟨N,N⟩′ = 2τ⟨N,N⟩
⟨B,B⟩′ = 2⟨T,B⟩ − 2τ⟨B,B⟩
⟨T,N⟩′ = ⟨N,N⟩+ τ⟨T,N⟩
⟨T,B⟩′ = ⟨N,B⟩+ ⟨T,T⟩ − τ⟨ T,B⟩
⟨N,B⟩′ = ⟨T,N⟩

with initial conditions (1, 0, 0, 0, 0,−1). Since the functions (1, 0, 0, 0, 0,−1) also
are a set of solutions, by uniqueness, we have obtained the right solution. Thus
{T,N,B} is a basis of E3

1 that satisfies the same properties than {e1, e2, e3}.
From (2.7), α′(s) = T(s) and it follows that α is a spacelike curve. The argu-

ments to end the proof are standard and we omit them.
If we want to obtain a lightlike curve with pseudo-torsion τ , then we solve the

ODE (2.5) and we change the initial condition by

T(s0) = e1, N(s0) = e2, B(s0) = e3,
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where {e1, e2, e3} is a null frame with e2 a unit spacelike vector. �

Once we have established the existence, the uniqueness does not hold as we have
remarked previously, but it holds if the causal character of the Frenet frame agree
for both curves. To abbreviate the statements, we give the next definition.

Definition 2.2. Let α, β : I → E3
1 be two curves parametrized by arc length or by

the pseudo arc length. We say that α and β have the same causal character of the
Frenet frame if Tα, Nα and Bα have the same causal character than Tβ , Nβ and
Bβ , respectively.

Theorem 2.8. Let α, β : I → E3
1 be two regular curves that have the same causal

character of the Frenet frame. If they have the same curvature and torsion, or they
have same pseudo-torsion depending on the case, then there exists a rigid motion
M of E3

1 such that β =M ◦ α.

Proof. Let s0 ∈ I and consider the isometry A ∈ O1(3) such that ATα(s0) =
Tβ(s0), ANα(s0) = Nβ(s0) and ABα(s0) = Bβ(s0). If b = β(s0)− Aα(s0), define
the rigid motion Mx = Ax + b. We know by Th. 2.5 that the curve γ = M ◦ α
satisfies the same ODE system of the Frenet equations than β. As the initial
conditions coincide, then by uniqueness of ODE system, β = γ, proving the result.
See [4, p. 310]. �

Similarly as in Euclidean space, one can find the formula for the curvature and
torsion function in the case that the curve is not parametrized by arc length. We
only focus on Frenet curves. Let α : I → E3

1 be a regular curve and β = α ◦ ϕ be
any parametrization by arc length. We define

κα(t) = κβ ◦ ϕ−1, τα = τβ ◦ ϕ−1.

Assume that β is a Frenet curvature. The definition does not depend on the
reparametrization, except perhaps a sign for the torsion. The proof is similar as in
[4, p. 25]. Then

κα(t) =
|α′(t)× α′′(t)|

|α′(t)|3
, τα(t) = −ϵδdet(α

′(t), α′′(t), α′′′(t))

|α′(t)× α′′(t)|2
.

We point out that given a regular curve α : I → E3
1 not necessarily parametrized

by the arc length, we do not know a priori what is the causal character of the
Frenet frame of its parametrization by the arc length β = α ◦ ϕ. For example,
consider the curve α(s) = (s2, sinh(s2), cosh(s2)), s > 0. Then α′(s) is a spacelike
and α′′(s) = 2(1, cosh(s2) + s sinh(s2), sinh(s2) + s cosh(s2)). Thus

α′′(s) is


spacelike s ∈ (0,

√
2)

lightlike s =
√
2

timelike s >
√
2

However the parametrization by the arc length is β(s) = (s/
√
2, sinh(s/

√
2), cosh(s/

√
2)),

which it is spacelike.

2.3. Curves in Lorentz-Minkowski plane. We study plane curves in Minkowski
space E3

1 giving a sign to the curvature κ. A problem appears in a first moment
showing a difference with the Euclidean context. We have two options. First,
consider the two dimensional case of Lorentz-Minkowski space, that is, the Lorentz-
Minkowski plane E2

1. The second possibility is to consider a curve of E3
1 included in
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an affine plane. In the latter case, there are three possibilities depending if the plane
is spacelike, timelike of lightlike. If the plane is spacelike, the theory corresponds to
curves in a Riemannian surface. In this case, the plane is isometric to the Euclidean
plane E2 and thus the theory is known; if the plane is timelike, then it is isometric
to E2

1, and we are in the first option; the case that the plane is lightlike is new and
not covered by the Euclidean plane E2 or the Lorentzian plane E2

1.
We consider the first option. Denote E2

1 = (R2, (dx)2 − (dy)2) the Lorentz-
Minkowski plane. We define the Frenet dihedron in such way that the curvature
has a sign. Let α : I → E2

1 be a curve parametrized by arc length. Define the
tangent vector as

T(s) = α′(s).

We discard lightlike curves because in E2
1 there are two linearly independent direc-

tions of lightlike vectors. Thus T(s) would be proportional to a given direction,
obtaining that the curve is a straight-line. In what follows, we suppose that α is
spacelike or timelike.

The vector T′(s) is orthogonal to T(s). This means that T(s) and N(s) will
have different causal character.

A new difference with Euclidean setting appears now. In E2, the unit normal
Ne(s) is chosen so {T(s),Ne(s)} is a positively oriented basis. Now in E2

1 we will
choose again the Frenet frame as a positively oriented basis but the order of the
vectors T and N is chosen under the condition the first vector is spacelike and the
second one is timelike. In other words, the cases are:

(1) The curve is spacelike. Then define the normal vector N(s) such that
{T(s),N(s)} is positively oriented.

(2) The curve is timelike. Then define the normal vector N(s) such that
{N(s),T(s)} is positively oriented.

Let ⟨T,T⟩ = ϵ ∈ {1,−1} depending if the curve is spacelike or timelike. Then
⟨N,N⟩ = −ϵ. We define the curvature of α as the function κ(s) such that

T′(s) = κ(s)N(s).

Thus

κ(s) = −ϵ⟨T′(s),N(s)⟩.
The Frenet equations are

T′(s) = κ(s)N(s)

N′(s) = κ(s)T(s).

As we expect, we observe that both equations coincide with the first two equations
in (2.1) and (2.2), neglecting the coordinate with respect to the binormal vector.

Example 2.4. (1) The set A = {(x, y) ∈ R2 : x2 − y2 = −r2} has two compo-
nents

A+ = {(x, y) ∈ A : y > 0}, A− = {(x, y) ∈ A : y < 0}

which parametrize as spacelike curves. ForA+, let α(s) = (r sinh(s/r), r cosh(s/r)).
Then

T(s) =
(
cosh(

s

r
), sinh(

s

r
)
)
, N(s) =

(
sinh(

s

r
), cosh(

s

r
)
)
.

As T′(s) = (1/r)(sinh(s/r), cosh(s/r)), then κ = 1/r.
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For A−, let β(s) = (r sinh(s/r),− cosh(s/r)). Then

T(s) = (cosh(s/r),− sinh(s/r)), N(s) = (− sinh(s/r), cosh(s/r)).

Hence we deduce κ = −1/r.
(2) The set B = {(x, y) ∈ R2 : x2 − y2 = r2} has two components again,

namely, B+ = {(x, y) ∈ B : x > 0} and B− = {(x, y) ∈ B : x < 0}. A
parametrization of B+ is α(s) = (r cosh(s/r), sinh(s/r)). Then

T(s) =
(
sinh(

s

r
), cosh(

s

r
)
)
, N(s) =

(
cosh(

s

r
), sinh(

s

r
)
)
.

Here κ(s) = 1/r.
For B−, let β(s) = (−r cosh(s/r), sinh(s/r)). Then

T(s) = (− sinh(
s

r
), cosh(

s

r
)), N(s) = (cosh(

s

r
),− sinh(

s

r
)).

Thus κ = −1/r.

The existence and uniqueness result holds here and the proof is analogous that
for Frenet curves in the 3-dimensional case. We point out two remarks. For the
existence, and in Euclidean plane, it is possible to obtain a parametrization of the
curve in terms of integrals of the curvature. Given a differentiable function κ, let

(2.8) θ(s) =

∫ s

s0

κ(t) dt.

Define two curves α and β with curvature κ, where α is spacelike and β is timelike:

α(s) =

(∫ s

s0

cosh θ(t) dt,

∫ s

s0

sinh θ(t) dt

)
β(s) =

(∫ s

s0

sinh θ(t) dt,

∫ s

s0

cosh θ(t) dt

)
.

We extend to the Lorentzian space, the Euclidean result that asserts that the
curvature of a plane curve is the variation of the angle between the tangent vector
with a fix direction.

Theorem 2.9. Let α : I → E2
1 be a timelike curve parametrized by arc length.

Suppose that there exists a unit timelike vector v ∈ E2
1 such that T(s) and v lies in

the same timelike cone for all s. If θ is the angle between the tangent vector of α
and v, then

κ(s) = ±θ′(s).

Proof. We know that − cosh(θ(s)) = ⟨T(s), v⟩. By differentiating,

−θ′(s) sinh θ(s) = κ(s)⟨N(s), v⟩.
As v = −⟨v,T(s)⟩T(s) + ⟨v,N(s)⟩N(s), then

−1 = −⟨v,T(s)⟩2 + ⟨v,N(s)⟩2 = − cosh(ϕ(s))2 + ⟨v,N(s)⟩2.
Then ⟨v,N(s)⟩ = ± sinh(θ(s)). Thus θ′(s) = ±κ(s). �

The same result holds for a spacelike curve α, where T(s) makes constant angle
with a unit spacelike vector in the same component of U2

1, that is, both belong to
S1+1 or S1−1 .

The second remark is about the uniqueness. Since the curvature has a sign,
the curvature is only preserved by direct rigid motions. Exactly, if α : I → E2

1
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is a spacelike or timelike curve and Mx = Ax + b is a rigid motion of E2
1 with

A ∈ SO1(2), then the relation between the Frenet frames of α and β = M ◦ α is
Tβ = ATα and Nβ = ANα. Thus

T′
β(s) = AT′

α(s) = A(κα(s)Nα(s)) = κα(s)ANα(s) = κα(s)Nβ(s).

This proves κβ = κα.

Let α, β : I → E2
1 be two spacelike curves parametrized by arc length s ∈ I

and with the same curvature κ. We do a different proof that α and β differ of
a rigid motion without the use of the theory of ODE. We follow [4, p. 20] (the
same arguments hold for a timelike curve by Rem. 1.2). Fix s0 ∈ I. The Frenet
dihedrons {Tα(s0),Nα(s0)} and {Tβ(s0),Nβ(s0)} are two positively oriented basis.
Then there exists an isometry A ∈ SO1(2) such that

A(Tα(s0)) = Tβ(s0)

A(Nα(s0)) = Nβ(s0).

Let b = β(s0)−Aα(s0) and define the rigid motion Mx = Ax+ b. Then the curve
γ =M ◦α satisfies κγ = κ because det(A) = 1. Denote {Tγ ,Nγ} the Frenet frame
of γ. Observe that the Frenet frames of γ and β coincide at s = s0. Define

f : I → R, f(s) = |Tγ(s)−Tβ(s)|2 − |Nγ(s)−Nβ(s)|2.
A differentiation of f , together the Frenet equations gives f ′(s) = 0 for all s,
that is, f is a constant function. As f(s0) = 0, then f(s) = 0 for all s. Now
there is a great difference with the Euclidean case, because we can not assert that
|Tγ −Tβ | = |Nγ −Nβ | = 0 because the metric is not positive definite. However,
expanding the equation f(s) = 0, we obtain

⟨Nβ ,Nγ⟩+ 1 = ⟨Tβ ,Tγ⟩ − 1.

Observe that Tβ(s) and Tγ(s) lie in the same component of unit spacelike vectors,

that is, both lie in S1+1 or both in S1−1 . This is because by connectedness and Rem.
1.2, ⟨Tβ(s),Tγ(s)⟩ ≥ 1 or ⟨Tβ(s),Tγ(s)⟩ ≤ −1. As at s = s0, Tβ(s0) = Tγ(s0),
then ⟨Tβ(s),Tγ(s)⟩ ≥ 1. For the vectors Nβ(s) and Nγ(s) occurs the same. Using
that Nβ and Nγ lie in the same timelike cone,

0 ≥ ⟨Nβ ,Nγ⟩+ 1 = ⟨Tβ ,Tγ⟩ − 1 ≥ 0.

This proves that ⟨Tβ ,Tγ⟩ = 1 and so Tβ = Tγ . Then Aα
′(s) = β′(s) for all s. By

integrating, there exists c ∈ E2
1 such that β(s) = Aα(s) + c. Evaluating at s = s0,

we obtain c = b and we conclude that β = γ =M ◦ α.

Remark 2.3. The author has not been able to extend this proof in the 3-dimensional
case.

We finish describing the curves in E2
1 of constant curvature. Assume that the

curvature κ is a constant a ̸= 0. Then

θ(s) =

∫ s

s0

a dt = as+ b, b ∈ R.

From (2.8), the next curves have curvature a:

(1) The spacelike curve

α(s) =
1

a
(sinh(as+ b), cosh(as+ b)) .
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(2) The timelike curve

β(s) =
1

a
(cosh(as+ b), sinh(as+ b)) .

From the Euclidean viewpoint, both curves are Euclidean hyperbolas.
As usual, a non-degenerate plane curve with constant curvature is called a circle.

Recall the word ‘circle’ appeared in section 1 as the orbit of a point by the motion
of a group of boosts of E3

1. We now relate the notion of circle with plane curves
with constant curvature.

Theorem 2.10. Let α : I → E3
1 be a Frenet curve included in a plane of E3

1. Then
α is a circle if and only if the curvature is a non-zero constant and the torsion is
0.

Proof. We know by Th. 2.3 that a Frenet curve included in a plane has τ = 0.
If α is a Frenet curve, α can not be included in a lightlike plane since T or N
is a timelike vector. Therefore, if α is a circle, and after a rigid motion, α is an
Euclidean circle in the plane z = 0 or a hyperbola en the plane x = 0. By Ex. 2.4,
these curves have constant curvature.

The reverse statement is immediate because, after a rigid motion, a planar Frenet
curve is included in the plane z = 0 or in the plane x = 0. In both cases we know
that a curve with constant curvature is a circle or a hyperbola, which both are
invariant by a uniparametric group of boosts with timelike or spacelike axis. �

By the way, in a spacelike or timelike plane, a circle is the set of equidistant points
from a fix point p0. If the plane is spacelike, we suppose that it is the xy-plane.
Then the set of equidistant points from p0 is an Euclidean circle, which it is a circle
in Minkowski space. If the plane is timelike, we suppose that it is the yz-plane.
Then the equidistant points from p0 satisfies the equation (y−y0)2− (z−z0)2 = r2

or (y − y0)
2 − (z − z0)

2 = −r2, which are circles in E3
1.

Finally we focus on spacelike curves included in a lightlike plane, in particular,
the normal vector is lightlike. We have seen in Ex. 2.3 circles obtained by boosts
about lightlike axis which have not constant torsion. We study this type of curves
with non-zero constant pseudo-torsion. After a rigid motion, we suppose that the
lightlike plane is the plane of equation y − z = 0.

