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GEODESICS ON THE TANGENT SPHERE BUNDLE OF

3-SPHERE

ISMET AYHAN

(Communicated by Cihan ÖZGÜR)

Abstract. The Sasaki Riemann metric gS on the tangent sphere bundle T1S3

of the unit 3-sphere S3 is obtained by using the geodesic polar coordinate of

S3. The connection coefficients of the Levi Civita connection of the Sasaki

Riemann manifold
(
T1S3, gS

)
are found. Furthermore, a system of differential

equations which gives all geodesics of Sasaki Riemann manifold is obtained.

1. Introduction

The unit 3-sphere and its tangent sphere bundle are important issues of the
differential geometry which have attracted the interest of physicists as well as
mathematicians.

The unit 3 sphere has been considered as non-relativistic closed universe model
by physicists [7]. According to this model, the universe has expanded since Big
Bang and this expansion will continue until Big Crunch.

In [5], U. Pincall considered Hopf tori in S3 which is the inverse image of the
closed curves on S2 by helping the Hopf projection p : S3 → S2.

In [6], Sasaki classified geodesics on the tangent sphere bundles of the unit n-
sphere Sn and the hyperbolic n-space Hn by using Sasaki metric on T1S

n and
T1H

n. Moreover, he obtained geodesics of horizontal, vertical and oblique types on
the tangent sphere bundles of the unit 3-sphere and the unit hyperbolic 2-space.

In [1], Klingenberg and Sasaki obtained the Sasaki Riemann metric on T1S
2

by using the geodesic polar coordinate of S2, and they indicated that the unit
vector fields which make a constant angle with the geodesic circles of unit sphere
S2 constitute geodesics of T1S

2.
In [2] and [3], P. T. Nagy expanded the studies in this field from space forms to

Riemann manifolds. He defined a new metric on the tangent sphere bundle of a
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Riemann manifold and examined the geometry of the tangent sphere bundle of the
Riemann manifold with respect to this new metric.

In this paper, the Sasaki Riemann metric gS on the tangent sphere bundle T1S
3

of the unit 3 sphere S3 is obtained by using the geodesic polar coordinates of S3.
The connection coefficients of the Levi Civita connection of the Sasaki Riemann
manifold

(
T1S

3, gS
)

are calculated. Furthermore, a system of differential equations

which gives all geodesics on
(
T1S

3, gS
)

is obtained.

2. The Riemann Manifold
(
S3, g

)
This section has been developed by using [2], [4], and [6]. This section consists of

some subjects as the representation with respect to the geodesic polar coordinates
of the unit 3 sphere, the induced Riemann metric on S3, the basis vectors of the
tangent vector space at any point of S3, the Christoffel symbols of S3, and the
differential equations system which gives all geodesics of S3.

Let < , > be positive definite, symmetric, bilinear form in 4 dimensional
Euclidean space E4 defined by

(2.1) < u, v >= u1v1 + u2v2 + u3v3 + u4v4,

for any vectors u, v ∈ E4. S3 is a surface in E4 given by

(2.2) S3 =
{
u = (x1, x2, x3, x4) :< u, u >= 1, u ∈ E4

}
.

S3 is called as the unit 3 sphere in E4. The unit 3 sphere is given by the following
equation

(2.3) x21 + x22 + x23 + x24 = 1,

with respect to Cartesian coordinate system. The unit 3 sphere is also represented
by

x1 = sinω sin a cos θ,

x2 = sinω sin a sin θ,(2.4)

x3 = sinω cos a,

x4 = cosω,

with respect to the geodesic polar coordinate of S3 if a curve on S3 is described by
giving the following coordinates as a function of a single parameter t.

(2.5)
a = a(t),
θ = θ(t),
ω = ω(t).

In order to find the arc length between infinitely close two points on the unit 3-
sphere, the covariant derivations of x1, x2, x3, x4 is used, given by

dx1 = cosω sin a cos θdω + sinω cos a cos θda− sinω sin a sin θdθ,

dx2 = cosω sin a sin θdω + sinω cos a sin θda+ sinω sin a cos θdθ,(2.6)

dx3 = cosω cos adω − sinω sin ada,

dx4 = − sinωdω.
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The arc length between infinitely close two points on the surface S3

(i.e. (x1, x2, x3, x4) and (x1 + dx1, x2 + dx2, x3 + dx3, x4 + dx4) is calculated by

(2.7)
ds2 =< (dx1, dx2, dx3, dx4), (dx1, dx2, dx3, dx4) >

= (dx1)
2

+ (dx2)
2

+ (dx3)
2

+ (dx4)
2
.

