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A NEW KIND OF HELICOIDAL SURFACE OF VALUE M

ERHAN GÜLER

Dedicated to memory of Professor Franki Dillen

Abstract. We define a new kind of helicoidal surface of value m. A rotational
surface which is isometric to the helicoidal surface of value m is revealed. In

addition, we calculate some differential geometric properties of the helicoidal
surface of value 3 in three dimensional Euclidean space.

1. Introduction.

In classical surface geometry, the right helicoid (resp. catenoid) is the only ruled
(resp. rotational) surface which is minimal in Euclidean space. If we focus on
the ruled (helicoid) and rotational characters, we have Bour’s theorem in [4]. The
French Mathematician Edmond Bour used semi-geodesic coordinates and found a
number of new cases of the deformation of surfaces in 1862. He also gave a well
known theorem about the helicoidal and rotational surfaces.

Kenmotsu, [14] focuses on the surfaces of revolution with prescribed mean cur-
vature. About helicoidal surfaces in Euclidean 3-space, do Carmo and Dajczer [5]
prove that, by using a result of Bour [4], there exists a two-parameter family of
helicoidal surfaces isometric to a given helicoidal surface. By making use of this
parametrization, they found a representation formula for helicoidal surfaces with
constant mean curvature. Furthermore they prove that the associated family of
Delaunay surfaces is made up by helicoidal surfaces of constant mean curvature.
Hitt and Roussos [11] also study on the helicoidal surfaces with constant mean
curvature using computer graphics. Baikoussis and Koufogiorgos [1] prove that the
helicoidal surfaces satisfying KII = H are locally characterized by the constancy of
the ratio of the principal curvatures. Ikawa determines pairs of surfaces by Bour’s
theorem with the additional condition that they have the same Gauss map in Eu-
clidean 3-space in [12]. Some relations among the Laplace-Beltrami operator and
curvatures of the helicoidal surfaces in Euclidean 3-space are shown by Güler et al
in [9]. They give Bour’s theorem on the Gauss map, and some special examples.

On the other hand, Dillen and Sodsiri [6] study ruled linear Weingarten surfaces
in Minkowski 3-space. See also Minkowskian cases in ([2, 3, 8, 9, 13]).
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In section 2, we recall some basic notions of the Euclidean geometry, and the
reader can be found the definitions of helicoidal and rotational surfaces of value
m. Isometric helicoidal and rotational surfaces of value m are obtained by Bour’s
theorem in section 3. Finally, isometric helicoidal and rotational surfaces of value
3 are examined in the last section.

2. Preliminaries

We shall identify a vector (a,b,c) with its transpose. In this section, we will
obtain the rotational and helicoidal surfaces in Euclidean 3-space. The reader can
be found basic elements of differential geometry in [4, 7, 15, 16].

Now we define the rotational surface and helicoidal surface in E3. For an open
interval I ⊂ R, let γ : I −→ Π be a curve in a plane Π in E3, and let ` be a
straight line in Π. A rotational surface in E3 is defined as a surface rotating a curve
γ around a line ` (these are called the profile curve and the axis, respectively).
Suppose that when a profile curve γ rotates around the axis `, it simultaneously
displaces parallel lines orthogonal to the axis `, so that the speed of displacement
is proportional to the speed of rotation. Then the resulting surface is called the
helicoidal surface with axis ` and pitch a ∈ R+.

We may suppose that ` is the line spanned by the vector (0, 0, 1). The orthogonal
matrix which fixes the above vector is

A(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , θ ∈ R.

The matrix A can be found by solving the following equations simultaneously;
A` = `, AtA = AAt = I3, detA = 1. When the axis of rotation is `, there is
an Euclidean transformation by which the axis is ` transformed to the z-axis of
E3. Parametrization of the profile curve is given by γ(r) = (r, 0, ϕ (r)), where
ϕ (r) : I ⊂ R −→ R are differentiable function for all r ∈ I. A helicoidal surface
in three dimensional Euclidean space which is spanned by the vector (0, 0, 1) with
pitch a, as follow

H(r, θ) = A(θ).γ(r) + aθ`.

