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DECOMPOSITIONS OF SOME FORMS OF CONTINUITY

A. ACIKGOZ AND S. YUKSEL

ABSTRACT. In this paper, ay N3 —sets [3] and ay N5 — sets [3] are introduced
and characterizations of & — I — open [6], semi — I — open [6], ay N3 — and oy
N5 — sets are investigated. Also, new decompositions of a — I — continuity and
semi — I — continuity are obtained using these sets.

1. Introduction

Quite recently, Acikgoz and Yuksel [3] have introduced I - R closed sets and
obtained a decomposition of continuity. Acikgoz et al. [1], [2] investigated some
properties of a— I - open sets and obtained decompositions of a— I - continuity
and semi - I - continuity.

The purpose of this paper is to introduce a; N3 — sets and a; N5 — sets via
idealization and investigate characterizations of a — I — open, semi — I — open, aj
N3 — and a; N5 — sets and also, to obtain new decompositions of a — I — continuity
and semi — I — continuity using these sets.

2. Preliminaries

Throughout this paper C1(A) and Int(A) denote the closure and the interior of
A respectively. Let (X,7) be a topological space and let I be an ideal of subsets
of X. An ideal is defined as a nonempty collection I of subsets of X satisfying the
following two conditions: (1) If A€ I and B C A, then Be I; (2) If A€ I and Be I,
then AUBE I. An ideal topological space is a topological space (X,7) with an ideal
I on X and is denoted by (X, 7, I). For a subset ACX, A* (I) = {xeX : UnA¢ I for
each neighborhood U of x} is called the local function of A with respect to I and
7 [10]. We simply write A* instead of A*(I) since there is no chance for confusion.
X* is often a proper subset of X. The hypothesis

X = X* [9] is equivalent to the hypothesis 7 NI = @ [13]. The ideal topological
space which satisfies this hypothesis is called a Hayashi — Samuels space [10]. For
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22 A. ACIKGOZ AND S. YUKSEL

every ideal topological space (X, 7, I), there exists a topology 7*(I), finer than 7,
generated by 5 (I,7) = {U \ I: Ue 7 and I€ I}, but in general § (I,7) is not always
a topology [10]. Additionally, C1*(A)=AUA* defines a Kuratowski closure operator
for 7*(I).

First we shall recall some definitions used in the sequel.

Definition 2.1. A subset A of an ideal topological space (X, 7, I) is said to be

a — I - open [6] if A C Int(Cl*(Int(A))),

pre — I — open [4] if A C Int(Cl1*(A)),

semi — I — open [6] if A C CI*(Int(A)),

d — I - open [2] if Int(CI*(A)) C Cl*(Int(A)),
strong 8 — I — open [8] if A C CI*(Int(CI*(A))),
t — I - set [6] if Int(A) = Int(CI*(A)),

T*- dense set [9] if X = CI*(A),

The family of all @« — I — open ( resp. pre — I — open, semi — I — open, strong
B — 1 — open ) sets in an ideal topological space (X, 7, I) is denoted by «IO (X,7)
(resp. PIO (X,7), SIO (X,7), SAI0 (X,7) ).

Definition 2.2. A subset A of an ideal topological space (X, 7, I) is said to be

(1) a semi — I — closed [7] if Int(CI*(A)) C A,
(2) a weakly I — locally — closed set [11] if A = U NV, where U is open and V
is 7*—closed,
(3) aB; — set [6] if A =U NV, where U is open and V is a t — I — set.
The family of all semi — I — closed ( resp. weakly I —locally — closed, B; — ) sets
in an ideal topological space (X, 7, I) is denoted by SIC (X,7) ( resp. W;LC (X,7),
B; (X,7)).

Definition 2.3. A subset A of an ideal topological space (X, 7, I) is said to be a
nowhere T*- dense set if Int*(Cl(A))=0, where Int*(A) denotes the interior of A
with respect to 7*.

Theorem 2.4. A subset A of a space (X, T, I) is semi - I - closed if and only if
Int(Cl*(A)) = Int(A).