By using the (2.6), we get for ds2 the following:

(2.8) ds2 = dω2 + sin2 ω
(
da2 + sin2 adθ2

)
,

and also the matrix representation of the equation in (2.8)

(2.9) (gik) :

 sin2 ω 0 0
0 sin2 ω sin2 a 0
0 0 1

 ,

where (gik) , for i, k ∈ {a, θ, ω} is called as induced metric on S3 from E4. The
inverse matrix of (gik) is given by

(2.10)
(
gkj
)

:

 1
sin2 ω

0 0
0 1

sin2 a sin2 ω
0

0 0 1

 .

Let e1(a, θ, ω) be any point on the surface S3 given by

(2.11) e1(a, θ, ω) = (sinω sin a cos θ, sinω sin a sin θ, sinω cos a, cosω) ,

with respect to standard orthonormal basis of E4. Since the orthogonal curves on
the surface S3 is described by a = a(t), θ = θ(t) and ω = ω(t), the unit tangent
vectors of orthogonal curves passing through the point e1(a, θ, ω) on the surface S3

can be defined by

(2.12) f2 =
∂

∂ω
, f3 =

1

sinω

∂

∂a
, f4 =

1

sinω sin a

∂

∂θ
.

Moreover, the local expressions of the unit tangent vectors f2, f3 and f4 at the
point e1(a, θ, ω) on the surface S3 are also given by

f2(a, θ, ω) = (cosω sin a cos θ, cosω sin a sin θ, cosω cos a,− sinω),

f3(a, θ, ω) = (cos a cos θ, cos a sin θ,− cos a, 0),(2.13)

f4(a, θ, ω) = (− sin θ, cos θ, 0, 0) ,

with respect to standard orthonormal basis of E4. Thus f2, f3, f4 are the basis
vectors of tangent vector space at any point e1(a, θ, ω) on S3.

Definition 2.1. Let S3 be the unit 3 sphere in 4-dimensional Euclidean space and
let Te1S

3 be the tangent vector space consisting of the unit tangent vectors at a
point e1(a, θ, ω) on S3. g is a real valuable function on Te1S

3 defined by

(2.14)
g : Te1S

3 × Te1S3 → IR
(X,Y ) → g (X,Y ) = XT (gik)Y,

where (gik) , i, k ∈ {a, θ, ω} is the matrix which corresponds to the metric g given
by (2.9). Since g is positive definite, symmetric and bilinear, g must be called as
induced Riemann metric on S3 from E4.



GEODESICS ON THE TANGENT SPHERE BUNDLE OF 3-SPHERE 103

Theorem 2.1. Let S3 be the unit 3 sphere in 4-dimensional Euclidean space and
let {e1, f2, f3, f4} be another orthonormal basis in Euclidean space E4. The covari-
ant derivations of e1, f2, f3, f4 are given by

de1 = dωf2 + sinωdaf3 + sinω sin adθf4,

df2 = −dωe1 + cosωdaf3 + cosω sin adθf4,

df3 = − sinωdae1 − cosωdaf2 + cos adθf4,

df4 = − sinω sin adθe1 − cosω sin adθf2 − cos adθf3.

Proof. We can use the covariant derivations of orthonormal vectors e1, f2, f3, f4 in
order to examine the change of the basis vectors on a point in the other infinite
closer of each point e1(a, θ, ω) on S3. The covariant derivatives of these vectors are
calculated by using the partial derivation operation as follows:

de1 =
∂e1
∂a

da+
∂e1
∂θ

dθ +
∂e1
∂ω

dω = dωf2 + sinωdaf3 + sinω sin adθf4,

df2 =
∂f2
∂a

da+
∂f2
∂θ

dθ +
∂f2
∂ω

dω = −dωe1 + cosωdaf3 + cosω sin adθf4,

df3 =
∂f3
∂a

da+
∂f3
∂θ

dθ +
∂f3
∂ω

dω = − sinωdae1 − cosωdaf2 + cos adθf4,

df4 =
∂f4
∂a

da+
∂f4
∂θ

dθ +
∂f4
∂ω

dω = − sinω sin adθe1 − cosω sin adθf2 − cos adθf3.