When a = 0, helicoidal surface is just a rotational surface.

3. Helicoidal surfaces of value m

We define a new kind of helicoidal surface, and using Bour’s theorem we reveal
a kind of isometric rotational surface in this section.

A helicoidal surface of value m is defined by

(3.1) Hm (r, θ) = H1
m (r, θ) + H2

m (r, θ) ,

where H1
m (r, θ) = <1

m.γ
1
m + 1

2aθ`, H
2
m (r, θ) = <2

m.γ
2
m + 1

2aθ`, rotating matrices

<1
m and <2

m are

<1
m (θ) =

 cos [(m− 1) θ] sin [(m− 1) θ] 0
− sin [(m− 1) θ] cos [(m− 1) θ] 0

0 0 1


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and

<2
m (θ) =

 cos [(m+ 1) θ] − sin [(m+ 1) θ] 0
sin [(m+ 1) θ] cos [(m+ 1) θ] 0

0 0 1

 .

` = (0, 0, 1) is the rotating axis, and the profile curves are

γ1m(r) =

(
rm−1

m− 1
, 0,

1

2
ϕ (r)

)
, γ2m(r) =

(
− rm+1

m+ 1
, 0,

1

2
ϕ (r)

)
,

m ∈ R − {1} in γ1m, m ∈ R − {−1} in γ2m, r ∈ R+, 0 ≤ θ ≤ 2π, and the pitch
a ∈ R+. Since the helicoidal surface is given by rotating the profile curves γ around
the axis ` and simultaneously displacing parallel lines orthogonal to the axis `, so
that the speed of displacement is proportional to the speed of rotation. So, we have
the following representation of the helicoidal surface of value m in the following
theorem.

Theorem 3.1. A helicoidal surface of value m (in (3.1) is reduces to)

(3.2) Hm (r, θ) =

 rm−1

m−1 cos [(m− 1) θ]− rm+1

m+1 cos [(m+ 1) θ]

− r
m−1

m−1 sin [(m− 1) θ]− rm+1

m+1 sin [(m+ 1) θ]

ϕ (r) + aθ

 ,

is isometric to the rotational surface of value m

(3.3) Rm(rR, θR) =


rm−1
R

m−1 cos [(m− 1) θR]− rm+1
R

m+1 cos [(m+ 1) θR]

− r
m−1
R

m−1 sin [(m− 1) θR]− rm+1
R

m+1 sin [(m+ 1) θR]

ϕR (rR)


by Bour’s theorem, where

ϕ′2R =

[
2 (m+ 1) r2m+1

R + 4mr2m−1R cos (2mθR)
]2

det I

[2 (m+ 1) r2m+1 + 4mr2m−1 cos (2mθ)]
2
G

+
2r2mR sin2 (2mθR)

r4R + 2r2R cos (2mθR) + 1

−r2m−4R

(
r4R − 2r2R cos (2mθR) + 1

)
,

rR =
√
G,

θR = θ +

∫
F

G
dr,

E = r2m−4(r4 − 2r2 cos (2mθ) + 1) + ϕ′2,

F = 2r2m−1 sin (2mθ) + aϕ′,

G = r2m−2(r4 + 2r2 cos (2mθ) + 1) + a2,

m ∈ R− {−1, 1} , r ∈ R+, θ ∈ I ⊂ R, and the pitch a ∈ R+.

Proof. The line element of the the helicoidal surface Hm(r, θ) is

(3.4)
ds2 =

[
r2m−4

(
r4 − 2r2 cos (2mθ) + 1

)
+ ϕ′2

]
dr2

+2
(
2r2m−1 sin (2mθ) + aϕ′

)
drdθ

+
[
r2m−2

(
r4 + 2r2 cos (2mθ) + 1

)
+ a2

]
dθ2.