Proof. Necessity. Let A be semi - I - closed. Then we have Int(CI1*(A)) C A. Then
Int(C1*(A)) C Int(A) and hence Int(Cl*(A)) C Int(A).
The sufficiency is clear. ([l

Corollary 1. Let A be a subset of an ideal topological space (X, T, I). A is a semi
— I - closed set if and only if A = A U Int(CI*(A)).

Proof. The necessity is clear as seen in Theorem 1.
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Sufficiency.
Int(Cl*(B) = Int(Cl*(AU Int(Cl*(A))))
C  Int(CI*(A) U Int(Cl* (Int(Cl*(A))))
= Int(Cl*(A) C AUInt(Ci*(A)) = B.
Thus we obtain that Int(C1*(B)) C B and hence B = A U Int(CI*(A)) is semi - I -
closed. (]

Definition 2.5. A subset A of a space (X, 7, I) is said to be f— I - closed if its
complement is — I - open.

The family of all 8 — I — closed sets in an ideal topological space (X, 7, I) is
denoted by SIC (X,7).

Theorem 2.6. Let A be subset of an ideal topological space (X, T, I). Then, If A
is B— I - closed, then Int(Cl*(Int(A))) C A.

Proof. Since A is f— I - closed, X - A€ BIO (X,r). Since 7*(I) is finer than 7, we
have
X—-A C Cl(Int(Cl"(X — A)))
C Cl(Int(Cl(X — A)))
= X —Int(Ci(Int(A)))
C X — Int(Cl*(Int(A))).
Therefore, we obtain Int(Cl*(Int(A))) C A. O

3. ay N3 — sets

Proposition 1. Every semi - I - closed set of an ideal topological space is B— I -
closed.

Proof. Let A be semi - I - closed. Then we have Int(CI*(A))CA.
Then Int(CI*(Int(A)))CInt(Cl*(A))CA and hence Int(Cl*(Int(A)))CA. O

Remark 3.1. The converses of Proposition 1 need not be true as shown in the
following example.

Example 3.2. Let X = {1, 2, 3, 4}, 7 = {0, X, {1, 2}, {4}, {1, 2, 4}} and I =
{D, {3}}. Then A = {2, 3, 4} is a B— I - closed set, but not semi - I - closed. For,
Int(Cl*(Int(A))) = Int(CI*(Int({2, 3, 4}))) = Int(C1*({4})) = Int(({4})* U {4}) =
Int({3, 4} U {4}) = Int({3, 4}) = {4} and hence Int(Cl*(Int({2, 3, 4}))) = {4} C
{2, 3, 4} = A. This shows that A is a §— I - closed set. But A is not a semi - I
- closed. For Int(Cl*(A)) = Int(CI*({2, 3, 4})) = Int(({2, 3, 4})* U {2, 3, 4}) =
Int(X U {2, 3, 4}) = Int(X) = X ¢ {2, 3, 4} = A and Int(Cl*(A)) ¢ A.

Lemma 3.3. (Acikgoz et. al [1]). Let (X, 7, I) be an ideal topological space and
A a subset of X. Then the following properties hold:
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(1) If O is open in (X, 7, I), then O N CI*(A) C CI*(O N A).
(2) If A € Xo C X, then CI*Xo(A) C CI*(A) N Xo.

Proposition 2. Let (X,7,1) be an ideal topological space. A€ alO(X,7) if and only
if AN SeSI0 (X,1) for each SeSIO (X,7).

Proof. Necessity. Let Ae alO (X 7) and SeSIO (X,7). Using Lemma 1, we obtain

SNA c CI*(Int(S)) N Int(Cl*(Int(A)))
C  Cl*(Int(S) N Int(Cl*(Int(A))))
C  Cl*(Int(S)NCl*(Int(A)))
C  CI*(CI*(Int(S) N Int(A)))
C Cl*(Int(SNA)).

This shows that A N SeSIO (X,7).