�

Theorem 2.2. Let
(
S3, g

)
be Riemann manifold. Let D be Levi Civita connection

of
(
S3, g

)
and let φkij ; i, j, k ∈ {a, θ, ω} be Christoffel symbols related to the Riemann

metric g. Then the non-zero the Christoffel symbols of
(
S3, g

)
are given by

φωaa = − sinω cosω, φθaθ = cot a, φaaω = cotω,
φaθθ = − sin a cos a, φωθθ = − sinω cosω sin2 a, φθθω = cotω,

where φkij = φkji for all i, j, k ∈ {a, θ, ω}.

Proof. On the Riemann manifold
(
S3, g

)
, there is a unique connection D such that

D is torsion free and compatible with the Riemann metric g. This connection is
called as Levi Civita connection and characterized by the Kozsul formula:

2g (D∂a∂θ, ∂ω) = ∂ag (∂θ, ∂ω) + ∂θg (∂ω, ∂a)− ∂ωg (∂a, ∂θ)

−g ([∂a, ∂θ] , ∂ω) + g ([∂θ, ∂ω] , ∂a) + g ([∂ω, ∂a] , ∂θ) ,

where ∂a = ∂
∂a , ∂θ = ∂

∂θ and ∂ω = ∂
∂ω . Since D is symmetric, [∂a, ∂θ] , [∂θ, ∂ω] and

[∂ω, ∂a] must be zero. If we get D∂a∂θ = φaaθ∂a+φθaθ∂θ+φωaθ∂ω, Christoffel symbols
are obtained by

φaaθ =
1

2
gam (∂agmθ + ∂θgam − ∂mgaθ) = 0,

φθaθ =
1

2
gθm (∂agmθ + ∂θgam − ∂mgaθ) = cot a,

φωaθ =
1

2
gωm (∂agmθ + ∂θgam − ∂mgaθ) = 0, for m ∈ {a, θ, ω}.

The other Christoffel symbols can be obtained by using the similar method. �
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Theorem 2.3. Let
(
S3, g

)
be Riemann manifold and let

c : t ∈ R → c(t) = (a(t), θ(t), ω(t)) be a curve on S3. c is geodesic if and only
if the following second order differential equations are provided:

··
a− sinh a cosh aθ̇2 + 2 cotωȧω̇ = 0,

··
θ + 2 cot aȧθ̇ + 2 cotωθ̇ω̇ = 0,

··
ω − sinω cosωȧ2 − sinω cosω sin2 aθ̇2 = 0.

Proof. c(t) = (a(t), θ(t), ω(t)) is geodesic if and only if Dċċ is zero. Since ċ is equal

to ȧ∂a + θ̇∂θ + ω̇∂ω, Dċċ must be equal to:

Dȧ∂a

(
ȧ∂a + θ̇∂θ + ω̇∂ω

)
+Dθ̇∂θ

(
ȧ∂a + θ̇∂θ + ω̇∂ω

)
+Dω̇∂ω

(
ȧ∂a + θ̇∂θ + ω̇∂ω

)
.

If we calculate Dċċ in the following way:

Dċċ =
(
··
a− sinh a cosh aθ̇2 + 2 cotωȧω̇

)
∂a

+

(
··
θ + 2 cot aȧθ̇ + 2 cotωθ̇ω̇

)
∂θ

+
(
··
ω − sinω cosωȧ2 − sinω cosω sin2 aθ̇2

)
∂ω,

it can be seen easily that the claim of the theorem is correct. �

3. The Sasaki Riemann Manifold
(
T1S

3, gS
)

This section consists of some subjects as the expression with the local coordinate
function of any point on T1S

3, the orthonormal basis at any point on T1S
3, the

covariant derivations of this orthonormal basis elements, the Sasaki Riemann metric
gS on T1S

3, the adapted basis and dual basis vectors on T1S
3 with respect to

gS , the coefficients of the Levi Civita connection of the Sasaki Riemann manifold(
T1S

3, gS
)
, and a system of the differential equations which gives all geodesics of

the Sasaki Riemann manifold..

