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ABSTRACT. Let F™ = (M, F) be a Finsler submanifold of a Finsler manifold
Fm+p = (M, F). By using the normal curvature vector field of F™ and the
Berwald connections on both F”* and Fm+p, we obtain the structure equations
for the immersion of F™ into F™*P. This enables us to relate, for the first time
in literature, the flag curvatures of F™ and Fmtp, Finally, we investigate the
existence of totally geodesic Finsler submanifolds of a Randers (¢, K)-sphere.

INTRODUCTION

The theory of Finsler submanifolds is as old as Finsler geometry is itself. Indeed,
the Finsler geometry has emerged in 1918 when Finsler wrote his thesis on curves
and surfaces in what he called generalized metric spaces. However, so far there
is no well established theory of Finsler submanifolds as we have the theory of
Riemannian submanifolds. Many reasons have concurred to this state of affairs
in Finsler geometry. First, we mention that the geometry of Finsler manifolds is
based on four classical Finsler connections: Berwald connection, Cartan connection,
Chern—Rund connection and Hashiguchi connection. So, the question is: which
one of these connections is more suitable for the theory of Finsler submanifolds?
Secondly, most of the theories of Finsler submanifolds have been developed by
using an induced nonlinear connection, which in general does not coincide with the
canonical nonlinear connection of the submanifold. Finally, the structure equations
obtained so far have cumbersome forms which are almost impossible to be used in
a study of the geometry of a concrete Finsler submanifold. Several people have
made some fundamental contributions to the subject: Akbar Zadeh [1], Barthel [3],
Bejancu [4], [5], Bejancu—Farran [6], [7], Comic [8], Haimovici [9], Matsumoto [10],
[11], Miron [13], Rund [14], Shen [15], Varga [17], Wegener [18].

The purpose of this paper is to develop a theory of Finsler submanifolds which
does not make use of the induced nonlinear connection and the induced Finsler
connection on a Finsler submanifold F™ = (M, F) of F™**? = (M, F'). To this end,
we introduce the normal curvature vector field n of F™, and show that all structure
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equations of F™ are simply expressed in terms of some covariant derivatives of n
(cf. (3.7), (3.16) and (3.17)). This leads us to a simple relation between the flag
curvature of F™ and F™*+? (cf. (3.19)). The main tool in our study is the Berwald
connection on both F™ and F™+».

Now, we outline the content of the paper. In the first section we arrange some
basic formulae from Finsler geometry and recall the main properties of vectorial
Finsler connections (cf. Bejancu [5]). Next, in Section 2 we relate the Berwald
connections on both F™ and F™ 7 (cf. (2.23)). Then we introduce the normal
curvature vector field n and show that all induced geometric objects on F™ are
expressed in terms of the relative vertical covariant derivatives of n (cf. Theorem
2.1). In the last section we obtain the structure equations for a Finsler immersion,
relating the curvature tensor fields of Berwald connections on F™ and Fmtp (cf.
Theorem 3.2). Also, we relate the flag curvatures of F™ and F™P (cf. (3.19),
(3.25)), and prove that a totally geodesic Finsler submanifold has the same flag
curvature as its ambient Finsler manifold. Finally, we investigate the existence of
totally geodesic submanifolds of Randers spheres.

The simple forms of the structure equations for a Finsler immersion, which are
very rarely in Finsler geometry, lead us to the conclusion that the Berwald connec-
tion is the best for a study of the geometry of Finsler submanifolds.

1. PRELIMINARIES

Let M be an m-dimensional manifold and T'M be its tangent bundle. Then
we take (u®,v®) as local coordinates on TM, where (u®) are the local coordinates
on M and (v*) are the fiber coordinates. Suppose that there exists a function
F:TM — [0,00), that is smooth on TM°® = TM \ {0} and satisfies the conditions:

(i) F is positively homogeneous of degree one with respect to (v®), that is,
F(u,kv) = kF (u,v), forany ue€ M, ve T, M, and k > 0.
(ii) The m x m matrix [gas(u,v)], where we put
1 0?°F?
2 Ov*0vP
is a positive definite quadratic form for all (u,v) € TM°. Then F™ = (M, F) is
called an m-dimensional Finsler manifold. Denote by ¢®? the entries of the inverse
matrix of [gag]. The function F' and the Finsler tensor field g = (gq) are called
the fundamental function and the Finsler metric of ™™, respectively. In particular,
if F"™ is a Riemannian manifold, then g becomes the Riemannian metric on M.
As all the geometric objects we work with are supposed to be smooth (differen-
tiable of class C'°°), we must consider them defined on TM°. However, to simplify
the notations, from now on we will omit the superscript “o” from TM?°. Denote by
F(TM) the algebra of smooth functions on T'M and by I'(E) the F(T'M)-module
of the smooth sections of a vector bundle E over TM. Also, we use the Einstein
convention, that is, repeated indices with one upper index and one lower index
denotes summation over their range. If not stated otherwise, we shall use the fol-
lowing ranges for indices: a,f,7,... € {1,....,m}, a,b,¢,... € {m + 1,....m + p},
i, 9, k,...€{1,..,m+p}.
Now, we consider the kernel VI'M of the differential of the projection mapping
IT: TM — M, which is known as the vertical bundle over TM. Locally, T'(VT M)