Theorem 2.11. Let P be the lightlike plane of equation y − z = 0. The only
spacelike curves in P with constant pseudo-torsion λ ̸= 0 are, up a change of
parameter,

α(s) =
(
s+ d,

a

λ2
eλs + bs+ c,

a

λ2
eλs + bs+ c

)
, a, b, c, d ∈ R.

Proof. Let α(s) = (x(s), y(s), y(s)). As α is parametrized by the arc length, then
x′(s) = ±1. Up a constant and up a change of parameter, x(s) = s. Now

N(s) = T′(s) = (0, y′′, y′′), B(s) =

(
y′

y′′
,
−1 + y′2

2y′′
,
1 + y′2

2y′′

)
.

Observe that y′′ ̸= 0 because on the contrary, y(s) = as+ b, a, b ∈ R, showing that
α is straight-line. The computation of the pseudo-torsion gives τ = −⟨N′,B⟩ =
y′′′/y′′, with y′′ ̸= 0. Since y′′′/y′′ = λ, by solving this differential equation,
we obtain the explicit parametrization of the curve claimed in the statement of
theorem. �
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2.4. Helices in E3
1. In Euclidean space, a helix is a curve whose tangent straight-

lines make a constant angle with a fixed direction. This direction is called the axis
of the helix. A result due to Lancret shows that a curve is a helix if and only if τ/κ
is a constant function. For example, plane curves are helices. A helix with constant
curvature and torsion is called a cylindrical helix.

We try to extend this notion to the Lorentz-Minkowski space. The problem
appears when we speak of the angle between two vectors because the angle is not
defined for all couple of vectors of E3

1. For example, this is the case if the curve
is lightlike. In other cases, it may also occur problems when the axis is timelike
(or spacelike) and the curve is spacelike (or timelike). Even in the case that the
straight-line and the curve are timelike, the directions of the axis ant the tangent
vector may not be in the same timelike cone. For these reasons, we extend the
notion of helix in E3

1 as follows:

Definition 2.3. A helix α : I → E3
1 is a regular curve parametrized by arc length

(or by the pseudo arc length if α is lightlike) such that there exists a vector v ∈ E3
1

with the property that the function ⟨T(s), v⟩ is constant. Any line parallel this
direction v is called the axis of the helix.

In particular, a straight-line and a plane curve are helices. In what follows, we
discard both situations.

For Frenet curves, there holds the equivalence of a helix in terms of the constancy
of τ/κ and the proof follows the same steps as in Euclidean space.

Theorem 2.12. Let α : I → E3
1 be a Frenet curve. Then α is a helix if and only

if τ/κ is constant.

We analyse what happens in the other cases. Let α be spacelike curve with
lightlike normal vector. Suppose ⟨T(s), v⟩ = a ∈ R. By differentiating ⟨T(s), v⟩ we
have ⟨N(s), v⟩ = 0. Since N(s) is lightlike, there exists a function b = b(s) such
that v = aT(s) + b(s)N(s). Differentiating again, and using the Frenet equations,
we have (b′ + bτ + a)N(s) = 0. Thus, b′ + bτ + a = 0. This says that any spacelike
curve with lightlike normal vector is a helix since the vector v is any vector of type
v = aT(s) + b(s)N(s), where a ∈ R and b satisfies the above ODE. Remark that
the Frenet equations implies that v does not depend on s, that is, v is a fix vector.

Assume now that α is a lightlike curve such that the function ⟨T(s), v⟩ is a
constant a ∈ R, a ̸= 0, for some vector v ∈ E3

1. Then ⟨N(s), v⟩ = 0. As T(s)
is lightlike, there exists a function b = b(s) such that v = b(s)T(s) − aB(s). By
differentiating and using the Frenet equations,

0 = b′T+ (b− aτ)N.

Then b is a constant function and τ is constant. The reverse always holds, that is,
any lightlike curve with constant torsion is a helix. For this, we take any a ̸= 0 and
consider b = aτ . Then the vector v = bT− aB, which does not depend on s, is an
axis of the helix.

Theorem 2.13. A spacelike curve with lightlike normal vector is a helix. A lightlike
curve is a helix if and only if its torsion is constant.

2.5. Angle between two vectors. We revisit the notion of angle in E2
1 given in

section 1. In Euclidean plane E2, let u, v ∈ S1 be two unit vectors. It is not difficult
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to prove that the angle ∠(u, v) between u and v is the arc length of the shortest
curve in the circle S1 between the points u and v.

We now consider two unit vectors in E2
1 and we assume that they are both

timelike or both spacelike. Recall that in Lorentz-Minkowski plane E2
1 we have

defined in (1.1) and (1.3) the angle between two unit timelike (resp. spacelike)
vectors that lie in the same component of U2

1. The cases are:

(1) If u, v are timelike, then u, v ∈ H1
+ or u, v ∈ H1

−.

(2) If u, v and spacelike, then u, v ∈ S1+1 or u, v ∈ S1−1 .

As in Euclidean space, we prove that ∠(u, v) is the length of piece of circle joining
both points.

Theorem 2.14. Let u, v be two unit vectors E2
1 in the same component of U2

1. The
angle ∠(u, v) is the length of the arc of U2

1 joining u and v.

Proof. Take u, v two unit timelike vectors in the same timelike cone, and without
loss of generality, u, v ∈ H1

+. Suppose u = (sinh(φ), cosh(φ)), v = (sinh(ψ), cosh(ψ))
with φ ≤ ψ. The arc of H1 between u and v is α(s) = (sinh(s), cosh(s)), s ∈ [φ,ψ],
and the length between u and v is

Lψφ(α) =

∫ ψ

φ

|α′(s)| ds =
∫ ψ

φ

1 ds = ψ − φ.

If we compute the angle between both vectors,

−⟨u, v⟩ = − sinh(φ) sinh(ψ) + cosh(φ) cosh(ψ) = cosh(ψ − φ)

and so ∠(u, v) = ψ − φ because ψ − φ ≥ 0.
Consider now two unit spacelike vectors u, v that belong to the same con-

nected component of U2
1. Assume u, v ∈ S1+1 with u = (cosh(φ), sinh(φ)), v =

(cosh(ψ), sinh(ψ)) and φ ≤ ψ. Then the arc α of S1+1 joining u and v is α(s) =
(cosh(s), sinh(s)), s ∈ [φ,ψ]. The length of α between u and v is

Lψφ(α) =

∫ ψ

φ

|α′(s)| ds =
∫ ψ

φ

1 ds = ψ − φ.

The angle ∠(u, v) = θ satisfies ⟨u, v⟩ = cosh(θ). Since

⟨u, v⟩ = cosh(φ) cosh(ψ)− sinh(φ) sinh(ψ) = cosh(ψ − φ),

and ψ − φ ≥ 0, the angle θ is ψ − φ. �
We point out that other authors (e.g. [24]) have defined the angle slightly dif-

ferent. Let u, v ∈ H1
+ (or u, v ∈ H1

−). Then there exists φ ∈ [0,∞) that that
Rφ(u) = v, where

Rφ =

(
cosh(φ) sinh(φ)
sinh(φ) cosh(φ)

)
∈ O++

1 (2).

Then ∠(u, v) = φ.
For unit spacelike vectors u, v ∈ S1+1 (or u, v ∈ S1−1 ), a reflection F with respect

to the line y = x (included in the the lightcone of E2
1) gives F (u), F (v) ∈ H1

+ or
F (u), F (v) ∈ H1

−. Then the angle ∠(u, v) is defined as ∠(F (u), F (v)). In both
cases, the definition agrees with the one given here. In [24] the authors also define
the angle between unit timelike and spacelike vectors in different components of U2

1

carrying both vectors to H1
+ by the use of successive reflections across the lightlike

cone of E2
1. However in the new cases, there is not an arc of U2

1 joining both vectors.
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3. Surfaces in Minkowski space

We introduce the notion of spacelike and timelike surface and we will define
the mean curvature and the Gaussian curvature for this kind of surfaces. Next,
we will compute these curvatures by using parametrizations and, finally, we will
characterize umbilical and isoparametric surfaces of E3

1. The development of this
chapter is similar to the Euclidean space, even in the local formula of the curvature.
However, we will see how the causal character imposes restrictions, as for example,
the surfaces can not be closed and that the Weingarten map for timelike surfaces
may not be diagonalizable.

3.1. Spacelike and timelike surfaces in E3
1. Let M be a smooth, connected

surface possibly with non-empty boundary ∂M . Let x :M → E3
1 be an immersion,

that is, a differentiable map such that its differential map dxp : TpM → R3 is
injective. We identify the tangent plane TpM with (dx)p(TpM). We consider the
pullback metric x∗(⟨, ⟩p), that is,

x∗(⟨, ⟩p)(u, v) = ⟨dxp(u), dxp(v)⟩, u, v ∈ TpM,

so x : (M,x∗⟨, ⟩) → (E3
1, ⟨, ⟩) is an isometric immersion. The metric x∗⟨, ⟩ can be

positive definite, a metric with index 1 or a degenerate metric.

Definition 3.1. LetM be a surface. An immersion x :M → E3 is called spacelike
(resp. timelike, lightlike) if all tangent planes (TpM,x∗(⟨, ⟩p)) are spacelike (resp.
timelike, lightlike). A non-degenerate surface is a spacelike or timelike surface.

As the curves of E3
1, given an immersed surface in E3

1, the causal character
may change in different points of the same surface. This means that a surface is
not necessarily classified in one of the above types. For example, in the sphere
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, the region {(x, y, z) ∈ S2 : |z| < 1/

√
2} is

timelike, {(x, y, z) ∈ S2 : |z| > 1/
√
2} is spacelike and {(x, y, z) ∈ S2 : |z| = 1/

√
2}

is lightlike. Similarly, we point out that the spacelike and timelike conditions are
open properties.

For a spacelike (resp. timelike) surfaceM and p ∈M , we have the decomposition
E3

1 = TpM ⊕ (TpM)⊥, where (TpM)⊥ is a timelike (resp. spacelike) subspace of

dimension 1. A Gauss map is a differentiable mapN :M → E3
1 such that |N(p)| = 1

and N(p) ∈ (TpM)⊥ for all p ∈ M . Let us recall that a surface is orientable if
there is a family of coordinate charts where the change of parameters has positive
Jacobian. For a non-degenerate surface this is equivalent to the existence of a Gauss
map, called also an orientation of M . Recall that locally a surface is a graph of a
function and thus, it is locally orientable.

The causal character of an immersion imposes conditions on the surface M . For
example, we have:

Proposition 3.1. Let M be a compact surface and let x :M → E3
1 be a spacelike,

timelike or lightlike immersion. Then ∂M ̸= ∅.

Proof. Assume ∂M = ∅. Consider that the immersion is spacelike (resp. timelike
or lightlike). Let a ∈ E3 be a spacelike (resp. timelike) vector. SinceM is compact,
let p0 ∈ M be the minimum of the function f(p) = ⟨x(p), a⟩. As ∂M = ∅, then
p0 is a critical point of the function f and so, ⟨(dx)p0(v), a⟩, ∀v ∈ Tp0M . Then
a ∈ (Tp0M)⊥, a contradiction because (Tp0M)⊥ is timelike (resp. spacelike or
lightlike). �
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This result discards the study in Minkowski space E3
1 of the class of closed

surfaces (compact without boundary), which plays an important role in Euclidean
space.

Proposition 3.2. Let x : M → E3
1 be a spacelike immersion of a surface M and

let the projection map π :M → R2, π(x, y, z) = (x, y).

(1) The projection π is a local diffeomorphism.
(2) Assume that M is compact and that x|∂M is a diffeomorphism between ∂M

and a plane, closed, simple curve. Then x(M) is a graph on the planar
domain determined by x(∂M).

Proof. (1) The map π :M → R2 satisfies

|(dπ)p(u)|2 = |(u1, u2, 0)|2 = u1 + u22 > u21 + u22 − u23 = |u|2.

This means that dπp is an isomorphism and π is a local diffeomorphism.
(2) Let Ω be the planar domain that encloses x(∂M). We know that π :M →

R2 is a local diffeomorphism. We claim that π(M) ⊂ Ω. On the contrary,
let q ∈ ∂π(M) \ Ω and let x(p) = q. Then p ̸∈ ∂M because x(∂M) = ∂Ω,
and so, p is an interior point. But x(p) ∈ ∂π(M) and then, the tangent
plane at p must be vertical: contradiction. This shows the claim.

Thus π :M → Ω is a local diffeomorphism. In particular, it is a covering
map. Since Ω is simply connected, π ◦ x is a diffeomorphism, which means
that x(M) is a graph on Ω.

�

We study the causal character of surfaces of E3
1.

Example 3.1. (1) A plane P = p0 + Span{v}⊥. The causal character of P
coincides with the one of v. If v is a unit timelike or spacelike vector, then
a Gauss maps is N(p) = v.

(2) A hyperbolic plane of center p0 ∈ E3
1 and radius r > 0 is the surface

H2(r; p0) = {p ∈ E3
1 : ⟨p− p0, p− p0⟩ = −r2, ⟨p− p0, E3⟩ < 0}.

Here E3 = (0, 0, 1). We observe that the set {p ∈ E3
1 : ⟨p−p0, p−p0⟩ = −r2}

has exactly two connected components and that the condition ⟨p−p0, E3⟩ <
0 chooses one of them. This component, when p0 is the origin of R3 and
r = 1, is denoted by H2, that is,

H2 = {(x, y, z) ∈ E3
1 : x2 + y2 − z2 = −1, z > 0}.

From the Euclidean viewpoint, this surface is one component of a hyper-
boloid of two sheets. We will justify in Ex. 3.2 why H2(r; p0) is called
a hyperbolic plane. A hyperbolic plane is a spacelike surface. Indeed, if
v ∈ TpH2(r; p0) and α = α(s) ⊂ H2(r; p0) is a curve that represents v, then
⟨α(s)−p0, α(s)−p0⟩ = −r2. By differentiating with respect to s and letting
s = 0, we obtain ⟨v, p− p0⟩ = 0. This means that TpM = Span{p− p0}⊥.
As p − p0 is a timelike vector, then M is a spacelike surface. Moreover,
N(p) = (p−p0)/r is a Gauss map. Since ⟨N,E3⟩ < 0, N is future directed.
See Fig. 1.

(3) The pseudosphere of center p0 and radius r is the surface

S21(r; p0) = {p ∈ E3
1 : ⟨p− p0, p− p0⟩ = r2}.
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The tangent plane at p is TpM = Span{p − p0}⊥ and N(p) = (p − p0)/r.
This vector is spacelike vector and so, the surface is timelike. If p0 is the
origin and r = 1, the surface is also called the De Sitter space and we denote
by S21. Then

S21 = {(x, y, z) ∈ E3
1 : x2 + y2 − z2 = 1}.

See Fig. 1. From an Euclidean viewpoint, this surface is a ruled hyper-
boloid, also called, a hyperboloid of one sheet.

(4) The lightlike cone of center p0 is

C(p0) = {p ∈ E3
1 : ⟨p− p0, p− p0⟩ = 0} − {p0}.

Here TpC(p0) = Span{p− p0}⊥. The surface is lightlike. If p0 is the origin

of R3, then C(p0) is the lightlike cone C of E3
1.
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Figure 1. The hyperbolic plane, the pseudosphere and the light-
like cone of center the origin of R3.