Let T1S
3 = ∪

∀e1∈S3
Te1S

3 be the disjoint union of the tangent vector spaces in-

cluding all unit tangent vectors at every point of S3. Then T1S
3 is called as the

tangent sphere bundle of S3. Since S3 has 3-dimensional manifold structure, T1S
3

should be 5 dimensional manifold structure. Let π : T1S
3 → S3 be a canonical

projection map. Assuming that e2 is an element of T1S
3 at the point e1(a, θ, ω)

of S3. At the same time, e2 may be considered as a tangent vector in the tangent
vector space spanned by the orthonormal frame {f2, f3, f4} at the point e1(a, θ, ω)
of S3. If we denote the angle between f4 and e2 by δ and the angle between f2 and
the projected vector of e2 to the tangent plane spanned by the vectors f2 and f3
by ϕ, then (a, θ, ω, ϕ, δ) can be considered as local coordinates for e2 in π−1(S3).
Therefore, e2, e3 and e4 have the following local expression:

e2(a, θ, ω, ϕ, δ) = cosϕ sin δf2 + sinϕ sin δf3 + cos δf4,

e3(a, θ, ω, ϕ, δ) = cosϕ cos δf2 + sinϕ cos δf3 − sin δf4,(3.1)

e4 (a, θ, ω, ϕ, δ) = − sinϕf2 + cosϕf3,
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where e3 = ∂
∂δ and e4 = 1

sin δ
∂
∂ϕ are considered as the unit tangent vectors at any

point (e1, e2) of T1S
3 or elements of T1S

3. We assume that e1, e2, e3, e4 are the unit
orthogonal elements of T1S

3.

Theorem 3.1. Let T1S
3 be the tangent sphere bundle of the unit 3 sphere in 4

dimensional Euclidean space and let e1, e2, e3, e4 be the unit orthogonal elements
of T1S

3. The covariant derivations of these elements are given by

de1 = w12e2 + w13e3 + w14e4,

de2 = −w12e1 + w23e3 + w24e4,

de3 = −w13e1 − w23e2 + w34e4,

de4 = −w14e1 − w24e2 − w34e3,

where

w12 = sinhω sinϕ sin δda+ sinω sin a cos δdθ + cosϕ sin δdω,

w13 = sinhω sinϕ cos δda+ sinω sin a sin δdθ + cosϕ cos δdω,

w14 = sinhω cosϕda− sinϕdω,

w23 = (− sin a cosω cosϕ− cos a sinϕ) dθ + dδ,

w24 = cosω sin δda+ (sin a cosω sinϕ cos δ − cos a cosϕ cos δ) dθ + sin δdϕ,

w34 = cosω cos δda− (sin a cosω sinϕ sin δ − cos a cosϕ sin δ) dθ + cos δdϕ.

Proof. We can use the covariant derivations of the unit orthogonal elements e1, e2,
e3, e4 in order to examine the change between infinitely close two points on T1S

3.
The covariant derivatives of these elements can be obtained by using the partial
derivation easily. �

Definition 3.1. The 1-forms providing the equation wij =< dei, ej > for
i, j ∈ {1, 2, 3, 4} are called as the connection 1-forms on the cotangent space
T ∗(e1,e2)T1S

3.

Theorem 3.2. The square of line element between infinitely close two points on
T1S

3 is given by

(3.2)
dσ2 = da2 + dθ2 + dω2 + dϕ2 + dδ2 + 2 cosωdadϕ

− 2 (cos a sinϕ+ sin a cosω cosϕ) dθdδ.

Proof. From the study in [1] with analogy, we obtained the square of the line
element between infinitely close two points on T1S

3 as follow:

dσ2 = < de1, de1 > + < de2, e3 >
2 + < de2, e4 >

2 + < de3, e4 >
2

= w12 ∧ w12 + w13 ∧ w13 + w14 ∧ w14 + w23 ∧ w23 + w24 ∧ w24 + w34 ∧ w34

= −da2 + dθ2 + dω2 + dϕ2 + dδ2 + 2 cosωdadϕ

−2 (cos a sinϕ+ sin a cosω cosϕ) dθdδ.

�
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The square of the line element between infinitely close two points on T1S
3 has

the matrix representation as follows:

(3.3) gαβ :


1 0 0 cosω 0
0 1 0 0 −A
0 0 1 0 0

cosω 0 0 1 0
0 −A 0 0 1

 for α, β ∈ {a, θ, ω, ϕ, δ}

where A = cos a sinϕ+ sin a cosω cosϕ. The inverse matrix of gαβ is given by

(3.4) gβα :


csc2 ω 0 0 − cosω csc2 ω 0

0 1
1−A2 0 0 A

1−A2

0 0 1 0 0
− cosω csc2 ω 0 0 csc2 ω 0

0 A
1−A2 0 0 1

1−A2

 .