Helices in Hm(r, θ) are curves defined by r = const.. So curves in Hm(r, θ) that are
orthogonal to helices supply the orthogonality condition F dr+G dθ = 0. Thus, we
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obtain θ = −
∫
F
G dr+ c, where c is constant. Hence if we put θ = θ+

∫
F
G dr, then

curves orthogonal to helices are given by θ = const.. Substituting the equation
dθ = dθ − F

Gdr into the line element (3.4), we have

(3.5) ds2 =
Q

G
dr2 +G dθ

2
,

where Q := det I. Setting r :=
∫ √

Q
G dr, k (r) :=

√
G, (3.5) becomes

(3.6) ds2 = dr2 + k2 (r) dθ
2
.

The rotational surface

(3.7) Rm(rR, θR) =


rm−1
R

m−1 cos [(m− 1) θR]− rm+1
R

m+1 cos [(m+ 1) θR]

− r
m−1
R

m−1 sin [(m− 1) θR]− rm+1
R

m+1 sin [(m+ 1) θR]

ϕR (rR)


has the line element

(3.8) ds2R =
QR

GR
dr2R +GR dθ

2

R,

where

ER = r2m−4R

(
r4R − 2r2R cos (2mθR) + 1

)
+ ϕ′2R,

FR = 2r2m−1R sin (2mθR) ,

GR = r2m−2R (r4R + 2r2R cos (2mθR) + 1).

Again, setting rR :=
∫ √

QR

GR
drR, kR (rR) :=

√
GR, then (3.8) becomes

(3.9) ds2R = dr2R + k2R (rR) dθ
2

R.

Comparing (3.6) with (3.9), if we take r = rR, θ = θR, k (r) = kR (rR) , then we
have an isometry between Hm(r, θ) and Rm(rR, θR). Therefore, it follows that

(3.10)

∫ √
Q

G
dr =

∫ √
QR

GR
drR.

Substituting the equation

drR =
2 (m+ 1) r2m+1 + 4mr2m−1 cos (2mθ)

2 (m+ 1) r2m+1
R + 4mr2m−1R cos (2mθR)

dr

into the (3.10), we get the function ϕR. �

4. Helicoidal surface of value 3

We give the helicoidal surface of value 3 using Bour’s theorem in this section.

Proposition 4.1. A helicoidal surface of value 3 (see Figure 1 a-b)

(3.11) H3 (r, θ) =

 r2

2 cos (2θ)− r4

4 cos (4θ)

− r
2

2 sin (2θ)− r4

4 sin (4θ)
ϕ (r) + aθ

 ,
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is isometric to the rotational surface of value 3

(3.12) R3(rR, θR) =

 G
2 cos

[
2
(
θ +

∫
F
Gdr

)]
− G2

4 cos
[
4
(
θ +

∫
F
Gdr

)]
−G2 sin

[
2
(
θ +

∫
F
Gdr

)]
− G2

4 sin
[
4
(
θ +

∫
F
Gdr

)]
ϕR (rR)

 ,

where

ϕ′2R =

{
8G7/2 + 12G5/2 cos

[
6
(
θ +

∫
F
Gdr

)]}2
det I

[8r7 + 12r5 cos (6θ)]
2
G

+
2G3 sin2

[
6
(
θ +

∫
F
Gdr

)]
G2 + 2G cos

[
6
(
θ +

∫
F
Gdr

)]
+ 1

−G
{
G2 − 2G cos

[
6

(
θ +

∫
F

G
dr

)]
+ 1

}
,

E = r2[r4 − 2r2 cos (6θ) + 1] + ϕ′2,

F = 2r5 sin (6θ) + aϕ′,

G = r4[r4 + 2r2 cos (6θ) + 1] + a2,

det I = EG− F 2, r, a ∈ R+, 0 ≤ θ ≤ 2π.

Proof. Taking m = 3 in the previous theorem, we easily get the results. �

(a) (b)

Figure 1. Helicoidal surface of value 3, ϕ (r) = 2
3r

3 cos (3θ).