Sufficiency. Let S€SIO (X,7) and A N SeSIO (X,7). Then in particular AeSIO
(X,7). Assume x€ A N C(Int(Cl*(Int(A)))) (C denoting complement). Then xeCl*(S)
= CI*(Int(S)) by [7], where S = C(CI*(Int(A))). Hence we obtain

SuUlnt({z}) < CU*"(Int(9))
CU*(Int(Int({z}) U Int(S)))
Cl*(Int(Int(SU{z})))
Cl*(Int(SU{z})).
Thus S U {x}€SIO (X,7) and consequently A N (S U {x})€SIO (X,r). But
ANn(Su{z}) = ANnSYUAN{z})
= (AnS)uAn{z})
= (AnS)u{z}
= (An{zhu(Sniz})
= {z}
Hence {x} is open. As xeCl*(Int(A)), this implies x€Int(Cl*(Int(A))), contrary

to assumption. Thus x€A implies x€Int(Cl*(Int(A))), and A€ olO (X,7). This
completes the proof. ([l

N

Proposition 3. Let (X, 7, I) be an ideal topological space. A€ IO (X,7) if and
only if A = UN D where Ue T and Int(D) is 7* - dense.

Proof. Necessity. If A€ IO (X,7), then we have
A= Int(Cl*(Int(A))) — (Int(Cl*(Int(A))) — A)

where Int(Cl*(Int(A))) = Ue 7 and Int(Cl*(Int(A))) — A is nowhere 7%~ dense
dense.
Sufficiency. Let A = U N D, where Ue 7 and Int(D) is 7* — dense. Since A ¢ U
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U =UnX = U N Cl*(Int(D)) C Int(U) N CI*(Int(D)) C CI*(Int(U) N Int(D))
= CI*(Int(A)) and we obtain U C Int(Cl*(Int(A))). Hence A C Int(Cl*(Int(A))) so
that Ae alO (X,7). O

Definition 3.4. [3]. A subset H of an ideal topological space (X, 7, I) is called an
ar N3 —set if H= A N B where A€ oIO (X,7) and Bis at — I — set.

The family of all oy N3 — sets of (X, 7, I) is denoted by ay N3 (X,7) in this
paper, when there is no chance for confusion with the ideal.

Theorem 3.5. For a subset A of an ideal topological space (X, T, I), the following
properties are equivalent:

(1) A is semi — I — closed,
(2) Ais f—1-closed and is an oy N3 — set,
(3) Ais f—1—closed and 6— I — open.

Proof. a) = b). Let AeSIC(X,7). Since SIC(X,7) C BIC(X,r) by Proposition 1
and A = A N X, where A is at — I — set and Xe alO (X,7). Therefore we have
SIC(X,r) C BIC(X,7) Nay N3(X,7).

b) = c). The proof is seen in the Diagram.

c) = a). Let A be —1- closed and é— I — open. Since Int(CI*(A)) C
Int(C1*(Int(A))) and Int(CI*(Int(A))) C A, we obtain that AeSIC(X,7). O

Proposition 4. Let (X, 7, I) be an ideal topological space. HE oy N3 (X,7) if and
only if H = BN D where BEB; (X,7) and Int(D) is T* — dense.

Proof. Necessity. Let He oy N3 (X,7) and write H = A N B where A€ olO (X,7)
and B is at — I — set. By Proposition 3, we write A = U N D where U€ 7 and
Int(D) is 7* — dense. Thus H=ANB=(UND)NB=(UNB)ND where U
N B € By (X,7) and Int(D) is 7* — dense as required.