Gap (uv ’U) =



110 AUREL BEJANCU AND HANI REDA FARRAN

is spanned by {9/dv!,...,0/0v™}. Then we consider the local vector fields
0 9 5 0

(1.1) Suc  due P’
where we put

0G* 1 0?F? OF?
1.2 s = : b) GP = - g™ F__—— -
(1.2) (2) Ga ove (b) G 19 {31}’@1& v 8u“f}

It is proved that there exists on T M a complementary distribution HT M to VT M
in TT' M, which is locally spanned by {6/du!,...,§/0u™}. We call HT'M the canon-
ical horizontal distribution on T M. In literature, HT M is also known as the canon-
ical nonlinear connection on T M. Now, we consider the decomposition

TTM = HTM & VTM,
and for any X € T'(TTM) we put
(1.3) X = hX +0X,

where h and v are the projection morphisms of TTM on HT M and VT M, respec-
tively. Also, this decomposition of TT M enables us to define the following almost
product structure on T M:

1) 0 0 1)
(1.4) Q ((W) = g0 and @ ((91)“) =5

We call @ the Finsler almost product structure on T M.

Next, we consider a Finsler connection FC = (HTM,V), where HT' M is the
canonical horizontal distribution and V is a linear connection on the vertical bundle
VTM. Then, we put

0 0 0 0
v v, L, Y ;
507 O o Bou and vV 597 Qv Ca’s ovY

and deduce that, locally, a Finsler connection is determined by the triple (G2, F,,”7 3, Co”3).
In literature there are four classical Finsler connections: Berwald connection, Car-

tan connection, Chern—Rund connection, and Hashiguchi connection. In the present

paper we use only the Berwald connection BFC = (HTM,V) = (G),G,"3,0),

that is, we have

(1.5) (a) VM%%ZGQVQ%’ (b) Vav% 8(30‘ =0,
where we put

1.6 Go7p = 8Gg

(1.6) o B= g

Denote by R the curvature tensor field of V and put

) ) 0 0
2 Y Y _gwn ,
(2) R <5u'¥ §uﬁ> ove Ha"sy Ovk
g 4 0 0
2. VY2 _gmn, <
(L.7) (b) R (81}7 5u5) O™ Gapn Qv

a 0 %, s,
g Y9\ Y _gu, Y .
(c) R <8U“f 81}5) v San vk
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Then we recall that (cf. Bejancu—Farran [7], p. 40, Matsumoto [12], pp. 118, 119)

0G g dGHM OR" 3
Hau = - X aa su - ozE 5“ :7,‘/’
(1.8) “ T T T
’ OG M
(b) Calpy =300 (¢) Sa’sy =0,
where
0GL  6GH
1. poo— BTy
(1.9) Rs, Suv  duP

Also, we recall the following Lie bracket formulae:

) ) 0 ) 0 0
1.1 —_—y — | = " _ y — — 2 .
(1.10) (2) [&uﬁ 5u”f] R, OvH () Lmﬁ av”f} o OvH
Due to (1.10a) we call R* g, the integrability tensor field of the canonical horizontal

distribution HT' M .
The Cartan and Chern-Rund connections have F, 7z given by

1 6.96(1 596[3 5904[:7
FY.—= = g _ )
afs=39 {5u3 T Sue T ue
Also, the Cartan tensor field g, given by
_ 1 99ap
Jaby = 3 g’
has a great role in Finsler geometry. It is important to note that the Berwald

connection is neither h-metrical, nor v-metrical connection. More precisely, we
have

(112) (a) Japly = 2gas(Fﬁa’Y - Gﬁs’y)v (b) JaBlly = 2gaﬂ’y»

b2 |’7

(1.11)

where and represent the horizontal and vertical covariant derivatives with
respect to Berwald connection. The homogeneity of the fundamental function im-
plies some useful identities:

(a) Fyfp?=Go, (b) Geto? =G5, (o) G50f =26°,
(d)  gapyv? =0, () Ha'gyv® = Rtgy, (f) Gao¥pyv®=0.
Then, by using (1.12a), (1.13a) and (1.13b), we deduce that
(1.14) Gaply v’ = 0.

Now, we want to introduce the flag curvature of F™. Let (u,v) be a point of
TM, where u = (u®) is a point of M and v = (v%) is a non-zero tangent vector to
M at u. Suppose that X = (X®) is another tangent vector to M at w such that
v and X are linearly independent in T, M. Then, according to Bao—Chern—Shen
[2], p. 68, we call the plane II(X) = span{v, X} the flag at v with flagpole v and

transverse edge X. Then the flag curvature of F™ at the point u with respect to
the flag II(X) is given by

” ||7’

(1.13)

H(wgﬂ,vo‘vﬁXEX'y
F2h X X"
where Hocgy = gueHot gy, and he, are the local components of the angular metric

given by

(1.15) K(X) =

?