(5) Let f : Ω ⊂ R2 → R be a smooth function defined on a domain Ω ⊂ R2.
Let the graph of f defined by

(3.1) S = graph(f) = {(x, y, f(x, y)) : (x, y) ∈ Ω}.

Consider S as the image of the immersion

Ψ : Ω → E3
1, Ψ(x, y) = (x, y, f(x, y)).

As Ψx = (1, 0, fx) and Ψy = (0, 1, fy), the matrix of the induced metric
with respect to {Ψx,Ψy} is(

1− f2x −fxfy
−fxfy 1− f2y

)
and the determinant is

(3.2) 1− f2x − f2y = 1− |∇f |2.

Thus the immersion is spacelike if |∇f |2 < 1, timelike if |∇f |2 > 1 and
lightlike if |∇f |2 = 1.

Here we observe a difference with the Euclidean setting (compare with
[4, p. 58]). Given a function f , one can consider the graph of f on the
xy-plane, such as it is done in (3.1) but also on the yz-plane or on the
xz-plane. In each case, the causal character changes for the same function
f . For example, if the surface is a graph on the timelike plane of equation
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x = 0 given by Q = {(f(y, z), y, z) : (y, z) ∈ Ω}, the matrix of the metric is
now (

1 + f2y fyfz
fyfz f2z − 1

)
.

The determinant is −f2y+f2z −1, which is different than 1−|∇f |2 as in (3.2)
and the sign determines the causal character of the surface. Thus the same
function f may give surfaces with different causal character. For example,
if Ω = R2 and f(x, y) = 0, then S in (3.1) is a spacelike (horizontal) plane
but Q is a timelike (vertical) plane.

(6) Surface given by a regular value. Let f : Ω ⊂ R3 → R be a differentiable
function and a ∈ R a regular value of f , that is, (df)p is regular for all p ∈
f−1({a}). It is well known that S = f−1({a}) is a surface. In particular,
the gradient ∇f computed with the metric ⟨, ⟩ is an orthogonal vector to
S and this gives the causal character of S. Indeed, for any v ∈ TpS, if
α = α(s) is a curve representing v, f(α(s)) = 0 and so, (df)p(v) = 0. This
writes as ⟨(∇f)p, v⟩ = 0. It is not difficult to prove that ∇f is the reflection
of the Euclidean gradient ∇ef with respect to the plane of equation z = 0.

Consider the next example. Let f(x, y, z) = x2+y2−z2. Then (df)p(v) =
2(xv1+yv2−zv3), with p = (x, y, z) and v = (v1, v2, v3). Then p is a critical
point only if p = (0, 0, 0). In such a case, f(0, 0, 0) = 0. This means that
for all a ̸= 0, Sa = f−1({a}) is a surface. Here

∇f = 2(x, y, z), ∇ef = 2(x, y,−z).
Consider a ∈ {−1, 1}. Then

⟨∇f,∇f⟩ = 4(x2 + y2 − z2) = 4f(x, y, z) = 4a.

Therefore, if a < 0 (resp. a > 0) the surface is spacelike (resp. timelike).
In fact, S−1 has two (spacelike) components, one of them is H2 and S1 is
the pseudosphere S21.

Given a surface M , we know that an immersion x : M → R3 is locally a graph
on one of the three coordinate planes. Remark that this result is not metric. If we
endow on R3 the Lorentzian metric and for a spacelike or timelike surface, we can
precise with respect to what coordinate plane is a graph.

Proposition 3.3. A spacelike (resp. timelike) surface is locally the graph of a
function defined in the plane of equation z = 0 (resp. x = 0 or y = 0).

Proof. We consider a local parametrization of the surface

Ψ = Ψ(u, v) = (x(u, v), y(u, v), z(u, v)).

Since the vector Ψu ×Ψv is orthogonal to Ψu and Ψv, then Ψu ×Ψv is a timelike
(resp. spacelike) vector. Thus, its third coordinate does not vanish (resp. the first
or the second coordinate). This coordinate is

−
∣∣∣∣ xu yv
xv yv

∣∣∣∣ (resp.

∣∣∣∣ yu zu
yv zv

∣∣∣∣ , or ∣∣∣∣ xu zu
xv zv

∣∣∣∣).
The implicit function theorem asserts that around a point of the surface, the map

ϕ : (u, v) 7−→ (x(u, v), y(u, v))

(resp.
(u, v) 7−→ (y(u, v), z(u, v)), (u, v) 7−→ (x(u, v), z(u, v)))



76 RAFAEL LÓPEZ

is a diffeomorphism. We reparametrize the immersion by Ψ◦ϕ−1. Then locally the
surface is the graph of the function z ◦ ϕ−1 (resp. x ◦ ϕ−1 or y ◦ ϕ−1). �

We end this subsection showing that a spacelike surface is orientable.

Theorem 3.1. Let M be a surface and let x :M → E3
1 be a spacelike immersion.

Then M is orientable.

Proof. We know that for each connected coordinate open Ω ⊂ M there exists two
unit orthogonal vectors N and −N . Since N(p) and E3 are both timelike, we have
⟨N(p), E3⟩ ≥ 1 or ⟨N(p), E3⟩ ≤ −1. On Ω we choose N such that ⟨N,E3⟩ ≤ −1.
This allows us to define a globally normal vector field on M and M is an orientable
surface. �

This result imposes an a priori condition to an abstract surfaceM (a 2-dimensional
manifold) to be isometrically immersed in E3

1 as a spacelike surface: M must be
orientable.

Depending if the surface is spacelike or timelike, the codomain of the Gauss map
is a hyperbolic plane or a pseudosphere. Exactly,

(1) If the immersion is spacelike, the Gauss map pointing to the future is a
map N :M → H2.

(2) If the immersion is timelike, the (local) Gauss map writes as N :M → S21.
This means that in Lorentz-Minkowski space E3

1 the hyperbolic plane H2 and the
pseudosphere S21 play the role of a sphere S2 of E3.

3.2. The mean curvature of a spacelike surface. Let x : M → E3
1 be a

spacelike or timelike immersion of a surface M . Denote X(M) the space of tangent
vector fields to M and denote by ∇0 the Levi-Civita connection of E3

1. If X,Y ∈
X(M), we have the decomposition

∇0
XY = (∇0

XY )⊤ + (∇0
XY )⊥,

where ⊤ and ⊥ denote the tangent part and the normal part with respect to M of
∇0
XY , respectively. Denote ∇ the induced connection on M by the immersion x,

that is,
∇XY = (∇0

XY )⊤

and we define the second fundamental form of x as the tensorial, symmetric map

σ : X(M)× X(M) → X(M)⊥, σ(X,Y ) = (∇0
XY )⊥.

The expression of the Gauss formula is

(3.3) ∇0
XY = ∇XY + σ(X,Y ), X, Y ∈ X(M).

Consider now ξ a normal vector field to x and let Aξ(X) be the tangent component
of −∇0

Xξ,

Aξ(X) = −(∇0
Xξ)

⊤.

We have from (3.3)

(3.4) ⟨Aξ(X), Y ⟩ = ⟨σ(X,Y ), ξ⟩.
Because σ is symmetric, (3.4) implies

(3.5) ⟨Aξ(X), Y ⟩ = ⟨X,Aξ(Y )⟩.
This means that Aξ is self-adjoint with respect to the metric of M .



DIFFERENTIAL GEOMETRY IN LORENTZ-MINKOWSKI SPACE 77

Let N be a (local) unit normal vector field onM . We know that if the immersion
is spacelike, the surface is always orientable by Th. 3.1. Denote

⟨N,N⟩ = ϵ =

{
−1 if M is spacelike
1 if M is timelike.

Take in the above formula ξ = N . Because ⟨N,N⟩ is constant, we have ⟨∇0
XN,N⟩ =

0. Then ∇0
XN is tangent to M . Denote

(3.6) −∇0
XN = AN (X) (Weingarten formula)

Definition 3.2. The Weingarten endomorphism at p ∈M is defined by

Ap : TpM → TpM, Ap = (AN (X))p.

Moreover (3.6) gives

Ap(v) = −∇0
vN = −(dN)p(v), v ∈ TpM.

We will write AX instead of AN (X).

Since σ(X,Y ) is proportional to N , from (3.3) and (3.4) we deduce

(3.7) σ(X,Y ) = ϵ⟨σ(X,Y ), N⟩N = ϵ⟨AX,Y ⟩N.

Now (3.3) writes as

∇0
XY = ∇XY + ϵ⟨AX,Y ⟩N.

We define the mean curvature and the Gauss curvature. Firstly, recall how is
defined in Euclidean space. In E3, the Weingarten map is diagonalizable because
it is a self-adjoint endomorphism with respect to a Riemannian metric. The prin-
cipal curvatures are the eigenvalues of the Weingarten map, and hence, the Gauss
curvature and the mean curvature is the product and the arithmetic average of the
principal curvatures, respectively.

The identity (3.5) says that the Weingarten map A is self-adjoint with respect to
the induced metric ⟨, ⟩. If the metric is Riemannian, then A is diagonalizable but
if the metric is Lorentzian, the map A could be not diagonalizable. In other words,
for a spacelike surface the principal curvatures are well defined but in a timelike
surface could not be defined. Thus we have to choose other approach to define the
mean curvature in both types of surfaces and for this purpose, we will consider the
trace of the second fundamental form.

Definition 3.3. Let M be a surface and let x : M → E3
1 be a non-degenerate

immersion. The mean curvature vector field H⃗ is the vector

H⃗ =
1

2
trace(σ),

where the trace is computed with respect to the metric of the surface. The mean

curvature function H is defined by the relation H⃗ = HN . Therefore

H = ϵ⟨H⃗,N⟩.

Observe that H⃗ is a vector field orthogonal to M , that is, H⃗ ∈ X(M)⊥. We

write H⃗ and H in terms of a local tangent basis. Let {e1, e2} be an orthonormal
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local tangent vector fields onM where e1 is spacelike and ⟨e2, e2⟩ = −ϵ. Then (3.7)
gives

H⃗ =
1

2
trace(σ) =

1

2
(σ(e1, e1)− ϵσ(e2, e2))

=
1

2
(ϵ⟨Ae1, e1⟩ − ⟨Ae2, e2⟩)N

=
ϵ

2
(⟨Ae1, e1⟩ − ϵ⟨Ae2, e2⟩)N =

( ϵ
2
traceA

)
N.

On the other hand,

H = ϵ⟨H⃗,N⟩ = ϵ

2
(⟨Ae1, e1⟩ − ϵ⟨Ae2, e2⟩) =

ϵ

2
trace(A).

Corollary 3.1. The mean curvature of a non-degenerate surface is

(3.8) H =
ϵ

2
trace(A).

We define the (intrinsic) Gauss curvatureK of the surface. For a surface, ρ = 2K,
where ρ is the scalar curvature. For this, we compute the curvature tensor of the
surface (here we follow [26]).

Denote by R0 and R the curvature tensors of E3
1 and M , respectively. Since

R0 = 0, we can compute R. Let X,Y, Z ∈ X(M). We know that

R0(X,Y )Z = ∇0
X∇0

Y Z −∇0
Y∇0

XZ −∇0
[X,Y ]Z.

Also, ∇0
Y Z = ∇Y Z + σ(Y, Z). Because σ(Y, Z) = ϵ⟨AY,Z⟩N , and using (3.3), we

have

∇0
X∇0

Y Z = ∇0
X(∇Y Z) +∇0

Xσ(Y,Z)

= ∇X∇Y Z + σ(X,∇Y Z)− ϵ⟨AY,Z⟩AX + ϵ⟨AY,Z⟩N.
The tangent part onM is ∇X∇Y Z−ϵ⟨AY,Z⟩AX. Similarly, we calculate ∇0

Y∇0
XZ

and ∇0
[X,Y ]Z and considering the tangent parts. Using that R0 = 0 and that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, we conclude

R(X,Y )Z = −ϵ⟨AY,Z⟩AX + ϵ⟨AX,Z⟩AY
= ϵ(⟨AX,Z⟩AY − ⟨AY,Z⟩AX).(3.9)

Hence we compute the Ricci tensor and the scalar curvature ρ. For the Ricci tensor,
we obtain

Ric(X,Y ) = trace (v 7−→ R(X, v)Y ) = ⟨R(X, e1)Y, e1)− ϵ⟨R(X, e2)Y, e2⟩
= ϵ (⟨AX,Y ⟩(⟨Ae1, e1⟩ − ϵ⟨Ae2, e2⟩))− ϵ⟨AX,AY ⟩
= ϵ (trace(A)⟨AX,Y ⟩ − ⟨AX,AY ⟩) = 2H⟨AX,Y ⟩ − ϵ⟨AX,AY ⟩.

Thus

ρ = trace (Ric) = R(e1, e1)− ϵR(e2, e2)

= 2H (⟨Ae1, e1⟩ − ϵ⟨Ae2, e2⟩)− ϵ(⟨Ae1, Ae1⟩ − ϵ⟨Ae2, Ae2⟩)
= ϵ

(
(trace(A)2 − trace(A2)

)
= 4ϵH2 − ϵ trace(A2)

= 2ϵ det(A).(3.10)

The expression of this matrix A in the basis {e1, e2} is

A =

(
⟨Ae1, e1⟩ ⟨Ae2, e1⟩

−ϵ⟨Ae1, e2⟩ −ϵ⟨Ae2, e2⟩

)
.
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As ρ = 2K, the Gauss curvature K is

(3.11) K = ϵ det(A) =
ϵ

2

(
4H2 − trace(A2)

)
.

Corollary 3.2. Consider the Weingarten map A of a non-degenerate surface of
E3

1. Then

(3.12) K = ϵ det(A).

One can also compute K by observing that in a 2-dimensional manifold, the
Gauss curvature coincides with the sectional curvature of the 2-plane generated by
{e1, e2}, that, is, of the tangent plane. As a consequence of (3.9), we obtain

K =
⟨R(e1, e2)e2, e1⟩

⟨e1, e1⟩⟨e2, e2⟩ − ⟨e1, e2⟩2

=
ϵ(⟨Ae1, e1⟩⟨Ae2, e2⟩ − ⟨Ae1, e2⟩⟨Ae2, e1⟩

−ϵ
= −

(
⟨Ae1, e1⟩⟨Ae2, e2⟩ − ⟨Ae1, e2⟩2

)
.

It is immediate that this expression coincides with (3.11).
Returning to the case that A is diagonalizable, we have:

Definition 3.4. Consider x : M → E3
1 a non-degenerate immersion and p ∈ M .

If the Weingarten map Ap is diagonalizable, the eigenvalues of Ap are called the
principal curvature at p, and we denote by λ1(p) and λ2(p).

From (3.8) and (3.12), we have:

Corollary 3.3. Assume that Ap is diagonalizable in a non-degenerate surface of

E3
1. Then

H(p) = ϵ
λ1(p) + λ2(p)

2
, K(p) = ϵ λ1(p)λ2(p).

In Euclidean space, once defined the principal curvatures, it is given the notion
of an umbilic as a point where the two principal curvatures coincide ([4, p. 147]).
Thus in Lorentz-Minkowski space we can not adopt the definition of umbilic point
in terms of the principal curvatures. See [26, p. 105].