Sufficiency. Assume that H = B N D with B € B; (X,7) and Int(D) is 7* —
dense. Then we have B = U N By where Ue 7 and By isat — I —set. Thus H =B
ND=(UnNB;) ND=(UnND)nN By where U N De alO (X,r) by Proposition
3 and By is a t — I — set. Therefore we obtain He a; N3 (X,7). O

Proposition 5. Let (X, 7, I) be an ideal topological space. HE ay N3 (X,7) if and
only if H= AN (HU Int(Cl*(H))) where A€ aIO (X,T).
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Proof. Necessity. Let He ay N3 (X,7) and assume H=ANB where Ac oIO (X,7)
and Bisat -1 - set. Since Bisat — I — set, we have

H = AnH

C An(HUInt(CI*(H)))

C AN (BUInt(Cl*(B)))

= An(BUInt(B))

= ANB

= H.
SoH = AN (HUInt(CI*(H))), with A€ oIO (X,7) by Lemma 1 as required.Sufficiency.
Assume that H C X such that H = A N (H U Int(CI1*(H))) where A€ IO (X,7).

Since H U Int(CI*(H)) is semi — I — closed by Corollary 1 and hence itisa t — I —
set. Therefore He ay N3 (X,7). O

Theorem 3.6. Let (X, 7, I) be an ideal topological space.
IO (X,7) = PIO (X,7) Nay N3 (X,7).

Proof. Necessity. It is obvious that aIO (X,7) C PIO (X,7) N ar N3 (X,7).

Sufficiency. Let HePIO (X,7) Ny N3 (X,7). Then we have H C Int(Cl1*(H))
and by Proposition 5, H = A N (Int(C1*(H)) U H) where A€ oIO (X,r) and T =
(Int(CI*(H)) U H)€SIC (X,7) by Lemma 1, respectively. But

T = H U Int(CI*(H)) = Int(Cl* (H))

Thus H = A N Int(Cl*(H)) where A€ aIO (X,7) and Int(Cl*(H))e 7 C IO
(X,7) and therefore H = A N Int(CI*(H))e «IO (X,7), because olO (X,7) is a
topology (see Corollary 3.2 of Acikgoz et.al [1]). O

It is seen in the following example that the decomposition provided by Theorem
4 is different from the decomposition of a— I - continuity given in Theorem 4.2 by
Acikgoz et.al [2].

Example 3.7. Let X = {1, 2, 3, 4}, 7 = {0, X, {1, 2}, {4}, {1, 2, 4}} and I =
{D, {3}}. Then A = {3} is an oy N3 — set, which is not semi — I — open. For,
Int(CI*(A)) = Int(C1*({3})) = Int({3}) = @ = Int({3}), A = {3} = {3} N X where
Aisat—TI-set and X€ alO (X). This shows that A is an ay N3 — set. On the
other hand, since CI*(Int(A)) = @ and A ¢ CI*(Int(A)), A is not semi — I — open.

Proposition 6. For a subset A of an ideal topological space (X, T, I), the following
properties are equivalent:

(1) Ais a—1-open,

(2) A is pre — I — open and semi - I — open,
(3) A is pre — I —open and 6— I — open,
(4) A is pre — I — open and ay N3 — set.
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Proof. The proof is obvious ( Acikgoz et al. [2] and [1] ). O

4. ay Nj - sets

Definition 4.1. A subset A of an ideal topological space (X, 7, I) is said to be an
I- R closed [3] ( resp. strong B— I- closed [8] ) set if A = CI*(Int(A)) ( resp. A C
Cl*(Int(CI*(A))) ).

Definition 4.2. A subset A of an ideal topological space (X, 7, I) is said to be an
A;_p-set if ANV, where U is open and V is an I — R closed set.

The family of all T - R closed ( resp. strong S— I - closed ) sets in an ideal
topological space (X, 7, I) is denoted by IRC (X,7) ( resp. SBIC (X, 7) ).

Proposition 7. Let (X, 7, I) be an ideal topological space. A€SIO (X,7) if and
only if A = RN D where REIRC (X,7) and Int(D) is T* — dense.

Proof. Necessity. Let AeSIO (X,7). Then we have U C A C CI*(U) such that
Ue 7 by Theorem 3.2 of [7]. Note that CI*(A) = CI*(U). We write A = CI*(U)
- (C1*(U) - A) = CI*(U) N [X — (CI*(U) - A)], where CI*(U) - A Cc CI*(U) - U
and CI*(U) — U is nowhere 7* — dense in (X, 7, I). We assume D = X — (C1*(U)
— A). Then X — CI(CI*(U) — A) is an open 7* — dense subset of (X, 7, I) which is
contained in D. Consequently, we use R = CI*(U) to write A = R N D where R is
an I - R closed set and Int(D) is 7* — dense, as required.