UH
hs'y = ey — gsg’yv le = Gen F :
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Next, we put
(1.16) (a) Rapy = gapR" gy, (b) Raﬂw“'g = Ray,

and note that R, is a symmetric Finsler tensor field. Then, by using (1.13e),
(1.16) and (1.15) we deduce that

R, X=X"
1.17 K(X)= ==~ — .
(L.17) X = P xex
Denoting the denominator in (1.17) by A(X), it is easy to see that we have
(118) A(X) :g(X7X)g(U7U)_g(UvX)2

2. INDUCED GEOMETRIC OBJECTS ON A FINSLER SUBMANIFOLD

Let Fmtp = (]Téf ,F) be an (m + p)-dimensional Finsler manifold and M be an
m-dimensional submanifold of M. Take (zf,y%) and (u®,v®) as local coordinates
on TM and TM respectively, and suppose that the immersion of M in M is locally
given by the equations

ot =zt (ut, . u™), i€ {l,..,m+p}

To simplify the equations involved in the study, we make the notations:

- oxt - 0% - 03t
Ba=pua Pos = guagus’ Pasn = guagurow
The fundamental function F of F™ P induces a function on TM as follows:
(2.1) F(u®,v%) = F(2*(u), 4" (u,v)),
where we set
(2.2) y'(u,v) = BLv®.

It is easy to check that F' defines a Finsler structure on M. Then we say that
F™ = (M, F) is a Finsler submanifold of F™*P. The Finsler metrics g = (gas(u,v))
and g = (g;;(x,y)) are related by

(23) ga,@(uav) = gz](l‘(u)vy(ua U))B;Bé
Remark 2.1. The geometric objects defined for F™ in the previous section will be
considered for F™*P  but with a tilde, as for example: G, G,7g, R? o3 become
G¥, Gikj, Rkij, respectively. m
Next, by using (2.2) we deduce that the natural field of frames {9/0u®, 9/0v*}
and {0/0z°,0/0y'} on TM and TM, are related by
0 .0 < 0 0 9
— =B, —+ B\ —. b) — =B, —.
(2) ou® * Oxt + Dag? oy’ (b) v * Oyt

Then we consider the Finsler metrics § = (ji;) and g = (gag) of F™t? and F™™, as

(2.4)

Riemannian metrics on the vertical bundles VI'M and VT M, respectively. Due to
(2.3) and (2.4b) we deduce that g is the induced Riemannian metric on VI'M by g.
This enables us to consider the complementary orthogonal vector subbundle VI'M L
to VI'M in VIT'M restricted to TM. Thus we have the orthogonal decomposition

(2.5) VT My = VTM & VTM*:.

We call VT M~ the Finsler normal bundle for the immersion of F™ into F™+P.
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Now, we choose a local field of orthonormal frames with respect to g in (VT M*1):

0
»oae{m+1,...,m+p}

N, = N! —
a 8yl
Thus we have
(2.6) (a) gi;BLNI =0, (b) GijNiN; = Sap.
Be o
If | _ | is the inverse of the matrix [B?, N?], then we have:
N
o (a) BeBp=65, (b) BNi=0, (c) N¢BL=0,
2.7

(d) NgNi=63, (e) BLB$+NiN¢ =l
By using (2.3), (2.6) and (2.7e) we deduce that
(28)  (a) BY =§yBig’, (b) NP =GyNjo™, (c) g° =g BrBL.
Also, the decomposition (2.5) is locally expressed as follows:

0 ~, 0

2.9 = B 4+ N®N,.

(29) 5 = B o+

Next, we consider the Cartan tensor fields of both F" and Fm+p , and obtain
(2.10) (a) apy = GijuBLBBE, (b) 9" =3:";BLBLB.

Remark 2.2. Throughout the paper we shall use gags, 9%, Gij, G, dap and 6% for
lowering or raising indices for mixed Finsler tensor fields with local components

TS . m
We also need the following mixed Finsler tensor field
(2.11) Gaas = Giju N BLBE.

Contracting (2.11) by J\~/;f and using (2.7e), we obtain
(2.12) gaa,ﬁﬁg = ﬁhjkBéBlﬁ - QQBWEZ-
Now, from (2.8a) we deduce that
9apB] = Gi; B
Taking partial derivatives of this equation with respect to v7 and using (1.11) for
Cartan tensor fields of both F and F™*?, and (2.12), we infer that

oB’ .
i B a
o 2ga" 4N;'.

Some basic identities on a Finsler manifold are stated in the next proposition.

(2.13)

Proposition 2.1. Let F™ be a Finsler submanifold of F™+P. Then we have
(2.14) G§BE+ H5N! = B v* + G" B}, + D§B.,
where we put

(2.15) (a) H§=Ng(Bfv®+GEBL), (b)) D§ = g,sHIv".
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Proof. By using (1.2b) for both F™ and F™ 7 and taking into account (2.1),
(2.4), (2.8), (2.7¢) and (2.6a), we obtain

(2.16) 2G* = B (2G* + BF.v"v®).

Then, taking the derivatives of this equation with respect to v and using (1.2a)
for both F™ and F™ %P (2.13) and (2.4b), we deduced that

(2.17) G = 9" s N (2G* + B v7v%) + B (GE B + Bl .0v°).
On the other hand, taking into account that G* are positively homogeneous func-
tions of degree two with respect to 4 (see (1.9¢)), and using (2.2) we obtain
~. OGF . . .

k _ J — Yk Ri,°
(2.18) 2G" = oy y =GB,
Hence, by using (2.18) and (2.15) into (2.17), we infer that
(2.19) 4 = D§ + BR(GY B, + Bj.v°).

Finally, contracting (2.19) by B and (2.15a) by N”, and then adding the two
equalities we obtain (2.14) via (2.7¢). m

Now, we are able to express {d/du®} given by (1.1) in terms of {5/dz%,0/0y"}.
Indeed, by using (1.1) for both F™ and F™*P (2.4) and (2.14) we deduce that the

canonical horizontal distribution HT'M of F™ is locally spanned by
1 ) ; .0

2.20 — =8B! — + (H.N. - DB -~ .