Definition 3.5. Let x : M → E3
1 be a spacelike or timelike immersion. A point

p ∈M is called umbilic if there exists λ(p) ∈ R such that

⟨σ(u, v), N(p)⟩ = λ(p)⟨u, v⟩, u, v ∈ TpM.

A surface is called totally umbilical if all points are umbilic.

Thus, an umbilic is a point where the second and the first fundamental forms are
proportional. Also, it is equivalent to say that ⟨Apu, v⟩ = λ(p)⟨u, v⟩. In particular,
and from (3.4), Ap must be diagonalizable because ⟨Ae1, e2⟩ = 0. Thus we can say
that p is umbilical if and only if λ1(p) = λ2(p). In Euclidean space, it is well know
the inequality H2 −K ≥ 0 and the equality hold only in a umbilic. Now in E3

1 we
have to assume that the Weingarten map is diagonalizable.

Proposition 3.4. Assume that M is a non-degenerate surface of E3
1, p ∈ M and

Ap is diagonalizable. Then

H(p)2 − ϵK(p) ≥ 0

and the equality holds if and only if p is umbilic. In particular, in a timelike surface,
if H(p)2 −K(p) < 0, then p is not umbilic.
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Proof. From the definition of H and K, we have

0 ≤
(λ1 − λ2

2

)2
=
(λ1 + λ2

2

)2
− λ1λ2 = H2 − ϵK.

Moreover the equality holds at a point p if and only if λ1(p) = λ2(p), that is, p is
an umbilic. �

The diagonalization of the Weingarten map depends on the existence of real
roots of its characteristic polynomial P (λ). A simple computation leads to P (λ) =
λ2 − 2Hϵλ+ ϵK and its discriminant is D = 4(H2 − ϵK). Thus:

(1) IfH2−ϵK > 0, there are two different real roots of P (λ) and the Weingarten
map is diagonalizable.

(2) If H2 − ϵK < 0, A is not diagonalizable.
(3) If H2 − ϵK = 0, there is a double root of P (λ). Then: a) if ϵ = −1, the

root λ = −H is the eigenvalue of A and the point is umbilic; b) if ϵ = 1,
the matrix could be or not be diagonalizable.

Finally,

|σ|2 =

2∑
i,j=1

⟨Aei, ej⟩2 = 4H2 − 2ϵK,

and if Ap is diagonalizable, |σ|2 = λ21 + λ22.
We point out that there exist non-umbilical timelike surfaces such that H2−K =

0 on the surface. See examples 3.5 and 3.7 below.
After the definition, we compute H and K in some surfaces that have previously

appeared.

Example 3.2. The next surfaces are umbilical.

(1) (Plane) Consider a non-degenerate plane P = p0+Span{v}⊥, with |v| = 1.
Then N = v and dN = 0. Here λ1 = λ2 = H = K = 0.

(2) (Hyperbolic plane) The unit normal vector pointing to the future ofH2(r; p0)
is N(p) = (p− p0)/r. Then A = −I/r and

λ1 = λ2 = −1

r
, H =

1

r
, K = − 1

r2
.

Thus a hyperbolic plane has constant negative curvature. Here we collect
the properties of the surface H2(r; p0). This surface is a simply-connected
Riemannian 2-manifold with constant negative curvature. Moreover, it
is geodesically complete. We do a proof of this fact for H2. Given p ∈
H2 and v ∈ TpH2 with |v| = 1, the curve α(s) = cosh(s)p + sinh(s)v
is a geodesic starting from p with velocity v: α′′(s) = α(s) and its the
tangent part vanishes α′′(s)T = 0. Finally, the geodesic α is defined for all
s, which means that the surface is (geodesically) complete. With this in
mind, H2(r; p0) is a 2-space form of negative curvature, called usually the
hyperbolic plane.

(3) (Pseudosphere) For S21(r; p0), the Gauss map is N(p) = (p − p0)/r. Again
A = −I/r. Thus

λ1 = λ2 = −1

r
, H = −1

r
, K =

1

r2
.

Thus a pseudosphere has constant positive curvature. Let us observe that
the fundamental group of the pseudosphere is Z.
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Example 3.3. Let us define right circular cylinders in E3
1. Let L be a non-

degenerate straight-line. The right circular cylinder C(r;L) of axis L and radius
r > 0 is the set of points equidistant from L a distance r.

It is usual in the literature to call Lorentzian cylinder if the axis is timelike and
hyperbolic cylinder when the axis is spacelike [11, 22]. A right circular cylinder can
be also viewed as a ruled surface whose basis is a Lorentzian circle centered at L
and orthogonal to L and whose rulings are parallel to L.

We write explicit equations of a right circular cylinder in E3
1. Consider that L

passes through p0 ∈ E3
1 and with direction a⃗. Assume a⃗ is a unit vector, with

⟨⃗a, a⃗⟩ = δ, δ ∈ {1,−1}. If p ∈ E3
1, the straight-line orthogonal to L passing through

p intersects L at the point p̄ = p0 + λa⃗, with λ = δ⟨p − p0, a⟩. If a⃗ is timelike,
then the vector p− p̄ is spacelike, but if a⃗ is spacelike, then p− p̄ can be spacelike,
timelike and lightlike. Since we consider positive distances, we discard the case that
p− p̄ is lightlike. As a conclusion

C(r;L) = p ∈ E3
1 : |p− p0|2 − δ⟨p− p0, a⃗⟩2 = ±r2}.

In order to know the causal character of a right circular cylinder, a unit vector
orthogonal is

N(p) =
1

r

(
p− p0 − δ⟨p− p0, a⃗⟩⃗a

)
.

Hence a basis of the tangent plane at p is {(p−p0)× a⃗, a⃗} and the Weingarten map
is Av = −(v − δ⟨v, a⃗⟩⃗a)/r. Thus

A((p− p0)× a⃗) = −1

r
(p− p0)× a⃗, A(⃗a) = 0.

As a consequence, the Weingarten map is diagonalizable. Furthermore:

(1) (Lorentzian cylinder). If the axis is timelike, then N is spacelike and the
surface is timelike. The surface writes as

C(r;L) = {p ∈ E3
1 : |p− p0|2 + ⟨p− p0, a⃗⟩2 = r2}.

Here

λ1 = −1

r
, λ2 = 0, H = − 1

2r
, K = 0.

(2) (Hyperbolic cylinder). If the axis is spacelike, N is timelike or spacelike.
There are two circular cylinders:
(a) If N is timelike,

Cs(r;L) = {p ∈ E3
1 : |p− p0|2 − ⟨p− p0, a⃗⟩2 = −r2},

λ1 = −1

r
, λ2 = 0, H =

1

2r
, K = 0.

(b) If N is spacelike,

Ct(r;L) = {p ∈ E3
1 : |p− p0|2 − ⟨p− p0, a⃗⟩2 = r2},

λ1 = −1

r
, λ2 = 0, H = − 1

2r
, K = 0.

Let us take explicit vectors a⃗ (see Fig. 2).

(1) If a⃗ = (0, 0, 1), C(r;L) = {(x, y, z) ∈ R3 : x2 + y2 = r2}. This surface is a
vertical Euclidean circular cylinder.

(2) If a⃗ = (1, 0, 0), then
(a) the spacelike hyperbolic cylinder is Cs(r;L) = {(x, y, z) ∈ R3 : y2 −

z2 = −r2, z > 0};
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(b) the timelike hyperbolic cylinder is Ct(r;L) = {(x, y, z) ∈ R3 : y2−z2 =
r2, y > 0}.
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Figure 2. A Lorentzian cylinder, a spacelike hyperbolic cylinder
and a timelike hyperbolic cylinder

3.3. Local computations of the curvature and examples. We compute the
curvatures of a non-degenerate surface by using a local parametrization. Here we
follow the same ideas as in [4]. Consider a local parametrization

Ψ : U ⊂ R2 → E3
1, Ψ = Ψ(u, v),

of a (spacelike or timelike) immersion x. Let B = {Ψu,Ψv} be a local basis of the

tangent plane at each point of Ψ(U). With respect to B, let

(
E F
F G

)
be the

matricial expression of the first fundamental form, where

E = ⟨Ψu,Ψu⟩, F = ⟨Ψu,Ψv⟩, G = ⟨Ψv,Ψv⟩.

Denote W = EG − F 2. The surface is spacelike if W > 0 and it is timelike if
W < 0. Take the unit normal vector field

(3.13) N =
Ψu ×Ψv
|Ψu ×Ψv|

.

Again, we use the notation ⟨N,N⟩ = ϵ. Here

|Ψu ×Ψv| =
√
−ϵ(EG− F 2) =

√
−ϵW.

Let

(
e f
f f

)
be the matricial expression of σ with respect to B, that is,

e = −⟨AΨu,Ψu⟩ = −⟨Nu,Ψu⟩ = ⟨N,Ψuu⟩
f = −⟨AΨu,Ψv⟩ = −⟨Nv,Ψu⟩ = −⟨Ψv, Nu⟩ = ⟨N,Ψuv⟩
g = −⟨AΨv,Ψv⟩ = −⟨Nv,Ψv⟩ = ⟨N,Ψvv⟩,

where A is the Weingarten map. Then

A =

(
E F
F G

)−1(
e f
f f

)
.
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Therefore the mean curvature and the Gauss curvature are

(3.14) H = ϵ
1

2

eG− 2fF + gE

EG− F 2
, K = ϵ

eg − f2

EG− F 2
.

According to (3.13), we have

e = ⟨N,Ψuu⟩ =
det(Ψu,Ψv,Ψuu)√

−ϵW
.

f = ⟨N,Ψuv⟩ =
det(Ψu,Ψv,Ψuv)√

−ϵW
.

g = ⟨N,Ψvv⟩ =
det(Ψu,Ψv,Ψvv)√

−ϵW
.

Thus (3.14) writes now as:

(3.15) H = −det(Ψu,Ψv,Ψuu)G− 2det(Ψu,Ψv,Ψuv)F + det(Ψu,Ψv,Ψvv)E

2(−ϵW )3/2
.

K = −det(Ψu,Ψv,Ψuu)det(Ψu,Ψv,Ψvv)− det(Ψu,Ψv,Ψuv)
2

W 2
.

Example 3.4. (Graph) Let f ∈ C2(Ω) be a smooth function and consider the
surface M given by z = f(x, y). Let Ψ : Ω → E3

1 denote the usual parametrization
Ψ(x, y) = (x, y, f(x, y)). The coefficients of the first fundamental form are

E = 1− f2x , F = −fxfy, G = 1− f2y .

Thus EG − F 2 = 1 − f2x − f2y = 1 − |∇f |2. If the immersion is spacelike (resp.

timelike) we have |∇f |2 < 1 (resp. > 1) on Ω. The mean curvature H satisfies

(1− f2y )fxx + 2fxfy + (1− f2x)fyy = −2H(−ϵ(1− |∇f |2))3/2.
Similarly, the Gauss curvature K is

K = −
fxxfyy − f2xy
(1− f2x − f2y )

2
.

In order to show the difference between the spacelike and timelike case, we study
a family of timelike surfaces whose Weingarten endomorphism is not diagonalizable.

Example 3.5. Let α : I → E3
1 be a lightlike curve and we denote by {T,N,B}

the Frenet trihedron. We consider the map

Ψ : I × R → E3
1, Ψ(s, t) = α(s) + tB(s).

This surface is called a B-scroll and it was introduced by Graves in [8, p. 374].
We compute the matrix of the Weingarten map with respect to the basis {Ψs,Ψt}.
Since Ψs = T+ tB′ = T+ tτN and Ψt = B, then(

E F
F G

)
=

(
t2τ2 −1
−1 0

)
.

As the determinant is negative, the surface is timelike. Since

Ψss = tτ2T+ (1 + tτ ′)N+ tτB, Ψst = τN, Ψtt = 0,

the second fundamental form is(
e f
f g

)
=

(
−1− t(τ ′ − tτ3) −τ

−τ 0

)
.
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The Weingarten endomorphism is now

A =

(
τ 0

1 + tτ ′ τ

)
.

This matrix is not diagonalizable. On the other hand, the mean curvature is H = τ
and the Gauss curvature is K = τ2. Finally, let us see that this surface satisfies
H2 − ϵK = H2 −K = 0 but it is not umbilical.

We give more examples of surfaces.

Example 3.6. (Helicoids) A helicoidal surface is a surface invariant by a unipara-
metric group of helicoidal motions of E3

1. A particular case is a surface of revolution
that will be studied in Sect. 4 when H is constant. Here our interest is the com-
putation of H and K. We refer [6, 12, 22, 30]. The next surfaces are all minimal
surfaces (H = 0).

(1) Helicoid of first kind. The parametrization is

Ψ(s, t) = (s cos(t), s sin(t), ht), s > h > 0.

Since W = s2 − h2, the surface is spacelike with H = 0 and K = h2/(s2 −
h2)2.

(2) Helicoid of second kind. Consider the surface

Ψ(s, t) = (ht, s cosh(t), s sinh(t)), h > 0, s ∈ (h,∞).

Then W = h2 − s2 < 0 and the surface is timelike. Here we have H = 0
and K = h2/(s2 − h2)2. Since H2 − K < 0, Proposition 3.4 asserts that
the surface has no umbilics.

(3) Helicoid of third kind. The parametrization is

Ψ(s, t) = (ht, s sinh(t), s cosh(t)), h > 0, s ∈ R.

This surface is timelike withH = 0 andK = h2/(s2+h2)2. The Weingarten
map is not diagonalizable.

(4) Cayley’s surface. Its parametrization is

Ψ(s, t) =

(
st− ht+ h

t3

3
, s+ ht2, st+ ht+ h

t3

3

)
, h, s > 0.

Now W = −4hs. Then the surface is timelike withH = 0 and K = 1/(4s2).

Example 3.7. Ruled surfaces is a class of surfaces of interest in Lorentz-Minkowski
space. See [6]. We use some examples of ruled surface to compute H and K. In
all the next examples, the surface is timelike, the Weingarten endomorphism is not
diagonalizable and H2 −K = 0.

(1) Consider the immersion

Ψ(s, t) = (s cos(t), s sin(t), s+ ht), h > 0.

This surface is timelike with W = −h2. Here H = 1/h and K = 1/h2.
Then H2 −K = 0 and the Weingarten map is(

1
h −1
0 1

h

)
.
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(2) Let a ̸= 0. Define the surface

Ψ(s, t) = (ht, (s+ a) cosh(t) + s sinh(t), (s+ a) sinh(t) + s cosh(t)).

The surface is timelike because W = −a2. Here H = K = 0 and the
Weingarten map is (

0 −h
a

0 0

)
.

(3) (Parabolic null cylinder) The parametrization is

Ψ(s, t) =

(
s+ h(−t+ t3

3
), ht2, s+ h(t+

t3

3
)

)
, h > 0.

The surface is timelike with W = −4h2 and H = K = 0. The Weingarten
map is (

0 1
0 0

)
.

We end this section with the description of all umbilical surfaces in E3
1.

Theorem 3.2. The only totally umbilical surfaces in Minkowski space are a plane,
a hyperbolic plane or a pseudosphere.

Proof. The proof is step-by-step as in Euclidean space ([4, p.147]). Consider a
coordinate neighbourhood Ω ⊂ R2 and let Ψ = Ψ(u, v) be the corresponding
parametrization. Since the Weingarten map is diagonalizable, there is a function f
such that

(N ◦Ψ)u = (f ◦Ψ)Ψu

(N ◦Ψ)v = (f ◦Ψ)Ψv.

