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ABSTRACT. In [1], it has shown that if a Riemannian manifold admits a non-
trivial Riemannian submersion with totally geodesic fibers, then it cannot be
isometrically immersed in any Riemannian manifold of non-positive sectional
curvature as a minimal submanifold. In this paper, we consider a nontrivial
Riemannian submersion and investigate some properties on Lagrangian iso-
metric immersions using the submersion invariant.

1. INTRODUCTION

Let M and B be Riemannian manifolds of dimension m and b, respectively. A
surjective map m : M — B is called a Riemannian submersion if it has maximal
rank at any point of M and the differential 7, preserves the length of the horizontal
vectors. A vector field on M is called vertical if it is always tangent to fibers and
horizontal if it is orthogonal to fibers. A vector field X on M is called basic if X
is horizontal and m-related to a vector field X, on B. ie. m. X = X,. Let H and
V be horizontal and vertical distributions. The trivial Riemannian submersion is
the projection of a Riemannian product manifold onto one of its factors which has
totally geodesic horizontal and vertical distributions. In this paper, a Riemannian
manifold M admits a nontrivial Riemannian submersions if there exists a Riemann-
ian submersion m : M — B from M into a Riemannian manifold B such that H
and V are not both totally geodesic distribution.

Let us assume that M"™ admits a Lagrangian isometric immersion ¢ : M — M™
into a Kaehler manifold M™ and we choose a local orthonormal frame €1y ey €y Ehglyees
€n,Je1, ..., Jey such that ey, ..., e, are horizontal vector fields, eyy1, ..., €, are verti-
cal vector fields of M and Je, ..., Je, are normal vector fields of M in M™.

The submersion invariant A, is defined by
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where A is a (1,2) tensor defined as AgF = vV ghF + hVgvF. Also, there is an
another (1,2) tensor T which is defined as T F' = vV ,ghF + hV,gvF. These are
called the fundamental tensor fields or the invariants of a Riemannian submersion
m. In [1], B. Y. Chen obtained

Theorem 1.1. If a Riemannian manifold M"™ admits a nontrivial Riemannian
submersion m : (M™,g) — (B® ¢') with totally geodesic fibers, then it can not
be isometrically immersed in any Riemannian manifold of non-positive sectional
curvature as a minimal submanifold.

In his proof, he found that
. n2 ~
(1.1) A < ZH2 +b(n —b)mazK

where r{laxf? denotes the maximum value of the sectional curvature of the ambient
space M™ restricted to plane sections in 7}, M for an isometric immersion ¢ : M —
M".

In this paper, we mainly derive two inequalities on Riemannian submersion like
(1.1) using the different techniques.

2. MAIN RESULTS

We need the following proposition from the book [4]. Throughout this section,
we assume that = : (M,g) — (B,g¢’) is a Riemannian submersion with totally
geodesic fibers.

Proposition 2.1. Let 7 : (M,g9) — (B,¢') be a Riemannian submersion with
totally geodesic fibers. If M has non-positive sectional curvature, then the horizontal
distribution is integrable and B has mon-positive sectional curvatures. If M has
positive sectional curvatures, then we have the following.

(a) dim M < 2dim B;

(b) B has positive sectional curvature.

In this paper, we define a Riemannian submersion 7 : (M", g) — (B’ ¢') is non-
trivial if the horizontal and vertical distribution are not both integrable. Moreover,
if a Riemannian submersion has totally geodesic fibers, then the vertical distribu-
tion is integrable and it is totally geodesic. So, the horizontal distribution of a
non-trivial Riemannian submersion with totally geodesic fibers is not integrable.

Simply from the above results, we have the following.

Theorem 2.1. Let w: (M™", g) — (B®, ¢') be a non-trivial Riemannian submersion
with totally geodesic fibers. Then
(a) M has positive sectional curvature, and so has B;

(b) dim M < 2dim B.

Proof. The statement (a) and (b) are the immediate result of proposition 2.1 above.
O

We need the following for the next result. If {U,V} is an orthonormal basis of
the vertical 2-plane «, then the sectional curvature of the plane o in T,M, p € M

is K(a) = K(a) + ||[TuV|]? — g(TyU,Ty'V), where K(a) denotes the sectional
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curvature in the fiber through p. If {X,Y} is an orthonormal basis of the hori-
zontal 2-plane v and K'(«’) denotes the sectional curvature in (B, ¢’) of the plane
o' spanned by m,. X, .Y, then K(a) = K'(a/) — 3||AxY|%. Finally, if X € H,
and V' € V, are unit vectors spanning «, the sectional curvature of the plane « is
K(a) = g((VxT)(V,V),X) — ||Tv X||* + |]Ax V||?. Because of our assumption of
totally geodesic fibers, tensor T is identically zero so that we have the following.

Theorem 2.2. Under the same condition in Theorem 2.1, we have

I
1<i<j<b
where T is the scalar curvature of M defined by 7= 3, ., <, K(ei Aej) for an
orthonormal basis eq,...,e, at p € M.

Proof. Since T = 0, the sectional curvature of the plane a spanned by two unit
vectors X € H, and V € V, is K(a) = ||AxV||? so that its submersion invariant
Ar =31 cichpii<a<n ||Ae,ea|]? = > i K(ei Aeq). Furthermore,

Ae=r— Y K43 Y [AeelP— Y Kleanep).