( ) é*ua « (5.’1]7’ +( a”a (3 ’y)ayl

Also, by using (2.7b), (2.7d) and (2.13), we deduce that

OB
ovY
= —2Hig"(NyNg') = —2Hgga".

53 0 a a
(221) Bio; %(HﬁNg) - _(HIBN(?)

Next, let BFC = (HTM,V) = (G%,Gs",,0) and BFC = (HTM,V) =
(é;, Gk, 0) be the Berwald connections of F™ and F™ 2. Thus according to (1.5)
we have

0 ~ 0 ~ 0

(2.22) (a) Vs — =G (b) Va%kaT,j

,i PR fr—
5ok Oy’ gk oyt =0

Then we prove the following.

Proposition 2.2. The local coefficients Gg®, and CNT'jik of the Berwald connections
of F™ and F™P are related by

(2.23) (Gs® + Dg"y) B + Hs" N} = Bh + G,y BB,
where we put
oDj

(224)  (a) D% =—5—

a T 0 a
—2H§g."y, (b) Hﬂbv = Ny 907 (H,BN:’)-
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Proof. First, we take the derivatives of (2.14) with respect to v and by using
(1.6) for both F™ and F™*? and (2.4b), we obtain

G £ aD% Bh a HaNh _ Bh é.h BjBk
857 = gy | Be t 5,57 (HaNa) = Bsy + G kB By
Contracting this in turn by B and N?, and using (2.7a), (2.21), (2.24), and (2.7¢),
we deduce that

(b) Hgby = Np(Bh +G;".B,BY).

Finally, contracting (2.25a) by Bf, and (2.25b) by N{, and then adding, we obtain
(2.23) via (2.7¢). m

Now, we define a tensor field D on F by

0 0 0
2.26 D|—=— | =Dg% —>
(2:26) <81ﬂ 81}5) P goe
and a mixed Finsler tensor field H on F™ with respect to the Finsler normal bundle
VTM™, as follows

) .

Then, by using (2.20), (2.4b), (2.22), (1.5), (2.26) and (2.27) we deduce that (2.23)
is equivalent to

(2.28) VixvY = VixoY 4+ D(QhX,vY) + H(QhX,vY),

for any X,Y € I'(T'T'M), where h and v are defined by (1.3) and @ is the Finsler
almost product structure on T'M given by (1.4).

According to the terminology from the theory of Riemannian submanifolds, we
call (2.28) (or, equivalently, (2.23)) the Gauss formulae for the Finsler immersion
of F™ in F™+P. Also, we note that the difference

VixvY — VixvY

is determined by a Finsler tangent vector field D(QhX,vY) (i.e., section of VT'M),
and a Finsler normal vector field H(QhX,vY) (i.e., section of VT'M*). For this
reason we call D given by (2.26) and (2.24a), and H given by (2.27), (2.25b) and
(2.24b), the tangent second fundamental form and the normal second fundamental
form, respectively. Moreover, we have the following.

Proposition 2.3.
(i) Dg*, and Hg", are symmetric Finsler tensor fields satisfying the identities
(2.29) (a) Dg*,v7” = =Dg, (b) Dg*vPv7 = —Dgvf =0,
(c) Hp v = Hj.

(ii) The Finsler tensor fields Dg®., and Dg are positively homogeneous of de-
grees 0 and 1 respectively, with respect to (v°).



116 AUREL BEJANCU AND HANI REDA FARRAN

Proof. (i) From (2.25) we see that both Dg®, and Hg®, are symmetric Finsler
tensor fields with respect to (5v). Next, contracting (2.25a) by v” and using (1.13b)
and (2.19) we obtain (2.29a). Similarly, contracting (2.19) by v# and using (1.13c),
(2.16) and (2.29a) we deduce (2.29b). Finally, (2.29¢) is a consequence of (2.25Db)
and (2.15a). (ii) By using (2.13) we deduce that B are positively homogeneous of
degree 0. Then, from (2.25a), it follows that Dg®, are positively homogeneous of
degree 0. Finally, from (2.29a) we conclude that Df are positively homogeneous of
degree 1. m

Next, we make the notation
(2.30) Hy = Hgvﬁ = Hp" 0P,
and define on each coordinate neighbourhood of T'M the section n of VI'M* by

0
oyt
Then it is easy to check that n defines a global section of VT M+, that is, the local
formula (2.31a) is invariant with respect to both the change of local coordinates
on TM and the change of orthonormal basis in T(VTM*). As H}/F2, a € {m +
1,...,m + p}, are called the normal curvatures of F™ (cf. Bejancu [4]), we call n
the normal curvature vector field of F™. As we shall see in the next theorem, the
normal curvature vector field n determines all the induced geometric objects of the
Finsler immersion of F™ into Fmtp,

The following notations will simplify the presentation:
;1 on ;1 0%t
@« 2 Gy ( )no‘ﬂ_§ v |

;1 03nt
(€) P = 2 v

(2.31) (a) n=H{N, =n' (b) n' = H{N..

(a) n
(2.32)

fx,ﬁv >
fields on F™ with respect to the vector bundle VI'Mry, (cf. Bejancu [5], p. 34).

Now, we can state the main result of this section.