Definition 3.2. gS , which has the components gαβ for α, β ∈ {a, θ, ω, ϕ, δ}, is
called as induced metric on the manifold T1S

3. The characteristic vectors of matrix
(gαβ) which has type 5x5 are base vectors of the tangent vector space at point
(e1, e2) of T1S

3 defined by

ξ1 =
1√
2

1

1− cosω
(∂a + ∂ϕ) ,

ξ2 =
1√
2

1

1 + cosω
(−∂a + ∂ϕ) ,

ξ3 = ∂ω,

ξ4 =
1√
2

1

1− cosω sin a cosϕ− cos a sinϕ
(∂θ + ∂δ) ,

ξ5 =
1√
2

1

1 + cosω sin a cosϕ− cos a sinϕ
(−∂θ + ∂δ) ,

where ∂k = ∂
∂k for k ∈ {a, θ, ω, ϕ, δ}. ξi; i ∈ {1, 2, 3, 4, 5} is called as adapted basis

vector of the tangent space T(e1,e2)T1S
3 with respect to the induced metric gS . If

the 1-form ηi; i ∈ {1, 2, 3, 4, 5} provides the following equation:

(3.5) ηi(ξj) = gS (ξi, ξj) = δij

1-form ηi is called as adapted dual basis vector of the cotangent space T ∗(e1,e2)T1S
3

with respect to the induced metric gS .The local expressions of 1-form ηi are given
by

η1 =
1√
2

(1− cosω) (da+ dϕ) ,

η2 =
1√
2

(1 + cosω) (−da+ dϕ) ,

η3 = dω,(3.6)

η4 =
1√
2

(1− cosω sin a cosϕ− cos a sinϕ) (dθ + dδ) ,

η5 =
1√
2

(1 + cosω sin a cosϕ− cos a sinϕ) (−dθ + dδ) .
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Theorem 3.3. Let T1S
3 be the tangent sphere bundle of the unit 3 sphere and

let T(e1,e2)T1S
3 be a tangent vector space at any point (e1, e2) on T1S

3. gS, a

real valuable function on T(e1,e2)T1S
3, is a Riemann metric on the manifold T1S

3

defined by

(3.7)
gS : T(e1,e2)T1S

3 × T(e1,e2)T1S3 → IR
(X,Y ) → gS (X,Y ) .

Proof. Let
∼
X = xiξi,

∼
Y = yjξj and

∼
Z = zkξk for i, j, k ∈ {1, 2, 3, 4, 5} be the unit

tangent vectors at any point on T1S
3 where {ξ1, ξ2, ξ3, ξ4, ξ5} is adapted basis of

T(e1,e2)T1S
3. For all

∼
X,
∼
Y ,
∼
Z ∈ T(e1,e2)T1S3 and α, β ∈ IR, we get

gS(α
∼
X + β

∼
Y ,
∼
Z) = gS(

{
α
[
xiξi

]
+ β

[
yiξi

]}
, zjξj)

= αxiziεi + βyiziεi

= αgS(
∼
X,
∼
Z) + βgS(

∼
Y ,
∼
Z).

Similarly, we get gS(
∼
X,α

∼
Y + β

∼
Z) = αgS(

∼
X,
∼
Y ) + βgS(

∼
X,
∼
Z). Thus, gS is bilinear

transformation. Since the following equality is held

gS(
∼
X,
∼
Y ) = gS(xiξi, y

jξj) = yixiεi = gS(
∼
Y ,
∼
X).

gS must be symmetric map. Finally, gS is a positive definite map because gS

provides the following identities:

gS(
∼
X,
∼
X) = 0 if and only if

∼
X = 0 ∨ gS(

∼
X,
∼
X) > 0 for every

∼
X 6= 0.