As a consequence, f is smooth. A differentiation with respect to u and v yields

(f ◦Ψ)uΨv + (f ◦Ψ)Ψuv = (f ◦Ψ)vΨu + (f ◦Ψ)Ψuv.

Thus (f ◦Ψ)u = (f ◦Ψ)v. This means that f is a constant function in Ω, namely,
f ◦Ψ = r, r ∈ R. Since the surface is connected, f ◦Ψ = r on M .

(1) If r = 0, then Nu = Nv, that is, N is constant. This shows that the surface
is a plane.

(2) If r ̸= 0, then Nu = rΨu and Nv = rΨv. In Ω we define

h(u, v) = Ψ(u, v)− 1

r
(N ◦Ψ)(u, v).

It follows that hu = hv = 0 and so, h is constant. Thus there exists p0 ∈ E3
1

such that

Ψ(u, v)− 1

r
(N ◦Ψ)(u, v) = p0.

Then

⟨Ψ− p0,Ψ− p0⟩ = ∓ 1

r2
,

with the sign depending if the surface is spacelike or timelike, respectively.
In all these cases, and according to the definition, the surface is included
in a hyperbolic plane or a pseudosphere.

�
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3.4. Surfaces in Minkowski space with mean curvature and Gauss cur-
vature both constant. A classical result in Euclidean space asserts that the
only surfaces with constant principal curvatures are open sets of umbilical surfaces
(planes or spheres) or right circular cylinders. As far as the author knows, the
statement appears as an exercise in [25, p. 263]) and a proof lies in [23]. We extend
this result to Minkowski space following, if possible, the same proof steps.

For a non-degenerate surface in E3
1 with diagonalizable Weingarten map A, the

constancy of H and K is equivalent to say that the principal curvatures λ1 and λ2
are constant. In such case, and with the corresponding changes, the proof in E3

1

is similar as in Euclidean space, concluding that the surface is umbilical or a right
circular cylinder.

When the Weingarten map is not diagonalizable (necessarily for timelike sur-
faces), then H2 − K ≤ 0. An example of this situation appeared in Ex. 3.7.
Consider the surface M parameterized by Ψ(s, θ) = (s cos(θ), s sin(θ), s + hθ),
h > 0. This surface is helicoidal, that is, it is invariant under a uniparametric
group GL,h = {ϕθ : θ ∈ R} of motions of E3

1, whose axis L is determined by the
vector (0, 0, 1) and a pitch h. Here ϕθ is

(3.16) ϕθ(x, y, z) =

 cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 x
y
z

+ h

 0
0
θ

 .

See [6, 22]. If we consider the curve γ(t) = (s, 0, s), thenM = GL,h(γ) = {ϕθ(γ(t)) :
s, θ ∈ R}. Recall thatM is a not umbilical timelike surface and it is also ruled with
lightlike rulings. Moreover, H and K are constant with H = 1/h, K = 1/h2 and
H2 −K = 0 on M .

Returning to the case that H and K are both constant functions, we will show
that necessarily H2 − K ≥ 0. Finally, a recent work by Clelland shows that a
surface with H2 −K = 0 and with non necessarily constant H and K, is a ruled
surface with both directrix and rulings of lightlike type [5]. In the case that H
and K are constant, we characterize the parametrizations of these surfaces and we
present explicit examples.

Theorem 3.3. LetM be a non-degenerate surface in Minkowski space E3
1. If H and

K are both constant, then M is an umbilical surface, a right circular cylinder or a
ruled surface with directrix and rulings both lightlike. In the latter case, H2−K = 0.

In general, a hypersurface with constant coefficients of the characteristic polyno-
mial of the Weingarten map is called isoparametric. For surfaces, these coefficients
are, up a constant, H and K. In two-dimensional case, these surfaces have been
locally classified in Euclidean space and in Lorentzian space of arbitrary dimension.
The case of one or two distinct (real) eigenvalues is treated in [1, Th. 5.1] and the
case of a non-diagonalizable Weingarten map is treated in [21, Th. 4.5].

Proof. Since the result is local, we always consider a parametrized open set of the
surface. The proof is divided in two cases depending if the Weingarten map is or
is not diagonalizable.
Case I. The Weingarten endomorphism is diagonalizable.

The proof follows similar steps as in Euclidean space. This case occurs if the
surface is spacelike of if it is timelike with H2 −K > 0. By the expressions of H
and K in terms of the principal curvature, we deduce that λi are also constant.
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If at some point p ∈ M , λ1(p) = λ2(p), then H(p) = ϵλ1(p) and K(p) = ϵλ1(p)
2.

Because H and K are constant functions, then H2 − ϵK = 0 on M . This means
that the surface is umbilical proving a part of the statement of Th. 3.3.

The other case is that there are not umbilical points. We show that the surface
is a right circular cylinder. Since in an open of a non-umbilic point there are local
coordinates by lines of curvature, let Ψ : U ⊂ R2 →M ⊂ E3

1 be a parametrization
of the surface with the property F = f = 0 and so,

−Nu = λ1Ψu, −Nv = λ2Ψv.

If the surface is spacelike, both vectors Ψu and Ψv are spacelike. If M is timelike,
we assume, without loss of generality, that Ψu is spacelike and Ψv is timelike. In
these coordinates, the expressions of the second derivatives of the parametrizations
in terms of Ψu, Ψv and N are:

Ψuu =
Eu
2E

Ψu + eN.

Ψuv =
Ev
2E

Ψu +
Gu
2G

Ψv.(3.17)

Ψvv =
Gv
2G

Ψv + gN.

We differentiate the first equation with respect to v, the second one with respect to
u and taking into account that λi are constants, we have −Nuv = λ1Ψuv = λ2Ψuv.
Since λ1 ̸= λ2, we obtain Nuv = Ψuv = 0 on the domain U . Thus

Ev = ⟨Ψu,Ψu⟩v = 2⟨Ψuv,Ψu⟩ = 0.

Gu = ⟨Ψv,Ψv⟩u = 2⟨Ψuv,Ψv⟩ = 0.

Then E is a function depending only on u and G depends only on v. Similarly, and
using Nuv = Ψuv = 0 again, we obtain

ev = −⟨Nu,Ψu⟩v = −⟨Nuv,Ψu⟩ − ⟨Nu,Ψuv⟩ = 0.

gu = −⟨Nv,Ψv⟩u = −⟨Nuv,Ψv⟩ − ⟨Nv,Ψuv⟩ = 0.

We conclude that e is a function depending only on u and g depends only on v.
Hence, and using that (Ψuu)v = (Ψuv)u and (Ψvv)u = (Ψuv)v, we have from (3.17)

(3.18) eNv = 0, gNu = 0.

A first observation is that both Nu and Nv do not vanish at some point p, because
in such a case, the two principal curvatures vanish at p and it would be an umbilic
point. Also, both e and g can not vanish at some point because λ1 = e/E and
λ2 = g/G and the point would be umbilical again. Without loss of generality, we
suppose that Nu ̸= 0 in an open of the surface. From (3.18), g = 0 on U and using
the second equation of (3.18), e ̸= 0 and Nv = 0.

Claim: The vector field Ψv/|Ψv| is constant on the domain U .
Proof of the claim. We show that (Ψv/|Ψv|)u = (Ψv/|Ψv|)v = 0 on U . We begin

with (Ψv/|Ψv|)u. Recall that the sign of G is the same that the one of −ϵ. Because
Ψuv = 0 and |Ψv| =

√
−ϵG depends only on v, we have( Ψv
|Ψv|

)
u
=

Ψuv
|Ψv|

−
( 1√

−ϵG

)
u
Ψv = 0.
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Now we prove that (Ψv/|Ψv|)v = 0 showing that this vector field is orthogonal to
each one of the vectors {Ψu,Ψv, N}. Using F = 0 and Ψuv = 0, we have

⟨
( Ψv
|Ψv|

)
v
,Ψu⟩ = ⟨ Ψv

|Ψv|
,Ψu⟩v − ⟨ Ψv

|Ψv|
,Ψuv⟩ = 0.

Since G/
√
−ϵG = −ϵ

√
−ϵG, we get

⟨
( Ψv
|Ψv|

)
v
,Ψv⟩ = ⟨ Ψv

|Ψv|
,Ψv⟩v − ⟨ Ψv

|Ψv|
,Ψvv⟩ = (−ϵ

√
−ϵG)v −

Gv

2
√
−ϵG

= 0.

By taking into account that Nv = 0, we have

⟨
( Ψv
|Ψv|

)
v
, N⟩ = −⟨ Ψv

|Ψv|
, Nv⟩ = 0.

This finishes the proof of the claim.
The claim assures the existence of a unit vector a⃗ such that

a⃗ =
Ψv
|Ψv|

=
Ψv√
−ϵG

.

In particular,

⟨Ψu, a⃗⟩ = ⟨N, a⃗⟩ = 0.(3.19)

⟨Ψv, a⃗⟩ = ⟨Ψv,
Ψv
|Ψv|

⟩ = −ϵ
√
−ϵG.(3.20)

We remark that

⟨⃗a, a⃗⟩ = ⟨ Ψv√
−ϵG

,
Ψv√
−ϵG

⟩ = −ϵ.

Define

h : U → E3
1, h(u, v) = Ψ(u, v) + ϵ⟨Ψ(u, v), a⃗⟩⃗a+ 1

λ1
N(u, v).

We prove that h is a constant function showing that the partial derivatives hu and
hv vanish on U . Using that Nu = −λ1Ψu and (3.19), we have

hu = Ψu +
1

λ1
Nu = 0.

By using (3.20) and |Ψv|2 = −ϵG, we have

hv = Ψv + ϵ⟨Ψv, a⃗⟩⃗a = 0.

As h is constant, there exists p0 ∈ E3
1 such that

Ψ(u, v) + ϵ⟨Ψ(u, v), a⃗⟩⃗a+ 1

λ1
N(u, v) = p0.

Hence, together (3.19) and (3.20), we have

|Ψ(u, v)− p0|2 + ϵ⟨Ψ(u, v)− p0, a⃗⟩2 =
ϵ

λ21
.

By Ex. 3.3, the surface lies included in the right circular cylinder of axis L and
radius 1/|λ1|, where L is the straight-line passing p0 with direction a⃗.
Case II. The Weingarten endomorphism is not diagonalizable.

Now the surface is timelike. Assume that H2 − K < 0 and we will arrive to
a contradiction. We take null coordinates on M , that is, let Ψ : U → M be a
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parametrization such that E = G = 0 ([29]). From (3.14) and since H and K are
constant, there exists λ, µ ∈ R such that

H =
f

F
= λ, K =

eg − f2

−F 2
= µ.

In particular,

(3.21) eg = (λ2 − µ)F 2.

The matricial expression of the Weingarten map A with respect to {Ψu,Ψv} is

A =

(
0 F
F 0

)−1(
e f
f g

)
=

1

F

(
f e
g f

)
.

Because H2 −K < 0, then eg ̸= 0. The second derivatives of Ψ are

Ψuu =
Fu
F

Ψu + eN, Ψuv = fN, Ψvv =
Fv
F

Ψv + gN.

By combining these equations, (Ψuu)v = (Ψuv)u, (Ψvv)u = (Ψuv)v and together
the expression of A we get(

Fu
F

)
v

− e2

F
= −f

2

F
,

(
Fv
F

)
u

− g2

F
= −f

2

F
.(3.22)

ef

F
=

fg

F
.(3.23)

Fu
F
f + ev = fu,

Fv
F
f + gu = fv.(3.24)

Equation (3.22) gives e2 = g2, that is, e = ±g. We distinguish two possibilities:

(1) Case f = 0. Equation (3.24) yields eu = ev = 0. Thus e and g are constant
functions. From (3.21), the coefficient F is constant, and (3.22) concludes
e2 = f2 = 0: contradiction.

(2) Case f ̸= 0. Equation (3.23) implies e = g, and (3.21) that F is constant.
Equation (3.22) assures e2 = f2, that is, e = ±f . In particular, K = 0
and H2 − K ≥ 0: contradiction. In fact, the matricial expression of the
Weingarten map would be

e

F

(
±1 1
1 ±1

)
,

which is diagonalizable with eigenvalues 0 and ±e/F .
Suppose H2 − K = 0 on the surface. From [5], the surface is ruled and M can
parametrized in such way that the directrix and the rulings are both lightlike. This
concludes the proof. �

We give examples of non-umbilical timelike surfaces withH andK both constant
functions and H2 −K = 0. The surface M parametrizes as Ψ(s, t) = α(s) + tw⃗(s),
where α is a lightlike curve, and the rulings w⃗(s) are also lightlike ([5]). See also
Ex. 3.5. Now W = −F 2. Then

H =
f

F
=

det(Ψu,Ψv,Ψuv)

F |F |
= λ, K =

f2

F 2
=

det(Ψu,Ψv,Ψuv)
2

F 4
= µ,



90 RAFAEL LÓPEZ

for some constants λ, µ ∈ R. Parametrize α(s) = (x(s), y(s), z(s)). Since α is
lightlike, Prop. 2.1 asserts that the curve α is graph of two functions with respect
to the z-axis: α(s) = (x(s), y(s), s). Moreover, x′(s)2 + y′(s)2 − 1 = 0 and then,

(3.25) x′(s) = cosψ(s), y′(s) = sinψ(s),

for some differentiable function ψ. We distinguish different cases.

(1) Suppose that w⃗ is a constant vector field. Then f = 0 and so, H = K = 0.
This means that any cylinder with basis a lightlike curve and with lightlike
rulings is a surface with H = K = 0. In fact the result is more general: any
cylindrical surface with lightlike rulings is a timelike surface with H = K =
0. This is because from the parametrization Ψ(s, t) = α(s) + tw⃗, Ψt = w⃗
and Ψst = Ψtt = 0. Thus G = f = g = 0.

(2) Suppose that w⃗(s) is a horizontal curve. Without loss of generality, as-
sume that w lies in the plane of equation z = 1. Since w⃗(s) is lightlike,
w⃗(s) = (cos θ(s), sin θ(s), 1) for some differentiable function θ. After a new
reparametrization of the surface by s̄ = ψ ◦ θ−1(s), the parametrization
of M is Ψ(s, t) = α(s) + t(cos (s), sin (s), 1), together the equations (3.25).
Now

f = 1− cos (s− ψ), F = −1 + cos (s− ψ).

The condition f = λF |F | gives

1− cos (s− ψ) = −λ(1− cos (s− ψ))2.

If λ = 0, then 1 − cos (s− ψ) = 0 and so, F = 0: contradiction. Thus
λ ̸= 0. Then 1 = −λ(1 − cos (s− ψ)) = 0. This means that ψ(s) = s + c
for some c ∈ R, c ̸= 2nπ, n ∈ Z. The solution of (3.25) is

x(s) = sin (s+ c) + x0, y(s) = − cos (s+ c) + y0,

with x0, y0 ∈ R integration constants. After a horizontal translation, the
surface parametrizes as

(3.26) Ψ(s, t) = (t cos (s) + sin (s+ c),− cos (s+ c) + t sin (s), s+ t).