Sufficiency. Assume that A = R N D where R is I — R closed and Int(D) is 7*-
dense. We write U€ 7 such that R = CI*(U). We assume V = U N Int(D). Then
Ve 7 with V C A. Finally, CI*(V) = CI*(U N Int(D)) = CI*(U) = R. Thus V C A
C CI*(V) and therefore AeSIO (X,7) using [7]. O

Definition 4.3. [3]. A subset H of an ideal topological space (X, 7, I) is called an
ar N5 —set if H= A N B where A€ oIO (X,7) and B is a 7*— closed set.

The family of all oy N5 — sets of (X, 7, I) is denoted by ay N5 (X,7) in this
paper, when there is no chance for confusion with the ideal.

Proposition 8. Let (X, 7, I) be an ideal topological space and A = UN V a subset
of X. Then the following hold:

(1) If A is a weakly I — locally — closed set, then A is an oy N5 — set.
(2) If A is an ay Ny — set, then A is an oy N3 — set.
(3) If A is an ay N3 — set, then A is § — I — open.

Proof. a) and b) The proof is a direct consequence of the Definition 2 and Definition
8.

c) Let A be an oy N3 — set. Then we have A = U NV where Ue olO (X,7) and
Visat—1I-set. Since every o — I — open set is 6 — I — open by [1] and every t — I
— set is 0 — I — open, therefore we obtain that A€ 610 (X,r). Because 610 (X,7) is
a topology ( see Corollary 3.2 of Acikgoz et.al [14] ). O
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Remark 4.4. The converses of Proposition 3.1 need not be true as shown in the
following example.

Example 4.5. Let X = {1, 2, 3, 4}, 7 = {0, X, {1, 2}, {4}, {1, 2, 4}} and I =
{@, {3}}. Then A = {3, 4} is an a; N5 — set, but not weakly I — locally — closed.
aIO(X) = {0, X, {1, 2},{4},{1, 2, 4}, {3, 4}}. For a subset A = {3, 4} = X N {3,
4}, where A is @ — I — open and X is 7* —closed. This shows that A is an a; N5 —
set. But A is not weakly I — locally — closed. Because A¢ 7.

Example 4.6. Let X = {a, b, ¢}, 7 = {0, X, {a}, {c}, {a, c}} and I = {0, {a}}.
Then A = {c} is an ay N3 — set but it is not an ay N5 — set. For Int(Cl*(A)) =
Int(CI*({c})) = Int({c} U ({c})*) = Int({c} U {b, c¢}} = Int({b, c}) = {c}, and so
A=A N X where Aisat—I-set and Xe alO (X,7). This shows that A is an
ar N3 —set. But A is not an oy N5 — set. For, CI*(A)= Cl*({c}) = ({c})* U {c}
= {b,c} U {c} = {b,c} # {c} and CI*(A) # A.

Example 4.7. Let X ={a, b, ¢, d}, 7 = {0, X, {c}, {a, ¢}, {b, ¢}, {a, b, ¢}, {a, c,
d}}, I =40, {c}, {d}, {c, d}}. Set A = {b, d}. Then A isa § — I — open set which
is not an ay N3 — set. For A = {b, d}, since C1*(A) = {b, d} and Int(CI*(A)) =
) so Int(CI*(A)) C CI*(Int(A)). This shows that A is a 6 — I — open set. On the
other hand, since A ¢ Int(Cl*(Int(A))) = @ and A = A N X where A¢ oIO (X,7),
A is not an ay N3 — set.

The two classes oy N3 (X,7) and ay N5 (X,7) are related as seen in the next
proposition, whose proof is omitted since it is similar to that of Proposition 3.