Corollary 4.1. When a = 0 and ϕ (r) = 2
3r

3 cos (3θ) in H3 (r, θ) , we obtain the
Bour’s minimal surface B3 (r, θ) (see Figure 2 a-b, and [10] for details).
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(a) (b)

Figure 2. Bour’s minimal surface of value 3, a = 0, ϕ (r) = 2
3r

3 cos (3θ).

Proposition 4.2. The mean curvature and the Gaussian curvature of the helicoidal
surface of value 3 are as follow

H =
1

4 (det I)
3/2
{2r3(r4 − 1)(r8 + 2r6 cos(6θ) + r4 + a2)ϕ′′

+4r4(2r4 + r2 cos 6θ − 1)ϕ′3 − 12ar5 sin(6θ)ϕ′2

+r2[2(r2 + 1)(r8 + r4 + a2) cos(2θ) + (2r2 − 1)(r8 + r4 + a2) cos(4θ)

−2r2(10r8 + 6r6 cos(6θ)− 6r4 + 5a2) cos(6θ)

+3r4(r8 + r4 + a2) cos(8θ)− 16r8 sin2 6θ

+4r6(r2 + 1) cos(2θ) cos(6θ) + 2r6(2r2 − 1) cos(4θ) cos(6θ)

+6r10 cos 6θ cos 8θ + r4
(
13a2 + 2r4 + 5r8 − 3

)
− 7a2]ϕ′

+2(2ar3 + 1)(r8 + r4 + a2) sin(2θ) + r(a+ 2r)(r8 + r4 + a2) sin(4θ)

+2ar3(15r8 − 9r4 + a2) sin(6θ)− 3ar5(r8 + r4 + a2) sin(8θ)

+4r6(2ar3 + 1) sin(2θ) cos(6θ) + 2r7(a+ 2r) sin(4θ) cos(6θ)

−2ar9(2 sin(6θ) + 3r2 sin(8θ)) cos(6θ)}

and

K =
1

(det I)
2 {2ar

5(r4 − 1)
(
r2 cos(6θ)− 2r4 + 1

)
ϕ′′ + 2r8(r4 − 1) sin(6θ)ϕ′ϕ′′

+
1

2
r7[−32r9 + 28r5 − 8r + (−3r4 + 2r2 − 1) sin(2θ) + 2(r2 + 1) sin(4θ)

+2(−3r4 + 1) sin(6θ) + 2(r2 + 1) sin(8θ) + (2r2 − 1) sin(10θ)− 2r2 sin(12θ)

+3r4 sin(14θ) + 16r3(−2r4 + 1) cos(6θ)− 4r5 cos(12θ)]ϕ′2

+r4[8ar5(2r4 − 1) sin(6θ) + 4ar7 sin(12θ) + (−4ar6 − 3ar4 + r3 + 2ar2 + 2a) cos(2θ)

+(−4ar6 + 5ar4 + 3ar2 + r − a) cos(4θ) + a(r4 − 1)r2 cos(6θ)

+(−6ar8 + 2ar4 + ar2 − r) cos(8θ) + (ar4 − r3 − ar2) cos(10θ)

−2ar4 cos(12θ) + 3ar6 cos(14θ) + 6ar8 − 5ar4 + a]ϕ′

−1

2
ar2

(
19ar7 − 7ar3 + 10r2 − 4

)
sin(2θ) + ar2

(
1− 4r4

)
(ar + 1) sin(4θ)

−2a2r5
(
2r4 − 1

)
sin(6θ) + ar4

(
6ar7 − ar3 + 1

)
sin(8θ) +

1

2
ar4 (ar + 2) sin(10θ)

+a2r7 sin(12θ)− 3

2
a2r9 sin(14θ) + 2a2r10 cos(12θ)− 2a2r10}.
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respectively, where det I = EG− F 2, ϕ′ = dϕ
dr , r, a ∈ R+, 0 ≤ θ ≤ 2π.