Note that nf ,n’ g andn are the local components of some mixed Finsler tensor

(63

Theorem 2.1. Let F™ be a Finsler submanifold of F™tP. Then the induced geo-
metric objects Hg, Dy, Hg, and Dg® are expressed in terms of njy and njg. as
follows:

(a) HY = Nfni, (b) D§ = B¢n,
(2.33) g g

(c) Hy'y=Npniy, () Dy, =Bonh,.
Proof. First, taking into account (2.32a), (2.31b), (2.7d), (2.24b) and (2.29¢), we
deduce that

NI 1 ATa 0 i 1 e i 0 i
Ning =5 N 55 (WVHUNE) = 3 Vi {H};Nb +07 o5 (Hf/Nb)}
1 a 1 a a
=5 Hi+3 He"" = Hp,

which proves (2.33a). In a similar way, by using (2.32a), (2.31b), (2.7b), (2.21) and
(2.15b) we obtain (2.33b). Next, contracting (2.33a) and (2.33b) by N¥ and B
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respectively, and subtracting these equations, we infer that
(2.34) HEN} — D§BE = nj,
via (2.7e). Then, taking the derivatives of (2.34) with respect to v” and by using
(2.7¢) and (2.24b), we obtain

d oDg
oo o0
Thus the proof of (2.33c) is done. Finally, we take again the derivatives of (2.34)

with respect to v” and by using (2.7a), (2.7b), (2.13), (2.7d) and (2.24a), we deduce
that

Npnty, = 8 L vty - (RpBY) S8 = gt

- -9 aD: oB:  0D:
koo anrk B _ anrk k B
Bink, = DBj 5 (HENY) = 55 = —(HENG) 5 % — =
= —2H4NF g N} — 905 _ —2H3g,5 — D5 _ pye..
B la Tk v pda ~ v B

This completes the proof of the theorem. m

Corollary 2.1. Let F™ be a Finsler submanifold of F™+P. Then we have:

(2.35) G4Bl, +nj = By v + GiBY,
and
(2.36) G\ Bi, +nj, = By, + G;' BB

Proof. By using (2.34) into (2.14), we obtain (2.35). Then, contracting (2.33a) by
Nk, and (2.33b) by B, and then adding and using (2.7e), we deduce that

(2.37) Hg" N¥ + Dg* BE =nj,,.

Finally, (2.36) is obtained from (2.23) by using (2.37). m

Corollary 2.2. Let F'™ be a Finsler submanifold of F™P. Then we have the
assertions:

(i) The canonical horizontal distribution of ™ is locally spanned by the vector
fields:
) ) G
2.38 — =B — L—
( ) due * b 7 oy’
(ii) The local components of the normal curvature vector field are positively
homogeneous of degree 2 with respect to (v?).

Proof. By using (2.20) and (2.34) we obtain (2.38). Then, contracting (2.34) by
v#, and using (2.32a) and (2.31b), we deduce that

on”
P
Thus, the assertion (ii) follows from (2.39) by using the Euler Theorem for positively
homogeneous functions. m

(2.39) vP = 2nF,

Next, for any X € I'(TTM) we define the differential operator

(2.40) Vx : D(VTMrar) = D(VT Mirar),
VxY =VxY, VY € D(VT M),
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—_~—

where V is the linear connection from the Berwald connection BFC' of F™+? given
by (2.22). Therefore BFC = (HTM,V) is a vectorial Finsler connection on F™
with respect to the vector bundle VT]\ZTM (see Bejancu [5], p. 26). By (2.40) and
(2.22) we deduce that V is locally given by

N2 9 = 0 2k K
(a) =7 Oyl =Gy dyt (b) Gj'y =G; kB];v
(2.41) P
(C) vafv ayJ - 0

Also, we note that B!, o € {1,...,m} and i € {1,...,m+p} are the local components

of a mixed Finsler tensor field on F™ with respect to the vector bundle VI'M,r ;.
Now, we can state the following important result.

Theorem 2.2. Let F™ be a Finsler submanifold ofﬁm“‘p. Then the horizontal rel-
ative covariant derivative of B with respect to the pair (BFC, BFC) is completely
determined by the normal curvature vector field n of F™ as follows:

Proof. By using the local formulae for the horizontal relative covariant derivative
(cf. Bejancu—Farran [7], p. 29) and taking into account (2.41b) and (2.36), we
obtain

Bljs = Bug + BiGi's — GapB:
=By + G BLBE — Gofp Bl = nl .
Thus the proof is done. m

Finally, by using (2.41b), (2.38) and (1.11), we deduce that

- 0Gii -~ —= I
Gijla = 5uli _gthiha_githha

2.43 6Gij ~ =n o~ A dGi;
(2.43) = (5;; — 9niGi"k — 9inG; k) BF +nk 8yz’g
= gij\kBZ + 20k Gijk.
3. STRUCTURE EQUATIONS AND CURVATURE
OF A FINSLER SUBMANIFOLD

The purpose of this section is to obtain the structure equations of the im-
mersion of F™ in F™+P. More precisely, we want to relate R%g, with Eijk and
{Ha% 8y, Ga®py} with {ﬁjikj, éjikh}. This will enable us to relate the flag curva-
tures of F™ and F™+?. B