This surface appears in [5, Sect. 5] and it is a helicoidal surface whose
axis L is the z-axis and pitch h = 1. For this, let ϕm ∈ GL,1, m ∈
R, whose expression is given by (3.16). Then one can easily prove that
ϕm(Ψ(s, t)) = Ψ(m + s, t). By [22, Lemma 2.2], the generating curve γ(t)
lies in the plane of equation y = 0. In the particular case c = π/2, then
Ψ(s, t) = ((1+ t) cos (s), (1+ t) sin (s), s+ t), which it is a helicoidal surface
with timelike axis and the generating curve is the lightlike curve γ(t) =
(t+ 1, 0, t). Up a rigid motion of E3

1, this surface appeared in Ex. 3.7.
(3) The rest of surfaces are obtained when w⃗(s) is not a planar horizontal curve.

We parametrize w⃗(s) = (a(s), b(s), s)). Since w⃗ is lightlike, there exists θ(s)
such that w⃗(s) = s(cos θ(s), sin θ(s), 1). We suppose that s > 0. Then

f = s2θ′(1− cos(ψ − θ)) F = s(−1 + cos(ψ − θ)),

and we have

(3.27) θ′(1− cos(ψ − θ)) = −λ(1− cos(ψ − θ))2, λ ∈ R.
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Since 1− cos(ψ − θ) = 0 implies F = 0, we conclude

θ′

1− cos (ψ − θ)
= −λ.

Theorem 3.4. The only non-umbilical timelike surfaces in E3
1 with H and K

constant and H2 = K = λ are:

(1) Cylinders with lightlike rulings. These surfaces have H = K = 0.
(2) Helicoidal surfaces parametrized by (3.26). These surfaces are helicoidal

and satisfy H,K ̸= 0.
(3) Ruled surfaces X(s, t) = α(s)+ ts(cos θ(s), sin θ(s), 1), where θ is a solution

of (3.27), α is given by (3.25) and ψ − θ ̸= 2kπ, k ∈ Z. These examples
satisfy H2 = K = λ.

We end this section giving explicit examples of surfaces in the third case. Take
ψ(s) = nθ(s), with n ∈ Z.

Example 3.8. (1) If n = 2, the solution is, up a reparametrization, θ(s) =
−2 arccot(cs), c ∈ R. From (3.25) we have

α(s) =

(
s+

4s

1 + c2s2
− 4

arctan (cs)

c
,− 4

c+ c3s2
− 2

log (1 + c2s2)

c
, s

)
.

(2) If n = 3, the solution of (3.27) is θ(s) = −arccot(2cs) and the integration
of (3.25) leads to

α(s) =

(
5 + 4s2

2c
√
1 + 4c2s2

,
4s√

1 + 4c2s2
− 3

2c
log
(
2cs+

√
1 + 4c2s2

)
, s

)
.

4. Spacelike surfaces with constant mean curvature

In this section we study spacelike surfaces with constant mean curvature (cmc).
We will obtain examples of such surfaces with some added geometric assumption,
as for example, that the surface is rotational or a graph.

As in Euclidean space, a cmc spacelike surface is a critical point of the area
functional. Let M be a compact surface and let x : M → E3

1 be a spacelike
immersion. In particular, ∂M ̸= ∅. A variation of x is a differentiable map X :
(−ϵ, ϵ)×M → E3

1 with the following properties:

(1) X(0, p) = x(p) for all p ∈M .
(2) The maps Xt : M → E3

1, Xt(p) = X(t, p), are spacelike immersions for all
t.

(3) Xt pointwise fixes the boundary of ∂M , that is, X(t, p) = x(p) for p ∈ ∂M .

We define the variational vector field of the variation X as

ξ(p) =
∂X

∂t
(0, p).

The area functional is

A(t) =

∫
M

dAt,

where dAt is the area element on M induced by the metric X∗
t (⟨, ⟩). Similarly, the

volume functional is

V (t) =
1

3

∫
M

⟨Xt, Nt⟩dAt,
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where Nt is a unit normal vector field to the immersion Xt. The value V (t) repre-
sents the enclosed volume by the cone whose basis is Xt(M) and whose vertex is the
origin of coordinates. Because E3

1 = TpM ⊕ TpM
⊥, the vector field ξ decomposes

as

ξ(p) = ξ(p)T + f(p)N(p), f ∈ C∞(M).

For the tangent part ξ(p)T , there exists ξ̃ ∈ X(M) such that (dx)pξ̃(p) = ξ(p)T .
The map A(t) is differentiable at t = 0 with

A′(0) = 2

∫
M

(Hf)dA−
∫
∂M

⟨ξ̃, ν⟩ ds,

where H is the mean curvature of the immersion x and ν is the unit conormal
vector field along ∂M . Since the variation X fixes the boundary ∂M , the second
summand vanishes.

Theorem 4.1. Let x :M → E3
1 be a spacelike immersion of a compact surface M

and let X be a variation of x. The first variation of the area is

A′(0) = 2

∫
M

(Hf) dA.

For the volume functional and for variations that preserve the boundary, we have

V ′(0) = −
∫
M

f dA.

Hence it is immediate,

Theorem 4.2. Let M be a compact surface and let x : M → E3
1 be a spacelike

immersion in E3
1. Then x has constant mean curvature if and only if it is a critical

point of the area functional for all volume preserving variation of x that fixes the
boundary.

First examples of cmc spacelike surfaces are the umbilical surfaces. Then a
spacelike plane and a hyperbolic plane have constant mean curvature. More surfaces
appeared in Ex. 3.3, where Lorentzian and hyperbolic cylinders have constant mean
curvature. In the rest of this section, we give more examples with some added
geometric assumption.

4.1. Translation surfaces. A translation surface is a surface that is the graph of
a function of type z = f(x) + g(y), where x ∈ I, y ∈ J . The name of translation
surface is motivated by its parametrization Ψ(x, y) = (x, y, f(x) + g(y)), where the
surface S is viewed as the sum of two planar curves in orthogonal coordinate planes,
namely, Cx : x 7−→ (x, 0, f(x)) and Cy : y 7−→ (0, y, g(y)) and thus,

S =
∪
x∈I

Tx(Cy), Tx(p) = p+ (x, 0, f(x)), p ∈ E3
1.

If H = 0, the only translation surface in E3 is a plane and the Scherk surface

z =
1

λ
log

∣∣∣∣cos(λy + a)

cos(λx+ b)

∣∣∣∣, λ, a, b ∈ R, λ ̸= 0.

If H ̸= 0 is constant, then the surface is a right circular cylinder [14].
In order to ask a similar problem in E3

1, there are some differences.
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(1) First, the surface may be considered as the graph of a function defined
in each one of the coordinate planes of R3, indicating that the problem
depends on the choice of this plane.

(2) We may also assume that this plane is lightlike since the coordinate planes
are not lightlike.

(3) The surface may be spacelike or timelike.

Theorem 4.3. Consider a spacelike translation surface in E3
1 given by z = f(x)+

g(y). If H is constant, then the surface is a plane, a Scherk surface or a cylinder.

Proof. We do the proof only for H = 0 (see [14] when H is a non-zero constant).
The mean curvature H satisfies

−2H(1− f ′2 − g′2)3/2 = (1− f ′2)g′′ + (1− g′2)f ′′.

Let H = 0. This means
f ′′

1− f ′2
= − g′′

1− g′2
= λ

for some constant λ ∈ R. If λ = 0, then f and g are linear and the surface is a
plane. If λ ̸= 0, an integration gives

f(x) =
1

λ
log(cosh(λx+ a)), g(y) =

1

λ
log(cosh(λy + b)), a, b ∈ R.

Thus the Lorentzian Scherk surface is

z =
1

λ
log

∣∣∣∣cosh(λy + a)

cosh(λx+ b)

∣∣∣∣, λ, a, b ∈ R, λ ̸= 0.

�

In Th. 4.3, the surface is a graph on a spacelike plane. We analyse the other
two cases.

(1) Suppose that the surface is a graph on a timelike plane. After a rigid
motion, we suppose that the plane is the xz-plane. A parametrization of
the surface is Ψ(x, z) = (x, f(x) + g(z), z). The computation of the mean
curvature H gives

2H(−1− f ′2 + g′2)3/2 = −(1 + f ′2)g′′ + (g′2 − 1)f ′′.

If H = 0, then

f ′′

1 + f ′2
=

g′′

g′2 − 1
= λ,

for some constant λ. Again, if λ = 0, the solution is a plane. If λ ̸= 0, then

f(x) =
1

λ
log(cos(λx+ a)).

The integration of g is a bit different because the condition g′2 > 1. So,
the integral

∫
1

x2−1 dx depends on the sign of x2 − 1. If it is negative, then

the solution is arc tanh(x), but in our case is positive. This means that we
can not do∫

1

x2 − 1
dx = −

∫
1

1− x2
dx = −arc tanh(x)
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because the domain of the integrand function is x2 > 1 and the domain
of arc tanh(x) is x2 < 1. However, it is not difficult to find that g(z) =
− 1
λ log(sinh(λz + b)), b ∈ R. Thus

y =
1

λ
log

∣∣∣∣ cos(λx+ a)

sinh(λz + b)

∣∣∣∣ .
(2) Suppose now that the surface is the graph of the functions f(u) + g(v)

over a lightlike plane. After an isometry, we assume that this plane is of
equation y + z = 0. Then a parametrization of the surface is

Ψ(u, v) = u(1, 0, 0) + v(0, 1,−1) + (f(u) + g(v))(0, 1, 1)

= (u, v + f(u) + g(v),−v + f(u) + g(v)).

Here the coefficients of the first fundamental form are E = 1, F = 0 and
G = 4g′ and the mean curvature H satisfies:

−8Hg′3/2 = 4f ′′g′ + g′′.

If H = 0, then g′′/g′ = −4f ′′ = a, for some constant λ ∈ R. If λ = 0,
then f and g are linear and the surface is a plane. If λ ̸= 0, we obtain by
integration:

f(u) = −λ
4
u+ a, g(v) =

1

λ
eλv+b + c, a, b, c ∈ R.

We observe that the surface is non-degenerate if and only if g′ ̸= 0 and the
the sign of g′ gives the spacelike or timelike character to the surface.

4.2. Rotational surfaces. An important class of surfaces are the rotational sur-
faces, called also surfaces of revolution.

Definition 4.1. A surface in Lorentz-Minkowski space E3
1 is a surface of revolution

with respect to a straight-line L, called the rotational axis, if it invariant by the
uniparametric family of boosts GL = {ϕθ : θ ∈ R}.

Therefore there are three types of rotational surface according to the causal
character of L.

Sometimes in the literature appears other definition of a surface of revolution.

Definition 4.2 (second option). A surface of revolution of axis L is the surface
obtained when we apply a uniparametric group GL of boosts to a plane curve
contained in a plane through the axis L.

Of course, a rotational surfaces according to Def. 4.2 is a surface of revolution
in the sense of Def. 4.1 but in general, both definitions are not equivalent. We
analyse what happens in Euclidean space. Given a surface of revolution S in E3,
it is easy to prove that any plane containing the axis is L intersects transversally
S, obtaining a plane curve C. If one rotates C about L then one obtains the initial
surface.

In Lorentz-Minkowski space this is partially true and it depends if the surface
is spacelike or timelike. Exactly, both definitions are equivalente if the surface is
spacelike or if the surface is timelike and the axis L is timelike or lightlike. The
problem appears for a timelike surface with spacelike axis.

In order to indicate where lies the problem, consider the pseudosphere S21 of
equation x2 + y2 − z2 = 1, which is a timelike surface. This surface is invariant
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by the group of boosts with axis Span{E1}. Indeed, if (x, y, z) ∈ S, ϕθ(x, y, z) =
(x, cosh(θ)y + sinh(θ)z, sinh(θ)y + cosh(θ)z), which satisfies the equation of the
pseudosphere. On the other hand, the intersection of S with the xz-plane is a curve
with two components. Let α(s) = (cosh(s), 0, sinh(s)) be the parametrization of
the component corresponding with x > 0. If we reverse the process by Def. 4.2 and
we rotate α with respect to the group GL, we obtain

S1 = {(cosh(s), sinh(θ) sinh(s), cosh(θ) sinh(s)) : θ, s ∈ R} .

The surface S1 is only a part of S and it does not cover fully the pseudosphere.
This contrast to with the Euclidean space. Even, if one considers the component of
S ∩{y = 0} corresponding with x < 0 and rotates it about GL, we obtain a surface
S2 ⊂ S, but the union S1 ∪ S2 does not coincide with S. In fact, we also need to
intersect S21 with the plane of equation x = 0, obtaining two curves and rotate with
respect to L, giving two surfaces S3 and S4. It is now when S = S1 ∪ S2 ∪ S3 ∪ S4.
A discussion can seen in [2].

The difference when one considers a spacelike surface is that all curves in the
surface are spacelike, imposing strong restrictions. Exactly, let S be a spacelike
surface of revolution with axis L = Span{E1} according to Def. 4.1. Then S can
not intersect the set A = {(x, y, z) ∈ R3 : y2 = z2} because in such a case, if
(x, y,±y) ∈ S ∩ A, the orbit of this point by the group GL is a lightlike curve.
Then S is included in one of the four components of R3 \ A. In fact, S does not
intersect the set of R3 given by y2 − z2 > 0. The argument is that the orbit
of a point (x, y, z) with y2 > z2 is a timelike curve. As conclusion, S must be
included in the domain {(x, y, z) ∈ R3 : y2 − z2 < 0, z > 0} or in the domain
{(x, y, z) ∈ R3 : y2 − z2 < 0, z < 0}. Thus, when one intersects S with the plane
y = 0, the curve generates the surface in the sense of Def. 4.2.

We study rotational cmc spacelike surfaces. By simplicity, we only consider
the case that the axis is timelike which, after a rigid motion, we assume that it
is Span{E3}. Then the surface is a surface of revolution in the Euclidean sense.
Suppose that the generating curve α is contained in the xz-plane. Since the surface
is spacelike, the curve α is spacelike and thus, it is a graph on the x-axis. Let α(s) =
(s, 0, f(s)), s ∈ I. A parametrization of S is Ψ(s, θ) = (s cos(θ), s sin(θ), f(s)),
s ∈ θ. Then the mean curvature H satisfies:

s3f ′′ + s2f ′(1− f ′2) = −2Hs3(1− f ′2)3/2,

which writes as (
sf ′(s)√
1− f ′(s)2

)′

= (−Hs2)′.

Then there exists λ ∈ R such that

sf ′(s)√
1− f ′(s)2

= −Hs2 + λ.

This is similar as in Euclidean space. See [9].
Consider H = 0. Recall that in E3, besides planes, the only minimal rotational

surface is the catenoid, whose generating curve is z = λ cosh(x/λ+ b), λ, b ∈ R, λ ̸=
0. In Lorentz-Minkowski space, if H = 0, there exists a constant λ ∈ R such that

sf ′(s)√
1− f ′(s)2

= λ.
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If λ = 0, then f is constant, obtaining a horizontal plane. If λ ̸= 0, the solution is

f(s) = λ arc sinh(
s

λ
) + b, b ∈ R.

If we see the generating curve as a graph on the z-axis, then the curve writes as
x = λ sinh(z/λ + b). This surface is called the Lorentzian catenoid. Observe that
the curve intersects the z-axis and at this point, the surface is not regular. This is
a difference with the Euclidean case.