1<i<j<b 1<i<j<b b+1<a<pf<n

But from Theorem 2.1, K’(a/) and K (e, A eg) are all positive so that we have the
result. O

Also, we have another inequality for a Riemannian submersion as below. We say
a plane « is called the mixed plane if it is spanned by a horizontal vector e; and a
vertical vector e, fori=1,....,.band a =b+1,...,n.

Theorem 2.3. Again under the same conditions in the previous theorem and if
¢: M — M is a Lagrangian isometric immersion, then we have another inequality

. .1 1
Az 27 =T +b(n—b)mink — 5(b~ DI HIE ~ Fn—b- DI H|,

where 7 is the scalar curvature and K is the sectional curvature of the mized plane in
_ . b

then ambzznt space and ||H || is d‘eﬁned as HHH]%I =>", ijl(hgj)Q and ||HH% =
St >onepy1 (Mha)? The equality holds iff the second fundamental form satz§ﬁes
hi; = and hg, = A for j =1,..b, a =b+1,...nandr =1,...,n and K is
constant.

Proof. Given an orthonormal basis e, ..., e, of the tangent space T,M,p € M, the
scalar curvature 7 of M at p is defined to be

T(p) = Z K(e; Nej).
1<i<j<n

From the definition of a Riemannain submersion, we can get
Ar = 7(p)=F(0)+Y_ K(eiea)=y (D (hihl=(h)) = Y (hiahhs—(his)®)
i, r=1 1<i<j<b b+1<a<fB<n

However, a part of series becomes

n

DO gk =R+ Y (haahhs — (hg)?)

r=1 1<i<j<b b+l<a<f<n
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= Z( Z (hi1hj; —( 71”]‘)2) + Z (hiihG; — (h:j)Q))

=1 2<j<b 2<i<j<b
n

+Z( Z (Pys1 1P, — (h{,’+1,3)2) + Z (haahis — (hgﬁ)Q))
r=1 b+2<B<n b+2<a<p<n

The first term in the series becomes inequality

n n b b b
Yo > Wk = (i) <0 hnhg; =Y (k) =Y (h))?
r=12<;<b r=1;j=2

j=2 j=2

which means

n n b b b
m2 3 (I = (04 2 =3 3 Huh + 3 ()" 3 (8,

r=12<;<b j=2

Using the same type of inequality for every term in the series we get the following.

=200 (Wil = (R)P) = > (AL — (h)?)

r=1 2<;<b 2<i<j<b
n
O heapiahhg — (i) = > (hhahls — (hig)?)
r=1 b+2<B<n b+2<a<B<n

n b n b b
ZZ +Z (ki Z =D " hbohl Y ()P4 (hd) ...
r=1j=2 Jj=2 j=2 r=1j=3 j=3 =3

>

b
_Zhgfl,bflhz,b""(h2:1,b)2+(h271b - Z by g1 p41h 8+ Z hgﬁﬁf

r=1 r=1b+2<B<n B=b+2
+ > (hb5+16)2)+....—Zh;,l’n,1h2n+(h2 W) (R )2
B=b+2 r=1
%Z [(771)2 4 (he) 24 A [(R 1) 2 (hiy) 1 [(Rb) 24 (Ri3) ] 4 [ (Re) 2+ (Rl ) ).
+[(h£—1,b—1)2+(hgb)2] *% Zl[(hgﬂ,bﬂ)z+(hg+2,b+2)2] +ot [(h£+1,b+1)2+(h2n)2}
+[(h£+2,b+2)2+(hz+3,b+3)2]j|’~-~+[(hg+2 pr2) (B2 e+ (R )2+ (R7)7)

b b
+Z(h%j)2 +Z(h{j)2 +

b+1 -1
+ Z (hyip) B )? + Z (h§+1,3)2 +ot (hZ—Ln)Z + (hp—1, n)2
B=b+2 B=b+2
by using the simple algebraic inequality for all the mixed terms in the series. There-
fore, we now have

b
2“‘2}1% h21) + (hg_1)?
j=3

<.
-
S w

n

Ar 2 7(p) = 7(p) + b(n — b) min K — % D ()% + (R5)*] + o+ [(151)° + (hipy)?)

r=1

+[(hby)? + (h3)%] + o 4 [(R52)% + (hi)*] + oo + [(Bh_15-1)* + (hi)?])
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1 - T ks T T T
) Z (Pbt1.p41) (hb+2,b+2)2}+'"+[(hb+1,b+1)2+(hnn)2]+[(hb+2,b+2)2+(hb+3,b+3)2]
ot (B a,p42)” + ()] oo 4 (1) + (B0)7))
The equality case occurs when hf] = 0 for all ¢ # j and hY; = ... = h}, and
hyi1p41 = =hy, forr=1,..nand K becomes a constant. O

Corollary 2.1. Again under the same conditions in the previous theorem and if
¢ : M — M 1is a Lagrangian isometric immersion, then we have the following
inequality

3 . 1
Ay >7—7F+b(n—bmnK — i(b* D[|H|?

where 7 is the scalar curvature and K is the sectional curvature of the mixed plane
in the ambient space.

Proof. By theorem 2.1, we know n < 2b so that n —b—1 < b—1 which implies the
inequality.
O
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