First, we consider the associate linear connection D to the Berwald connection

BFC = (HTM,V) = (CNJ;, G,'1,0) given by (cf. Bejancu-Farran [7], p. 30)
(3.1) DxY = VxoY + QVxQhY, VX,Y € T(TTM),

where h and ¥ are the projection morphisms of TTM on H 1T M and VT M respec-
tively, and @ is the Finsler almost product structure on T'M given by

~ (6 0 ~( 0 0
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Then, by using (3.1), (3.2) and (2.22), we obtain

~ ) ~, 0 ~ 0 =, 0
#) Poser =ik g ) Doy =Gk gy
(3.3) Y Y
. - 6 - 8
) Dt gar =0 D Doty =

Taking into account (2.38), (3.3) and (2.41b) we deduce that

= Y i = i pipky 0 dnj ak 9
(3.4) D&% SuP = (Bﬁ,y + G, kBZ;ny)@ + <M + njBGj v Iy )

Next, we denote by T the torsion tensor field of D and by using (3.4) and (1.10a)
we infer that

~ (6 1) ~ ) ~ ) 1) 1)
T(éuauﬁ) = D5 " P s T [(suaua}

on’ L ) nt . ) o
_ B 7 (3 « 7 7 a
35) = {(W + %G,y —ni,Gp ”)(mg +niGls —ni G, ﬁ>} o

Q 9 « i 4 % 9
—R%p v (R sy Bg, + 1y, _n7|ﬂ)@'

On the other hand, by using (1.10) for F™*? and (3.3) we deduce that

(5 6 ~. 9 (5 0 (9 0
T2, ) =Ry = and T ) =T (52 ) =o.
<5w’“ W) B gyi 2 (Wf azﬂ) <3y’f 8zﬂ) ’

Hence we have

~( 0 0 i pk _ pi | Rk
:T(élﬂk,Mj>BészRjkBéB7 8yi-

Comparing (3.5) and (3.6) we can state the following,.
Theorem 3.1. Let F™ be a Finsler submanifold of F™+P. Then we have:
(3.7) R'jBLBY = R*g, Bl +niy, —nl s,

({|

where 7 stands for the horizontal relative covariant derivative with respect to the
pair (BFC,BFC).

Remark 3.1. By similar calculations for T(6/0u”,d/0v?) and T(9/0v",d/0vP) we
obtain (2.36) and a trivial identity, respectively. m

Next, by using (2.38), (2.4b), (2.22) and (2.36) we obtain

\V/ 9 i i  oky O e ni i 9
(3 8) (a) vﬁ R = (BaB + Gj kBngB)ayl - (GOé 5BE +naﬁ)87yi’
‘ <~ 0
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Taking into account (2.38), (2.22) and the first equality in (3.8a) we deduce that

R

Vit Vit gon = Vatn Bas GBS 5
i 5~ijk;~ijk~t~ijkha
= Bapy + 5,7 (Gi'wBaBg) + Gy'5 B By + Gi'vGi'n BL B3 By dy'

On the other hand, by direct calculations using (1.8b) for F™*? and (2.38) we
obtain

5o 3G i
Gt BI Bk: J
(S'U,’Y( Jj kPa ﬁ) 6

BJ,BEB! + Gt BB + G, B, B + G 'y BB,

Thus we have

N , 6Ci'
vaiwvsfﬁ v = { Zvﬂw + ( Sx Jh + GJ th h) B BﬁBh
(3.9)
~ , ~ 0
+ Gj’khB£B§n2 + Gjl}cB Bﬁ + Gj kB] Bﬁ’y + GJ kB] Bk} ayz .

Also, by using (1.10a) and (3.8b) we infer that

(3.10) 6[ ; 0

57 525 ) O

Then, we denote by R the curvature tensor field of the linear connection V from the
Berwald connection BFC = (HTM,V) on F™*P and by using the first equality
in (1.8a) for F™*?, (3.9) and (3.10) we obtain

~ /5 6 9
(3.11) —v.v. L ov.v. 2% 5
Vit Vats gue ~ Vits Vet o VLt st goe

— { ;' BLBYBY + Gy B (Blint — Bt}

On the other hand, taking into account the second equality in (3.8a) and using
(2.41) and (2.36) we deduce that

~ ~ o ) ) ) o ) A 0
= ——(Ga B + ngp) 5~ + (G pB: +105)V s

vV 25 gee — Gun Ay’ oy
Ga ﬂ i ong aﬂ k 0
= Bl +Go Bl + S0 + G 3BIG; ' B +n, 3Gy’ By
. = O‘ﬂBZ—i—G (B, + Gy’ BJB’“)+5nf’ﬂ+ e
- a B jk SuY Nopbi vy i
6G0¢ B m i i € 577'&5 J A 9
+ Ga BG BE + ana B + 57 + naﬁGj y ayz .
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Finally, by a similar calculation as in (3.11), but by using (3.12), (3.10) and (1.8),
we obtain

~(5 &\ 9 i 9
(3.13) R <5m ’ M) Foa {Ha oy B+ )y — avlﬁ} v
Thus, comparing (3.11) with (3.13) we deduce that

(3.14)  H;'w B, BEB! + G pn B(Bn — Binfy) = Ho®p, Bl + kg, — iy -
Next, by using the first equality in (3.8a) and taking into account (1.8b) for

F 47, (2.4b) and (2.41c) we infer that

- - 0 o~ . a
On the other hand, by using the second equality in (3.8a) and taking into account
(1.8b), (2.41c) and (2.32c) we obtain

Vo Vs i:(Ga ﬁ’YB —|—noé,3,),)i

av7 - uB Jue ay*
Comparing these equalities we deduce that
(3.15) G enBLBEB! = Gofp, Bl + i,

Now, we are able to state the following.