Proposition 9. Let (X, 7, I) be an ideal topological space. HE ay Ny (X,7) if and
only if H = B N D where B is a weakly I — locally — closed set and Int(D) is 7% —
dense.

Theorem 4.8. Let (X, 7, I) be an ideal topological space.
SIO (X,7) = SpPI0 (X,7) Nay N5 (X,7).

Proof. Necessity. Let AeSIO (X,7). Then we have AeSSIO (X,7) by Remark 1.1
of [2]. Now, by Proposition 7 we write A = R N D where R is I — R closed and
Int(D) is 7* — dense. Since R is a weakly I — locally — closed set ( because R is 7*
— closed ) then A is an «ay N5 — set by Proposition 9.

Sufficiency. Let HeSFIO (X,7)Nay N5 (X,7). Then we have HC CI*(Int(Cl*(H)))
and H = A N F where A€ olO (X,7) and F is 7* — closed, respectively. Since H
C F then CI*(Int(CI*(H))) € Cl*(Int(CI*(F))) = CI*(Int(F)) ¢ CI*(F) = F. Thus
H c A N CH(Int(CI*(H))) ¢ A N CI*(Int(CI*(F))) CANF=H. SoH=AnN
CI*(Int(CI1*(H))) where A€ IO (X,7) and CI*(Int(Cl*(H)))eSIO (X,7). Thus, we
have HeSIO (X,7) by Proposition 2. O

Proposition 10. For a subset A of an ideal topological space (X, T, 1), the following
properties are equivalent:
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(1) A is semi — I — open,
(2) A isstrong 8 —1— open and §— I — open,
(3) A isstrong § — 1 —open and is an oy Ny — set.

Proof. The proof is obvious. (Acikgoz et al. [2]). O

Remark 4.9. The relationships between the sets defined above, are shown in the
following diagram.

DIAGRAM

Remark 4.10. By the examples stated below, we obtain the following results:

(1) B—1 - closedness and oy N3 — set are independent of each other,

(2) 60— I- openness and — I - closedness are independent of each other,
(3) t-1-set and oy N5 — set are independent of each other,

(4) Strong 5— I - openness and oy N5 — set are independent of each other,
(5) Pre - I- openness and ay N3 — set are independent of each other.

Example 4.11. Let (X, 7, I) and A be the same ideal topological space and the
set, respectively, as in Example 1. We obtain that A is §— I - closed but not is not
an oy N3 — set. Because A = A N X where A is not a t — I - set and Xe alO (X,7).

Example 4.12. Let X = {a, b, ¢, d}, 7 = {0, X, {b}}, I = {0, {c}}. Then A =
{b} is an a; N3 — set which is not a f— I - closed set. For, A = {b} = {b} N X
where {b}€ aIO (X,r) and Int(C1*(X)) = Int(X). This shows that A is an oy N3 —
set. On the other hand, since Int(Cl*(Int(A))) = X and Int(C1*(Int(A))) ¢ A, A
is not a S— I - closed set.

Example 4.13. Let X = {a, b, ¢, d}, 7 = {0, X, {a}, {c}, {a, c}}, I = {0, {a}}.
Set A = {a, c}. Then A is a § — I — open set but it is not a S— I - closed set.
For A = {a, c}, since Int(CI*(A)) = X, CI*(Int(A)) = X and so Int(CI*(A)) C
CI*(Int(A)). This shows that A is a 6 — I — open set. On the other hand, since
Int(CI*(Int(A))) = X and Int(Cl*(Int(A))) ¢ A, A is not S— I - closed.

Example 4.14. Let (X, 7, I) and A be the same ideal topological space and the
set, respectively, as in Example 1. We obtain that A is f— I - closed but not § — 1
— open.

Example 4.15. Let (X, 7, I) and A be the same ideal topological space and the
set, respectively, as in Example 7. We obtain that A is an oy N5 — set but not t —
I - set.