Since gS is positive definite, symmetric and bilinear form, gS must a Riemann
metric on the tangent sphere bundle T1S

3. Thus, gS is called as the Sasaki Riemann
metric. Moreover,

(
T1S

3, gS
)

is also called as Sasaki Riemann manifold. �

Theorem 3.4. Let
(
T1S

3, gS
)

be the Sasaki Riemann manifold. Let be Levi Civita

connection of
(
T1S

3, gS
)

and let Γγαβ ;α, β, γ ∈ {a, θ, ω, ϕ, δ} be the connection coef-

ficients of the Levi Civita connection (i.e. Christoffel symbols) related to the matrix
(gαβ), α, β ∈ {a, θ, ω, ϕ, δ}which corresponds to the Sasaki Riemann metric gS.
Then the non-zero the Christoffel symbols of

(
T1S

3, gS
)

are given by

Γaaω =
1

2
cotω,Γaθδ = −1

2
csc2 ω (Aa + cosωAϕ) ,Γaωϕ = −1

2
cscω,

Γθaθ = − A

2 (1−A2)
Aa,Γ

θ
aδ =

1

2 (1−A2)
Aa,Γ

θ
θω = − A

2 (1−A2)
Aω,

Γθθϕ = − A

2 (1−A2)
Aϕ,Γ

θ
ωδ =

1

2 (1−A2)
Aω,Γ

θ
ϕδ =

1

2 (1−A2)
Aϕ,

Γωaϕ = −1

2
sinω,Γωθδ = −1

2
Aω,Γ

ϕ
aω = −1

2
cscω,

Γϕθδ =
1

2
csc2 ω (cosωAa −Aϕ) ,Γϕωϕ =

1

2
cotω,Γδaθ =

1

2 (1−A2)
Aa,

Γδaδ = − A

2 (1−A2)
Aa,Γ

δ
θω =

1

2 (1−A2)
Aω,Γ

δ
θϕ =

1

2 (1−A2)
Aϕ,

Γδωδ = − A

2 (1−A2)
Aω,Γ

δ
ϕδ = − A

2 (1−A2)
Aϕ.
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where Γγαβ = Γγβα for all α, β, γ ∈ {a, θ, ω, ϕ, δ} and Ak = ∂A
∂k for k ∈ {a, θ, ω, ϕ, δ} .

Proof. On the Sasaki Riemann manifold
(
T1S

3, gS
)
, there is a unique connection ∇

such that∇ is torsion free and compatible with Riemann metric gS . This connection
is called Levi Civita connection and characterized by the Kozsul formula:

2gS (∇∂a∂θ, ∂ω) = ∂ag
S (∂θ, ∂ω) + ∂θg

S (∂ω, ∂a)− ∂ωgS (∂a, ∂θ) +

−gS ([∂a, ∂θ] , ∂ω) + gS ([∂θ, ∂ω] , ∂a) + gS ([∂ω, ∂a] , ∂θ)

where ∂a = ∂
∂a , ∂θ = ∂

∂θ , ∂ω = ∂
∂ω , ∂ϕ = ∂

∂ϕ and ∂δ = ∂
∂δ . Since Levi Civita

connection ∇ is symmetric, [∂a, ∂θ] , [∂θ, ∂ω] , [∂ω, ∂a] must be zero. By using the
following identity:

∇∂a∂θ = Γaaθ∂a + Γθaθ∂θ + Γωaθ∂ω + Γϕaθ∂ϕ + Γδaθ∂δ,

and Kozsul formula, Christoffel symbols are obtained by

Γaaθ =
1

2
gak (∂agkθ + ∂θgak − ∂kgaθ) = 0,

Γθaθ =
1

2
gθk (∂agkθ + ∂θgak − ∂kgaθ) = − A

2 (1−A2)
Aa,

Γωaθ =
1

2
gωk (∂agkθ + ∂θgak − ∂kgaθ) = 0,

Γϕaθ =
1

2
gϕk (∂agkθ + ∂θgak − ∂kgaθ) = 0,

Γδaθ =
1

2
gδk (∂agkθ + ∂θgak − ∂kgaθ) =

1

2 (1−A2)
Aa, for k ∈ {a, θ, ω, ϕ, δ}.