Theorem 3.2. Let F™ be a Finsler submanifold of F™+P. Then the curvature
tensor fields of Berwald connections on F™ and F™*P are related by the following
structure equations:

(a) Hjuun BB, BEB! + Gy, BL B (Bnl — Brnlt)

(316) = Happy + git(nflﬁw - né»ﬂf})B;tw
(b)  GjexnBLBLBEB! = Gaype + Guent 5., BL.
and

(a) HjtkthNéBgB,}yb + GjtkthyNé(Bg 2 — B’;ng)
(3.17) = Eit(nggw - nfmw)Né,

(b) GjtkhB i Nt BﬁBh —gztnaﬁ,yN

Proof. By contracting (3.14) by g;; B}, and g;; N we obtain (3.16a) and (3.17a).
In a similar way we obtain (3.16b) and (3.17b) from (3.15). m

According to the terminology from the theory of Riemannian submanifolds, we
call (3.16) and (3.17) the Gauss—Berwald equations and the Codazzi-Berwald equa-
tions for the immersion of F™ into F™*P, B

Now, we want to relate the flag curvatures of F™ and F™*?. To this end we start
with a contraction of (3.7) by ginv” and by using (1.16) for both F™ and F™*? and
(2.2) we obtain

RuxBY = Ry BY + Gin(nfy., — nl5)v”
Contracting this by B" and using (2.7a) we deduce that
(3.18) thBh =Ry + glh(nﬂh — nvlﬁ)B P
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Theorem 3.3. Let F™ = (M, F) be a Finsler submanifold of F™"? = (M, F), and
X = (X7) be a tangent vector to M at the point w € M. Then the flag curvatures
of F™ and F™P at the point u with respect to the flag 1I(X) are related by
~ Gin(nt 16~ ng‘ VBB XX
1 K(X)=K(X - - .
(319) (%) = R(x) + S e

Proof. Contracting (3.18) by X®X” and setting X' = B: X, we deduce that
(3.20) Rpp X" X% = Ron XX + Gin(nlyy, — nly 50" BR XX
If X = (X*), then it is easy to check that

9(X,X) =g(X,X), g(v,X) =gy, X) and g(u,v) = g(y,y).

Therefore, A(X) from (1.18) is the same with A(X) for F™*?. Then, dividing
(3.20) by A(X) and taking into account (1.17) for both F™ and F"™*?  we obtain
(3.19). m

From (3.19) we see that the flag curvatures of F™ and F™'? are related by
means of the relative horizontal covariant derivatives of n’, with respect to the pair
(BFC,BFC). However, according to the theory of Riemannian submanifolds, the
second fundamental forms of F™ (defined in Section 2) should be involved in (3.19).
To show this, we examine the last term in (3.19).

First, by using (2.8a), (2.34), (2.7a) and (2.7b), we obtain

Ginns Bl = goc Binly = goe B (H§N; — DiB)) = —ga:D§ = —Dagp.
Taking the relative horizontal covariant derivatives of this equality, and using (2.43),
we obtain

Ginny Bl = —=Dagy — Ginpns BLBY — 2ginknf Biink — ginn B,

On the other hand, by using (2.34), (2.37), (2.6) and (2.3), we infer that
gihngBZIV = gih(Hg ; - DngL)(Hawal? + Das'yB?) = Haa’yHg - Da&'stﬁ'
Thus we have
ginn, Bl = Doy Deg — D

[0

aBly — HaoyHE — Ginpns BLBE — 2gininfy Bink.

By using this equation and taking into account that g;nr is a symmetric Finsler

tensor field, we deduce that
(3.21) gin(ny5 = 1i51,) B = Da®sDey = Da®yDep + Dagly — Dars
+ Haa’yHg - HaocﬁH:/l + gzh“ﬂ(”éiB']; - n}yBE)BZ

Next, by using the last equality in (2.29b) and taking into account that vﬁh =0,
we obtain

(3.22) Dopyv” = 0.
Also, we have
(3.23) GinkBE0" = Gy =0,

since the horizontal covariant derivative of g;;, with respect to Berwald connection
in the direction of the supporting element vanishes (cf. Matsumoto [12], p. 119).
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Now, contracting (3.21) by v” and using (3.22), (3.23), (2.29), (2.30) and (2.39),
we deduce that
Gin(nlys — nigy, ) Bav” = H§ Hoay — HooHy — Doy g0”

(3.24) o
— Dng’Y + 2gih|k,nZBo¢B»y'
Finally, by using (3.24) into (3.19), we obtain
~ 1
K(X) = K(X)+ =5
(3.25) F2hon XX

— D& Dery + 20 BEBE} XX

{H{Haory — HooHY — Dgryp0”

We close the paper with some applications of (3.25) to some special Finsler
immersions. First, we recall that F™ is totally geodesic immersed in F™+P if and
only if any geodesic of F™ is a geodesic of F™+P. To reach our goal, we need the
following.