Proof. Taking the differential with respect to r, θ to the H3, we have

(H3)r =

 r cos (2θ)− r3 cos (4θ)
−r sin (2θ)− r3 sin (4θ)

ϕ′

 .

and

(H3)θ =

 −r2 sin(2θ) + r4 sin(4θ)
−r2 cos(2θ)− r4 cos(4θ)

a

 ,

The coefficients of the first fundamental form of the surface are

E = r2(r4 − 2r2 cos(6θ) + 1) + ϕ′2,

F = 2r5 sin (6θ) + aϕ′,

G = r4
(
r4 + 2r2 cos (6θ) + 1

)
+ a2.

Then we get

det I = r2[r12 − 2r8 + a2r4 + r4 − 2a2r2 cos (6θ) + a2]

−4ar5 sin (6θ)ϕ′ + r4
[
r4 + 2r2 cos (6θ) + 1

]
ϕ′2.

Using the second differentials

(H3)rr =

 cos (2θ)− 3r2 cos (4θ)
− sin (2θ)− 3r2 sin (4θ)

ϕ′′

 ,

(H3)rθ =

 −2r sin(2θ) + 4r3 sin(4θ)
−2r cos(2θ)− 4r3 cos(4θ)

0

 ,

(H3)θθ =

 −2r2 cos(2θ) + 4r4 cos(4θ)
2r2 sin(2θ) + 4r4 sin(4θ)

0

 ,

and the Gauss map (the unit normal)

e =
1√

det I

 −ar(r2 sin (4θ) + sin (2θ)) + r2ϕ′(r2 cos (4θ) + cos (2θ))
ar(r2 cos (4θ)− cos (2θ)) + r2ϕ′(r2 sin (4θ)− sin (2θ))

r7 − r3


of the surface H3, we have the coefficients of the second fundamental form of the
surface as follow

L =
1√

det I
(r3(r4 − 1)ϕ′′ +

1

2
r2(1− 3r4 + 2(1 + r2) cos 2θ

+(−1 + 2r2) cos 4θ − 2r2 cos 6θ + 3r4 cos 8θ)ϕ′

+(1 + 2ar3) sin 2θ +
1

2
r(a+ 2r) sin 4θ

+ar3 sin 6θ − 3

2
ar5 sin 8θ),

M =
1√

det I
2r2((−2r4 + r2 cos 6θ + 1)a+ r3ϕ′ sin 6θ),
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and

N =
1√

det I
2r4(−ar sin 6θ + (2r4 + r2 cos 6θ − 1)ϕ′).

Therefore, we can see the results easily. �

Corollary 4.2. If the helicoidal surface of value 3 is minimal then we get

0 = 2r3(r4 − 1)(r8 + 2r6 cos(6θ) + r4 + a2)ϕ′′

+4r4(2r4 + r2 cos 6θ − 1)ϕ′3 − 12ar5 sin(6θ)ϕ′2

+r2[2(r2 + 1)(r8 + r4 + a2) cos(2θ) + (2r2 − 1)(r8 + r4 + a2) cos(4θ)

−2r2(10r8 + 6r6 cos(6θ)− 6r4 + 5a2) cos(6θ)

+3r4(r8 + r4 + a2) cos(8θ)− 16r8 sin2 6θ

+4r6(r2 + 1) cos(2θ) cos(6θ) + 2r6(2r2 − 1) cos(4θ) cos(6θ)

+6r10 cos 6θ cos 8θ + r4
(
13a2 + 2r4 + 5r8 − 3

)
− 7a2]ϕ′

+2(2ar3 + 1)(r8 + r4 + a2) sin(2θ) + r(a+ 2r)(r8 + r4 + a2) sin(4θ)

+2ar3(15r8 − 9r4 + a2) sin(6θ)− 3ar5(r8 + r4 + a2) sin(8θ)

+4r6(2ar3 + 1) sin(2θ) cos(6θ) + 2r7(a+ 2r) sin(4θ) cos(6θ)

−2ar9(2 sin(6θ) + 3r2 sin(8θ)) cos(6θ)

The solution of the second order ODE as above is an atractive problem.

The author also focuses on the spacelike and timelike helicoidal surfaces of value
m in the Minkowski 3-space L3 in the next papers.
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