Changing the axis to be spacelike or lightlike, we obtain all spacelike catenoids
of E3

1 ([12]).
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Figure 3. The catenoid in E3 (left) and in E3
1 (right)

4.3. Riemann examples. A minimal Riemann example is a spacelike minimal
surface foliated by circles in parallel planes. In order to motivate the problem,
consider the general case that the surface is formed by a uniparametric family of
circles not necessarily in parallel planes. Solving the equation H = 0, one concludes
necessarily that the planes must be parallel. This allows to parametrize the surface
as

(4.1) Ψ(t, s) = c(t) + r(t)(cos(s)e1 + sin(s)e2),

where c(t) ∈ R3, r(t) > 0 and {e1, e2} is a couple of unit orthogonal vectors. If
H = 0, then besides the catenoid, there are new surfaces which are called Rie-
mann examples ([27]). See Fig. 4, left. In a discrete set of heights, the surface is
asymptotic to horizontal planes.
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Figure 4. Minimal Riemann examples in E3 (left) and in E3
1 (right)

In Lorentz-Minkowski space one asks a similar problem. First, we announce that
the results are similar and the only difference is that we have to distinguish the three
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cases of circles. In order to simplify the statements and proofs, we consider the case
that the circles are included in parallel spacelike planes. After a rigid motion, we
suppose that they are horizontal, and so, the circles are indeed Euclidean circles.
The surface parameterizes as in (4.1).

Theorem 4.4. Let S be a spacelike surface foliated by circles in parallel spacelike
planes. Suppose that H is constant.

(1) If H ̸= 0, then the surface is rotational.
(2) If H = 0, then the surface is the catenoid or it belongs to a family of

minimal Riemann examples in E3
1.

Proof. We parametrize the surface as

Ψ(u, v) = (a(u), b(u), u) + r(u) (cos(v)E1 + sin(v)E2) , u ∈ I, v ∈ R,

where a, b, r > 0 are smooth functions of u. The curve c(u) = (a(u), b(u), u)
describes the centers of the circles. The surface is rotational if and only if the
functions a and b are constant.

We compute the mean curvature using (3.15) (for ϵ = −1). We distinguish two
cases:

(1) Case H ̸= 0. After a homothety, we assume that H = 1/2. Squaring
equation (3.15), we obtain W 3 − P 2 = 0. After a long computation (one
may use a program as Mathematica), this equation writes as a polynomial
of type

(4.2)

6∑
n=0

An(u) cos(nv) +Bn(u) sin(nv) = 0.

As the functions {cos(nv), sin(nv) : n ∈ Z} are linearly independent, then
An(u) and Bn(u) must vanish for 0 ≤ n ≤ 6. From A5 = B5 = 0 we obtain

a′4 − 10a′2b′2 + 5b′4 = 0, 5a′4 − 10a′2b′2 + b′4 = 0.

Hence we deduce that a′ = b′ = 0, that is, a and b are constant. This shows
that the surface is rotational, proving the first part of the theorem.

(2) Case H = 0. Then P = 0 gives a polynomial as (4.2), but only until n = 1.
The coefficients A1 and B1 imply

2a′r′ − ra′′ = 0, 2b′r′ − rb′′ = 0.

A first integration concludes that there exist constants λ and µ such that
a′ = λr2 and b′ = µr2 In particular, the curve of centers lies in a plane.
(a) If λ = µ = 0, the surface is rotational and this surface is the catenoid.

See Fig. 3, right.
(b) If λµ ̸= 0, the function r = r(u) satisfies

−1 + (λ2 + µ2)r4 + r′2 − rr′′ = 0.

The solution of this equation gives the Riemann examples ([16]). See
Fig. 4, right. Let us see that for initial conditions, the value of W
must be positive, since the surface is spacelike.

�
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The same questions can be posed for timelike surfaces. See the survey [17] about
the developments of this problem.

To end this part, we study what happens if the planes containing the circles are
not parallel. Using the theory of Frenet equations for curves given in section 2, we
prove:

Theorem 4.5. Consider a cmc spacelike surface in E3
1 foliated by circles contained

in non-parallel spacelike planes. Then the surface is part of a hyperbolic plane.

The counterpart result in Euclidean space asserts that the only cmc surface
foliated by circles in not parallel planes is the sphere.

Proof. We only sketch the proof, showing the main ideas. Let Π = Π(u) be the
planes of the foliation parametrized by the parameter u. Suppose that Π(u) are
not parallel. Consider a curve Γ = Γ(u) orthogonal to each plane Π(u), where u
denotes the arc length parameter of Γ. Let κ be the curvature of Γ. Because Γ is
not a straight-line, κ ̸= 0. Let {T,N,B} the Frenet frame of Γ. Then T is timelike.
The surface parametrizes as

Ψ(u, v) = c(u) + r(u)(cos v N(u) + sin v B(u)),

where r = r(u) > 0 and c = c(u) is the curve that describes the centers of circles.
We write

(4.3) c′ = αT+ βN+ γB,

where α, β and γ are smooth functions on u. We compute again W and P in (3.15)
and we distinguish the cases H = 0 and H ̸= 0. Assume that H ̸= 0. After a
homothety, we assume that H = 1/2 and that P 2 −W 3 = 0. Then

P 2 −W 3 =
12∑
n=0

[
An(u) cos(nv) +Bn(u) sin(nv)

]
= 0.

By the amount of computations and cases, we do not finish the complete reason-
ing but we point out that a contradiction arrives when one concludes that κ = 0 or
that W = EG− F 2 = 0. In order to show how one obtains a hyperbolic plane, we
explicit how does this situation appear. The coefficient B12 is

B12 =
r12τ4

2048
.

Thus τ = 0. The next coefficients vanish trivially until n = 6. For n = 6, the
equation B6 = 0 gives some possibilities. We analyze one of them corresponding
with the case

γ = 0 y β2 = κ2(4 + r2).

Now B5 yields

B5 = κ5r7
(
α− rr′√

4 + r2

)
= 0.

Then α = rr′/
√
4 + r2. With this value of α, the rest of coefficients An and Bn

vanish trivially. From (4.3) we have

c′ =
rr′√
4 + r2

T+ κ
√
4 + r2N = (

√
4 + r2T)′.
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Then there is c0 ∈ R3 such that

c = c0 +
√
4 + r2T.

The expression of the parametrization Ψ(u, v) of the surface writes now as

Ψ(u, v) = c0 +
√

4 + r2T(u) + r cos(v)N(u) + r sin(v)B(u).

Hence we deduce

⟨Ψ(u, v)− c0,Ψ(u, v)− c0⟩ = −4,

that is, the surface is the hyperbolic plane H2(2; c0). Observe that H = 1/2. �

5. Elliptic equations on cmc spacelike surfaces

The class of elliptic equations plays an important role in the PDE theory. The
simplest case is the Laplace equation ∆u = 0 which appears in many areas of
mathematics and physics. The relation between elliptic equations and cmc spacelike
surfaces follows by the next observation.

Assume that S is a spacelike surface given by the graph z = u(x, y) on the xy-
plane, where u ∈ C∞(Ω) ∩ C0(Ω) ⊂ R2. Since the surface is spacelike, u satisfies
|Du| < 1 in Ω. Consider the orientation N

N =
−(Du, 1)√
1− |Du|2

.

Then the mean curvature H satisfies

(5.1) (1− u2y)uxx + 2uxuyuxy + (1− u2x)uyy = −2H(1− u2x − u2y)
3/2

or

H = −1

2
div

(
Du√

1− |Du|2

)
,

We write this equation as

Qu :=
∑
ij

aij(x, y, ux, uy)Diju+ b(x, y, ux, uy) = 0, Diju =
∂2u

∂xi∂xj
.

In order to classify this equation, we study the matrix A = (aij) of the coefficients
of second order. This matrix is

A =

(
1− u2y uxuy
uxuy 1− u2x

)
.

The coefficient a11 = 1−u2y coincides with |Ψy|2 = 1−u2y > 0. The determinant of

A is 1− u2x − u2y, which is the function W = EG− F 2 = 1− u2x − u2y. This means
that A is a positive definite matrix.

Proposition 5.1. The mean curvature equation of a spacelike surface in E3
1 is

elliptic.

Thus one can apply the machinery of elliptic equations to obtain geometric
consequences.

It is possible to write in a unified equation the mean curvature equation in Eu-
clidean space and in Lorentz-Minkowski space. Let (R3, (dx1)

2+(dx2)
2+ ϵ(dx3)

2),
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with ϵ = ±1. If ϵ = 1, then the space is E3, and if ϵ = −1, then it is E3
1. The mean

curvature H of a surface in E3 or a spacelike surface in E3
1 satisfies

(1 + ϵu2y)− 2ϵuxuyuxy + (1 + ϵu2x)uyy = 2ϵH
(
1 + ϵ(u2x + u2y)

)3/2
.

5.1. The tangency principle. The maximum principle of elliptic theory is used
to compare two cmc spacelike surfaces that are tangent at a point. Let S1 and S2

be two surfaces which are tangent at a common point p ∈ S1 ∩ S2. Suppose that
one of the surfaces, for example S1, lies below the other one around the point p.
Exactly we consider both surfaces as the graphs of smooth functions u1 and u2
on a domain of the common tangent plane TpS1 = TpS2. After an isometry, we
assume that TpSi is the horizontal plane z = 0 (here we use the spacelike condition).
Let us take orientations in both graphs in such way that they agree at p, that is,
N1(p) = N2(p). In such a situation, we say that S1 lies below S2, and we write
S1 ≤ S2, if u1 ≤ u2 in a neighbourhood of p where the positive direction of the
height coordinate is determined by Ni(p). If p ∈ ∂S1 ∩ ∂S2, we add the condition
Tp∂S1 = Tp∂S2.

An easy application of calculus proves that if S1 ≤ S2, then H1(p) ≤ H2(p) (see
[23, p. 97] for the Euclidean case). This result is known in the literature as the
comparison principle.

Proposition 5.2 (Comparison principle). Let S1 and S2 be two spacelike surfaces
tangent at p and both are oriented so the Gauss maps coincide at p. If S1 ≤ S2

around p then H1(p) ≤ H2(p).

Proof. Take the usual parametrizations of a surface as a graph of a function. Sup-
pose that at p, Ni(p) = (0, 0,−1). Thus, if S1 ≤ S2 around p, then u1 ≥ u2 around
p. By (5.1),

(5.2) (ui)xx(p) + (ui)yy(p) = −2Hi(p).

As u1 − u2 has a minimum at p, the Hessian of u1 − u2 is positive semi-definite at
p. In particular, (u1)xx(p) ≥ (u2)xx(p) and (u1)yy(p) ≥ (u2)yy(p). By using (5.2),
we conclude H1(p) ≤ H2(p). �

We ask what happens if H1 = H2. Assume that S1 and S2 are tangent at p,
S1 ≤ S2 at p and they have the same constant mean curvature. Remark that
the orientation is prescribed by the condition that the Gauss maps of S1 and S2

coincide at p.

Theorem 5.1 (Tangency principle). Let S1 and S2 be two spacelike surfaces with
a common (interior or boundary) tangent point p. Suppose that S1 ≤ S2. If the
mean curvatures agree and are constant, then S1 = S2 in an open set around p.

Proof. Equation (5.1) is not linear, but if u1 and u2 satisfy (5.1), the difference
function u = u1−u2 satisfies a linear elliptic equation, that is, 0 = Q(u1)−Q(u2) =
L(u), where L is a linear elliptic operator. Since u1 − u2 ≤ 0 and u1(p) = u2(p),
the maximum principle implies u = 0, showing that u1 = u2. �

Some geometric consequences of the tangency and comparison principles are the
following:

Corollary 5.1. If S is a cmc spacelike compact surface with H ̸= 0 and boundary
included in a plane P , then the surface lies in one side of P .
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Proof. Without loss of generality, let P be the plane of equation z = 0 and assume
that the orientation N points to the future. Suppose also that H > 0. We show
that the surface lies below P . By contradiction, we assume that there exist points
above P . We take a horizontal plane Π in the highest point p and tangent to the
surface. Since p ̸∈ ∂S, then N(p) is a vertical vector. As ⟨N(p), E3⟩ < 0, then
N(p) = E3. Thus S ≤ Π around p and the comparison principle yields H ≤ 0, a
contradiction. �

Corollary 5.2. Let S be a minimal spacelike compact surface. Then S lies included
in the spacelike convex hull of ∂M .

We point out that the spacelike convex hull of C is the convex hull but using
only spacelike planes.

Proof. It suffices to compare S with spacelike planes. Take a spacelike plane P
disjoint from S. Next let us move P parallelly towards S until the first contact
point p with S. This point can not be interior to the surface S since in such a case,
S and P are tangent at p and both surfaces are minimal with any orientation. The
tangency principle implies that S ⊂ P , a contradiction. As a conclusion, the point
p must be a boundary point of S. If we do the same arguments with any spacelike
plane of E3

1, we obtain the result. �

The next result says that two graphs with the same mean curvature and the same
boundary must coincide. This is a direct consequence of the maximum principle of
a solution of a quasilinear elliptic equation. We do a proof by using the tangency
principle.

Corollary 5.3. Let S1, S2 ⊂ E3
1 be two compact graphs with the same constant

mean curvature and the same boundary. Then S1 = S2.

Proof. We suppose that the surfaces are graphs on a horizontal plane P . Let
C = ∂S1 = ∂S2. Let S1 and we lift up it vertically until it does not touch S2 (this
is possible because both surfaces are compact). Next, we descend S1 until the first
time that it touches S2. If there is an interior tangent point p ∈ S1 ∩ S2, S2 ≤ S1

around p. As S1 and S2 have the same mean curvature, the tangency principle says
that both surfaces agree around p. By connectedness, S1 = S2.

If p is a boundary point, then S1 comes back to its original position and, fur-
thermore, S2 ≤ S1. There are two possibilities:

(1) If p is a tangent point, the tangency principle concludes that S1 = S2 again.
(2) On the contrary, the slope of S1 along C is strictly bigger than the one of S2.

Now we descend S1 until it does not touch S2. Next, we move it upwards.
Since in its original position, S1 lies strictly above S2 along C, then there
exists an interior tangent point between S1 and S2 at some time t before
the original position. If we denote by S1(t) the surface S1 at this position,
the tangency principle yields S1(t) = S2. But this is impossible because
∂S1(t) ̸= C and ∂S2 = C. This contradiction says that this situation can
not occur.

�

For the next result, we need to introduce the concept of hyperbolic cap. Denote
by H2(r) the hyperbolic plane of radius r and center the origin. If R > 0, a
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hyperbolic cap is defined by

K(r;R) = {(x, y, z) ∈ H2(r) : z2 ≤ r2 +R2}.
The boundary of K(r;R), namely,

∂K(r;R) = {(x, y, z) ∈ K(r;R) : z2 = r2 +R2},

is a circle of radius R in the spacelike plane of equation z =
√
R2 + r2.

Corollary 5.4. The only cmc compact spacelike surfaces in E3
1 spanning a circle

are a planar disc and a hyperbolic cap.

Proof. Let C ⊂ E3
1 be a circle of radius R > 0. Since the surface is compact, this

circle is a spacelike curve contained in a spacelike plane Π which we assume that
it is the xy-plane. Because a circle is a simple closed curve, the surface must be a
graph on Π by Prop. 3.2. Let S be a graph with mean curvature H and ∂S = C.
Then S is a graph on the round disc bounded by C. If H = 0, the planar disc that
bounds C is a graph with H = 0. By Cor. 5.3, S is a planar disc.