Theorem 3.4. (Bejancu [4]) F™ is totally geodesic immersed in F™ P if and only
if, the normal curvatures of F™ vanish, that is, we have
(3.26) H{ =0, Yae{m+1,..,m+p}.
This enables us to state the following.
Theorem 3.5. F™ is totally geodesic immersed in ﬁm+p, if and only if, both the
normal and tangent second fundamental forms vanish, that is, we have
(a) Ho% =0, and (b) D,"g =0,
(3.27)
Va, 8,7 € {1,....,m}, Vae {m +1,....,m + p}.

Proof. Suppose that F™ is a totally geodesic Finsler submanifold. Then by (3.26)
and (2.31b) we deduce that n* = 0, for all i € {1,...,m + p}. Thus, taking into
account (2.33c), (2.33d) and (2.32b), we obtain (3.27). The converse is a simple
consequence of (2.30) via (3.27a) and (3.26). m

Theorem 3.6. Let F™ be a totally geodesic Finsler submanifold of F™ . Then
F™ and F™P have the same flag curvature.

Proof. As F™ is totally geodesic, by (3.27a) and (2.29b) we deduce that

(3.28) H;=0, Vae{l,..,m}, ac{m+1,..,m+p}.
Also, by using (3.27a) and (2.29a) we obtain
(3.29) Dys =0, Va,B € {1,...,m}.

Finally, by using (3.28), (3.29), (3.26) and taking into account that n’ = 0 for all
i €{1,...,m+p}, from (3.25) we infer that

K(X)=K(X), VX e (TM).
Thus the proof is done. m

In particular, we obtain an extension to Finsler geometry of a well known result
from Riemannian geometry.

Corollary 3.1. Any totally geodesic Finsler submanifold F™ of a Finsler manifold
F™+P of constant flag curvature K is of constant flag curvature K, too.



124 AUREL BEJANCU AND HANI REDA FARRAN

Next, we suppose that M is endowed with a Riemannian metric a = (@i;(x))
and a non-zero 1-form b = (b;(z)) satisfying

b2 = @ (a)b;(2)b; (z) < 1.
Then the function

(3.30) ﬁ(ﬂfay) =/ @i (w)ytys +gi($)yi,

defines a Finsler structure on M. According to the terminology in literature, we
call Fm+p = (M F,a ,Gij, b i) a proper Randers manifold. By using a and b we define
the 1-form

(3.31) 0 = b'(byy; — by);)da?,

where “|” denotes the covariant derivative with respect to the Levi-Civita connec-
tion on (M, a).

Now, we consider the (2n + 1)-dimensional unit sphere S$?"*1 and recall that
Tanno [16] has proved that S?"*1 is a Sasakian space form of constant p-sectional
curvature ¢ > —3. Then it was proved by Bejancu and Farran [6] that for any
constant K > 0 there exists a proper Randers metric of constant flag curvature K
and with 6 = 0 on $2"1. The Finsler manifold F21 = ($27+1 ¢ K) is called a
Randers (c, K)-sphere. The following classification theorem is useful in our study.

Theorem 3.7. (Bejancu-Farran [6]) Let Fmtr = (M F alj,b ) be a proper Ran-
ders manifold, where (M, a) is a simply connected and complete Riemannian ma-
nifold. Suppose that Fmtp s of positive constant flag curvature K and that 0=0
on M. Then m + p must be an odd number 2n + 1, and F2n+1 s Finsler isometric
to the Randers (c, K)-sphere o = (§?"*t ¢, K) where c = 1 — 4| b]|?.

Let F™ = (M, F') be a Finsler submanifold of a proper Randers manifold Fmtp =
(M, F,a;j,b;). Suppose that the structure vector field b* = a*/b; of F™*? is tangent
to M. Then F™ inherits a Randers structure given by
(3.32) (a) aop =a;BL,BY and (b) bo =b;By.

Moreover, we prove the following.

Theorem 3.8. Let F™ = (M, F) be a totally geodesic Finsler submanifold of a
Randers (c, K)-sphere F2"+1 = (S§27+1 ¢ K), such that (M,aap) is a simply con-
nected and complete Riemannian manifold, and the structure vector field of F2"+1
is tangent to M. Then m is an odd number 2q + 1 and F?9%! is Finsler isometric

to a Randers (c, K)-sphere Frt = (S29+1 ¢ K).

Proof. First, we note that F" is a proper Randers manifold with the Riemannian
metric and 1-form given by (3.32). Then, by using (3.32b) we deduce that

(3.33) bajp = B! B’ bm,
where the covariant derivatives are taken with respect to the Levi-Civita connec-
tions on the Riemannian manifolds (M, asg) and (S*"*1 a;;). By using (3.33) and
taking into account that # = 0 on S?"*!, we deduce that

0 = b (bajs — bgja)du® = b*BLB%(b;; — bj);)du”
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Also, by Corollary 3.1 we infer that F™ is a Finsler manifold of constant flag
curvature K. Finally, we apply Theorem 3.7 and obtain the assertion of the present
theorem. m

The next corollary follows immediately from Theorem 3.8.

Corollary 3.2. There exist no totally geodesic even dimensional Finsler subma-
nifolds of a Randers (c, K)-sphere F?"+1 = (§2n+1 ¢ K) which are tangent to the
structure vector field of F2"+1,

Remark 3.2. We note that the Finsler structure of a Randers (¢, K)-sphere is never a
Riemannian structure. This is because b is nowhere zero on 527!, Thus the results
in Theorem 3.8 and Corollary 3.2 cannot be applied to Riemannian geometry. m
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