The other Christoffel symbols can be obtained by using the similar method. �

Theorem 3.5. Let
(
T1S

3, gS
)

be the Sasaki Riemann manifold and
c : t ∈ R → c(t) = (a(t), θ(t), ω(t), ϕ(t), δ(t)) be a curve on the tangent sphere
bundle. c is geodesic if and only if the following second order differential equations
are provided:

··
a+ cotωȧω̇ − csc2 ω (Aa + cosωAϕ) θ̇δ̇ − cscωω̇ϕ̇ = 0,

··
θ − 1

1−A2

{
AAaȧθ̇ +Aaȧδ̇ −AAω θ̇ω̇ −AAϕθ̇ϕ̇+Aωω̇δ̇ +Aϕϕ̇δ̇

}
= 0,

··
ω − sinωȧϕ̇−Aω θ̇δ̇ = 0,

··
ϕ− csc2 ωȧω̇ + csc2 ω (cosωAa −Aϕ) θ̇δ̇ + cotωω̇ϕ̇ = 0,

··
δ +

1

1−A2

{
Aaȧθ̇ −AAaȧδ̇ +Aω θ̇ω̇ +Aϕθ̇ϕ̇−AAωω̇δ̇ −AAϕϕ̇δ̇

}
= 0.

Proof. c(t) = (a(t), θ(t), ω(t), ϕ(t), δ(t)) is geodesic if and only if ∇ċċ is zero. Since

ċ is equal to ȧ∂a + θ̇∂θ + ω̇∂ω + ϕ̇∂ϕ + δ̇∂δ, ∇ċċ is equal to:

∇ȧ∂a
(
ȧ∂a + θ̇∂θ + ω̇∂ω + ϕ̇∂ϕ + δ̇∂δ

)
+∇θ̇∂θ

(
ȧ∂a + θ̇∂θ + ω̇∂ω + ϕ̇∂ϕ + δ̇∂δ

)
+∇ω̇∂ω

(
ȧ∂a + θ̇∂θ + ω̇∂ω + ϕ̇∂ϕ + δ̇∂δ

)
+∇ϕ̇∂ϕ

(
ȧ∂a + θ̇∂θ + ω̇∂ω + ϕ̇∂ϕ

)
+∇ϕ̇∂ϕ

(
δ̇∂δ

)
+∇δ̇∂δ

(
ȧ∂a + θ̇∂θ + ω̇∂ω + ϕ̇∂ϕ + δ̇∂δ

)
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Therefore we get

∇ċċ =
··
a∂a + ȧθ̇

(
− AAa

1−A2
∂θ +

Aa
1−A2

∂δ

)
+ ȧω̇ (cotω∂a − cscω∂ϕ)

+ȧϕ̇ (− sinω∂ω) + ȧδ̇

(
− AAa

1−A2
∂δ

)
+
··
θ∂θ

+θ̇ω̇

(
− AAω

1−A2
∂θ +

Aω
1−A2

∂δ

)
+ θ̇ϕ̇

(
− AAϕ

1−A2
∂θ +

Aϕ
1−A2

∂δ

)
+θ̇δ̇

{
−Aω∂ω + csc2 ω (cosωAa −Aϕ) ∂ϕ

}
+
··
ω∂ω

+ω̇ϕ̇ (− cscω∂a + cotω∂ϕ) + ω̇δ̇

(
Aω

1−A2
∂θ −

AAω
1−A2

∂δ

)
+
··
ϕ∂ϕ + ϕ̇δ̇

(
Aϕ

1−A2
∂θ −

AAϕ
1−A2

∂δ

)
+
··
δ∂δ

If we arrange ∇ċċ in the following way:(
··
a+ cotωȧω̇ − csc2 ω (Aa + cosωAϕ) θ̇δ̇ − cscωω̇ϕ̇

)
∂a

+

{
··
θ − 1

1−A2

(
AAaȧθ̇ +Aaȧδ̇ −AAω θ̇ω̇ −AAϕθ̇ϕ̇+Aωω̇δ̇ +Aϕϕ̇δ̇

)}
∂θ

+
(
··
ω − sinωȧϕ̇−Aω θ̇δ̇

)
∂ω

+
{
··
ϕ− csc2 ωȧω̇ + csc2 ω (cosωAa −Aϕ) θ̇δ̇ + cotωω̇ϕ̇

}
∂ϕ

+

{
··
δ +

1

1−A2

(
Aaȧθ̇ −AAaȧδ̇ +Aω θ̇ω̇ +Aϕθ̇ϕ̇−AAωω̇δ̇ −AAϕϕ̇δ̇

)}
∂δ,

it can be seen that the claim of the theorem is true straightforwardly. �
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