Example 4.16. Let (X, 7, I) and A be the same ideal topological space and the
set, respectively, as in Example 5. We obtain that A is a t — I — set but not an a;
Ny — set.
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Example 4.17. Let X = {a, b, ¢, d}, 7 = {0, X, {d}, {a, b, c}}, I = {0, {c}}. Set
A = {c, d}. Then A is an a; N5 — set but it is not a strong S— I - open set. For
A={c, d}, since CI*(A) = {c,d} and CI*(A) = A, so A = A N X where Xe€ alO
(X,7) and A is 7* - closed. This shows that A is an a; N5 — set. On the other
hand, since A ¢ CI*(Int(C1*(A))), A is not strong S— I - open.

Example 4.18. Let X = {a, b, ¢, d}, 7 = {0, X, {a, b}}, I = {0, {c}}. Set A =
{a, c¢}. Then A is a strong S— I - open set but it is not an oy N5 — set. For A =
{a, ¢}, since C1*(Int(Cl*(A))) = X and A C CI*(Int(CI*(A))), A is strong — I -
open. On the other hand, since CI*(A) = X # A, A is not an ay N5 — set.

Example 4.19. Let X = {a, b, ¢, d}, 7 = {0, X, {a, b}}, I = {0, {c}}. Set A =
{b, c¢}. Then A is a pre — I — open set but it is not an ay N3 —set. For A = {b, c},
since CI*(A) = X and Int(Cl*(A)) = X, so A C X = Int(CI*(A)). This shows that
A is a pre — I — open set. On the other hand, since Int(Cl*(Int(A))) = @ and A ¢
Int(Cl*(Int(A))), A is not an oy N3 — set.

Example 4.20. Let (X, 7, I) and A be the same ideal topological space and the
set, respectively, as in Example 5. We obtain that A is an oy N3 — set but it is not
a pre — I — open set.

5. Decompositions of a— I - continuity and semi - I - continuity

Definition 5.1. A function f: (X, 7, I) — (Y, ) is said to be a— I - continuous
[6] (resp. semi - I - continuous [6], pre — I — continuous [4], semi d— I - continuous
[2], strong 8 — I — continuous [8]), if for every V. € ¢ , f =1 (V) is an a— I — open
set (resp. semi - I — open set, pre — I — open, § — I — open, strong 8 — I — open set)
of (X,r,I).

Definition 5.2. A function f: (X, 7, I) — (Y, ¢) is said to be a; N3 — continuous
(resp. ay N5 — continuous) if for every Ve ¢, f =1 (V) is an a; N3 — set (resp. ay
N5 — set) of (X, 7, I).

Theorem 5.3. A function f: (X, 7, I) — (Y, ¢) is a— I — continuous if and only
if it is pre — I — continuous and oy N3 — continuous.

Proof. This is a direct consequence of Theorem 4. (Il

Theorem 5.4. For a function f: (X, 7, I) — (Y, @) the following properties are
equivalent:

(1) fis a— I — continuous;

(2) fis pre — I — continuous and semi — I — continuous;
(3) fis pre — I — continuous and ¢ — I — continuous;
(4) fis pre — I — continuous and a; N3 — continuous.

Proof. This follows immediately from Proposition 6. O
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Theorem 5.5. A function [ : (X, 7, I) — (Y, ) is semi — I — continuous if and
only if it is strong 8 — I — continuous and oy N5 — continuous.

Proof. This is a direct consequence of Theorem 5. ([l

Theorem 5.6. For a function f: (X, 7, I) — (Y, ¢) the following properties are
equivalent:

(1) fis semi — I — continuous;
(2) fisstrong 8 — I — continuous and ¢ — I — continuous;
(3) fis strong 8 — I — continuous and «a; N5 — continuous.

Proof. This is an immediate consequence of Proposition 10. (I

(1]
2]

Ozet: Bu galismada, ay N3 —[3] and a; N5 — [3] kiimeleri verilecek,
a — 1 — acgik, semi — I — agik, ay N3 — ve ay N5 — kiimelerinin
karakterizasyonlars incelenecektir. Bu kiimelerden yararlanarak o
— I — siirekli ve semi — I — siirekliligin yeni ayrigzmlars da elde
edilecektir.
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