Let H ̸= 0. We have only to show that there exists a hyperbolic cap with mean
curvature H and boundary C. For this, we take the hyperbolic cap K(1/H;R). �

As we observe, this result has a simple proof, but its counterpart in Euclidean
space is completely different. In E3 there are compact cmc surfaces with circular
boundary that are not umbilical. These surfaces are not embedded and have higher
genus. Furthermore, it is an open problem to know if planar discs and spherical
caps are the only cmc surfaces with circular boundary that are embedded or that
are topological discs. See [19] for an introduction to the problem.

5.2. Estimates on cmc spacelike surfaces. In this section we compute the
Laplacian of the coordinate functions of a spacelike surface as well as of the Gauss
map. In order to compare the differences with the Euclidean case, we work in both
ambient spaces. Let x : M → E3

1 or E3 be an immersion of a surface, which will
be spacelike if the codomain if E3

1. Let a ∈ R3. We compute ∆⟨x, a⟩ and ∆⟨N, a⟩,
where ∆ is the Laplace operator on M with the induced metric from E3 or E3

1

depending the case. The Laplacian of a function f ∈ C∞(M) is defined as

∆f = div(∇f) = trace
(
v 7−→ ∇v∇f

)
.

Let p ∈ M and take an adapted orthonormal basis at p, that is, an orthonormal
basis of tangent vector fields {E1, E2} such that∇Ei(p)Ej = 0, i, j ∈ {1, 2}. Because
the computations are done at p, we indicate ei = Ei(p). With respect to this basis,
the Laplacian is

∆f(p) =
2∑
i=1

ei(Ei(f)).

(1) Let f = ⟨x, a⟩. Then Ei(f) = ⟨Ei, a⟩ and at the point p we have

ei(Ei(f)) = ei⟨Ei, a⟩ = ⟨∇0
eiEi, a⟩ = ⟨∇eiEj + σ(ei, ej), a⟩

= ⟨σ(ei, ej), a⟩ = ϵ⟨Aei, ei⟩⟨N, a⟩.
Thus

∆⟨x, a⟩ = ϵ
( 2∑
i=1

⟨Aei, ei
)
⟨N, a⟩ = 2H⟨N, a⟩.
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(2) Suppose that H is constant. Let f = ⟨N, a⟩. First we show that the vector∑2
i=1 ∇0

ei∇
0
Ei
N is orthogonal to the surface, that is,

(5.3)

2∑
i=1

⟨∇0
ei∇

0
Ei
N, ek⟩ = 0, k = 1, 2.

Since ⟨N,Ek⟩ = 0, then ⟨∇0
Ei
N,Ek⟩ = −⟨N,∇0

eiEk⟩. Therefore

⟨∇0
ei∇

0
Ei
N, ek⟩+ ⟨∇0

eiN,∇
0
eiEk⟩ = −⟨∇0

eiN,∇
0
eiEk⟩ − ⟨N,∇0

ei∇
0
eiEk⟩.

As ∇0
eiN is tangent to the surface and ∇eiEk = 0, then

⟨∇0
ei∇

0
Ei
N, ek⟩ = −⟨N,∇0

ei∇
0
eiEk⟩ = −⟨N,∇0

ei∇
0
Ek
Ei⟩.

The metric in E3 and E3
1 is flat and this means ∇0

ei∇
0
Ek
Ei = ∇0

ek
∇0
Ei
Ei.

By substituting in the above equation, we obtain:

⟨∇0
ei∇

0
Ei
N, ek⟩ = −⟨∇0

ek
∇0
Ei
Ei, N⟩

and

(5.4)
2∑
i=1

⟨∇0
ei∇

0
Ei
N, ek⟩ = −⟨∇0

ek

( 2∑
i=1

∇0
Ei
Ei

)
, N⟩.

The mean curvature is 2H = ϵ
∑2
i=1⟨∇0

eiEi, N⟩. Because H is constant,

ek⟨
2∑
i=1

∇0
eiEi, N⟩ = 0,

that is,

⟨∇0
ek

( 2∑
i=1

∇0
Ei
Ei

)
, N⟩+ ⟨

2∑
i=1

∇0
Ei
Ei,∇0

ek
N⟩ = 0.

The second summand vanishes since that the left part is orthogonal to the
surface and the right one is tangent. From (5.4),

⟨∇0
ek

( 2∑
i=1

∇0
Ei
Ei

)
, N⟩ = 0,

and the claim is proved.
Finally, (5.3) yields

∆⟨N, a⟩ = ϵ
2∑
i=1

⟨∇0
ei∇

0
Ei
N,N⟩⟨N, a⟩ = −ϵ

2∑
i=1

⟨∇0
eiN,∇

0
eiN⟩⟨N, a⟩(5.5)

= −ϵ
2∑
i=1

⟨Aei, Aei⟩⟨N, a⟩ = −ϵ
2∑
i=1

⟨A2ei, ei⟩⟨N, a⟩(5.6)

= −ϵ trace (A2)⟨N, a⟩.(5.7)

Theorem 5.2. Let x :M → E3
1 or E3 be an immersion and let N be an orientation

on M . Given a ∈ R3, we have

(5.8) ∆⟨x, a⟩ = 2H⟨N, a⟩.
Furthermore, if H is constant,

∆⟨N, a⟩ = −ϵ trace(A2)⟨N, a⟩.
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By (3.10),
trace (A2) = 4H2 − 2ϵK = 2H2 + 2(H2 − ϵK),

and H2 − ϵK ≥ 0 on M . Thus, the last equation writes as

(5.9) ∆⟨N, a⟩+ ϵ(4H2 − 2ϵK)⟨N, a⟩ = 0.

Thanks to (5.8) and (5.9) we will obtain a priori estimates of the height of a cmc
graph in E3 which are not possible to extend to E3

1.
In both settings consider a cmc graph of a function u ∈ C∞(Ω) ∩ C0(Ω), where

Ω is a bounded domain. In particular, the graph is a compact set. Assume that the
boundary of the graph is ∂Ω, that is, u = 0 on ∂Ω and the orientation of the graph
points up. Let a = (0, 0, 1). Thus ⟨N, a⟩ > 0 if ϵ = 1 and ⟨N, a⟩ < 0 if ϵ = −1. In
fact, and since N and a are timelike vectors in the same timelike cone, ⟨N, a⟩ ≤ −1.
On the other hand, Cor. 5.1 implies that ϵ⟨x, a⟩ = u < 0 on Ω.

A linear combination of (5.8) and (5.9) gives

∆
(
ϵH⟨x, a⟩+ ⟨N, a⟩

)
= −2ϵ(H2 − ϵK)⟨N, a⟩ ≤ 0.

The maximum principle for elliptic equations asserts that

(5.10) ϵH⟨x, a⟩+ ⟨N, a⟩ ≥ min
∂Ω

(ϵH⟨x, a⟩+ ⟨N, a⟩) = min
∂Ω

⟨N, a⟩.

In Euclidean space, ⟨N, a⟩ ≥ 0, and thus, we conclude

H⟨x, a⟩+ ⟨N, a⟩ ≥ 0.

Hence

Hx3 ≥ −⟨N, a⟩ ≥ −1 ⇒ 0 ≥ x3 ≥ −1

H
.

This height estimate depends only on H. Recall that x3 = u measures the height
of the graph with respect to Π.

Proposition 5.3. Let P be a plane and H ̸= 0. Given a compact graph S ⊂ E3

on P with constant mean curvature H and ∂S ⊂ P , the height of S with respect to
P is less than 1/|H|.

For a cmc spacelike surface, the last part in (5.10) can not follow because ⟨N, a⟩ ≤
−1. In fact, prescribing the value H of the mean curvature, there are spacelike
graphs with planar boundary and constant mean curvature H that have arbitrary
heights. It suffices to consider hyperbolic caps K(1/H;R) with arbitrary R, placing
the boundaries of all them on a fix plane.

Proposition 5.4. Let Ω be a bounded domain of a spacelike plane P and H ∈ R.
Let S = graph(u) be with mean curvature H spanning ∂Ω. Then there exists a
constant c = c(H,Ω) such that |u| ≤ c(H,Ω).

Proof. Without loss of generality, we assume that P is the plane Π of equation
z = 0. Let H > 0 be the mean curvature with the future orientation. We know by
Cor. 5.1 that u ≤ 0. Consider a hyperbolic capK(1/H;R) whose mean curvature is
H with respect to the orientation pointing to the future. Let R sufficiently big so the
circle ∂K(1/H;R) lies included in Π and that Ω lies strictly in the bounded domain
determined by ∂K(1/H;R). By a translation, we move downwardsK(1/H;R) until
to be disjoint from S. Now, we move it up. Recall that the mean curvatures agree
but the boundaries are different. By the tangency principle, there is not a contact
point at least that the hyperbolic cap returns its original position. This proves that
the height of S is less than the one of K(1/H;R). �
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We now study C1-estimates of a cmc graph. First we prove

(5.11) sup
Ω

|Du| = max
∂Ω

|Du|.

From (5.9) and for a = (0, 0, 1), we have

∆⟨N, a⟩ = −ϵ(4H2 − 2ϵK)⟨N, a⟩ ≤ 0.

Then the maximum principle gives

⟨N, a⟩ ≥ min
∂Ω

⟨N, a⟩, ⟨N, a⟩ = ϵ
1√

1 + ϵ|Du|2
,

that is,

ϵ
1√

1 + ϵ|Du|2
≥ ϵmin

∂Ω

1√
1 + ϵ|Du|2

,

hence it follows (5.11).
We write (5.11) in geometric terms. Let ν be the interior conormal vector along

∂S. If H > 0, the surface lies below the plane. Moreover,

⟨ν, a⟩2 + ϵ⟨N, a⟩2 = ϵ.

⟨ν, a⟩2 =
|Du|2

1 + ϵ|Du|2
=⇒ |Du| = |⟨ν, a⟩|√

1− ϵ⟨ν, a⟩2
.

If ϵ = 1, let δ = min∂M ⟨ν, a⟩ > −1, then

max
∂Ω

|Du| = − δ√
1− δ2

.

Let us observe that ⟨ν, a⟩ measures the slope of S with respect to Π along ∂S.

5.3. The Dirichlet problem in the Lorentzian case. In Lorentz-Minkowski
space, the Dirichlet problem P for the constant mean curvature equation is

div
Du√

1− |Du|2
= 2H on Ω,

u = 0 in ∂Ω.
|Du| < 1 on ∂Ω.

The technique to solve this problem is the continuity method and that we explain
now. Denote by Pt the Dirichlet problem which is the same than P except that we
replace H by tH, where t ∈ [0, 1]. Define

A = {t ∈ [0, 1] : there exists a solution of Pt}.
For t = 0, the function u = 0 is a solution. If we prove that the set A is open and
closed in [0, 1], by connectedness, A = [0, 1], in particular, 1 ∈ A, solving the initial
Dirichlet problem P1 = P. The set A is open as a consequence of the implicit
function theorem in Banach space. We omit the details.

For the closeness, we need to get a priori C0 and C1 estimates of a solution of
Pt for all t ∈ [0, 1], that is, of |ut| and |Dut|, where ut is the solution of Pt. The
estimates of |ut| are given by Props. 5.3 and 5.4. In order to estimate |Dut|, it
suffices to do it along ∂Ω thanks to (5.11).

Here there is a difference between the Euclidean and Lorentzian ambient space.
To show these differences, suppose that Ω is a convex domain. In Euclidean space,
the domain Ω can not arbitrary large. In fact, if the Dirichlet problem has a solution,
there do not exist a closed disc of radius 1/|H| included in Ω. On the contrary, we
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can place a hemisphere z =
√
1/H2 − x2 − y2 of radius 1/|H| over Ω. Then moving

up and next down, the hemisphere arrives until the graph at a tangent point. But
the hemisphere would lie above the graph at the tangent point, in contradiction
with the tangency principle. Therefore, we have to impose restriction on the size
of Ω. An example of an existence result is the following ([15]):

Theorem 5.3. Let Ω ⊂ R2 be a strictly convex domain included in a plane P and
let κ be the curvature of ∂Ω. If H ∈ R satisfies κ > |H| > 0, then there exists a
graph on Ω with mean curvature H and boundary ∂Ω.

In contrast, in Lorentz-Minkowski space we have:

Theorem 5.4. If Ω ⊂ R2 is a bounded convex domain, then the Dirichlet problem
has a solution (for any H).

Proof. Let w be the diameter of Ω. This number has the property that given a
horizontal direction v ∈ Π, there are two parallel straight-lines {Lv, L′

v} contained
in Π and orthogonal to v with the property that Ω is included in the strip determined
by {Lv, L′

v}. Moreover, the distance between Lv and L′
v is less thant w. Consider

the hyperbolic cylinder of equation y2 − z2 = −1/(4H2), z > 0. This surface has
(constant) mean curvature H with the orientation pointing to the future (see Ex.
3.3). Take the piece C obtained when we cut the cylinder by a horizontal plane
in such way that the intersection are two parallel straight-lines w far apart. This
surface C has bounded height. Let us observe that C is a graph of a function f ,
which it is , up a constant, f(x, y) =

√
1/(4H2) + y2) where the domain is a strip

ΩC ⊂ Π of width w.
We are in conditions to estimate |Dut| at any boundary point. Take p ∈ ∂Ω.

Move down C and rotating with respect to z-axis, if necessary, until that we place
C below the graph St of ut, Ω ⊂ ΩC and p ∈ ∂ΩC . Next move vertically down C
sufficiently until that C does not intersect St. Next we move up. Because the mean
curvature of C is H, the tangency principle implies that there is not a contact point
between C and St at least that ∂C touches Π. Then the surface St lies above C
and p is a common point of both surfaces. Thus |Dut|(p) is bounded by |Df |(p),
the gradient of the cylinder at p ∈ ∂Ω. However |Df |(p) is a constant that does
not depend on St but only on Ω and H. This gives the a priori C1-estimates of ut
along ∂Ω that we are going to looking for. �

Similar arguments as above proves Th. 5.3 by replacing hyperbolic cylinders by
spherical caps of E3.
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[7] Ferrández, A., Giménez, A., Lucas, P., Null helices in Lorentzian space forms, Internat. J.

Modern Phys. A 16 (2001), 4845–4863.
[8] Graves, L. K., Codimension one isometric immersions between Lorentz spaces, Trans. Amer.

Math. Soc. 252 (1979), 367–392.
[9] Hano, J., Nomizu, K., Surfaces of revolution with constant mean curvature in Lorentz-

Minkowski space, Tohoku Math. J. 36 (1984), 427–437.
[10] Inoguchi, J., Lee S., Null curves in Minkowski 3-space, International Elec. J. Geom. 1 (2008),

40–83.
[11] Klotz, T., Surfaces in Minkowski 3-space on which H and K are linearly related, Michigan

Math. J. 30 (1983), 309–315.
[12] Kobayashi, O., Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo J. Math.

6 (1983), 297–309.
[13] Kühnel, W., Differential geometry. Curves – surfaces – manifolds. American Mathematical

Society, Providence, RI, 2002.
[14] Liu, H., Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom.

64 (1999), 141–149.
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