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NON-PROPORTIONAL HAZARDS WITH APPLICATION TO
KIDNEY TRANSPLANT DATA

EMEL BAŞAR

Abstract. The Cox proportional hazards (PH) model is the popular method
for modelling censored survival data. The fundamental assumption of the
Cox PH model is the proportionality of hazards in which the hazard ratio
is linear in the covariates. However this assumption may not hold in some
survival studies. Therefore, di¤erent non-parametric regression methods have
been proposed to estimate the hazard ratio as a function of time when the
proportionality of hazards can not be assumed. In this study a piecewise
model and a non-parametric regression spline model have been considered for
the non-proportional hazards. The models have been illustrated with kidney
transplant data..

1. introduction

The Cox proportional hazards (PH) model introduced by Cox [4] has been widely
used in analysis of survival data. The term proportional hazards refer to the fact
that covariates have a multiplicative e¤ect on the hazards and the ratio of the haz-
ards for di¤erent individuals is constant over the time. This assumption may not
be met in all censored survival data set. The impact of a covariate on hazards may
change during the follow-up. Several tests have been proposed to check the propor-
tional hazards hypothesis [14]. However, after having rejected the PH hypothesis,
it is not obvious how to summarize the e¤ect of a covariate [1].
The standard method for modelling the e¤ect of a predictor that violates the

PH assumption is to include a time dependent covariate, representing an inter-
action between the covariate and a parametric function of follow-up time and its
shape represents the changes in hazard ratio during follow-up. Another method was
proposed by Moreau et. al. [15]. They �tted a piecewise PH model. In that model,
hazard ratio becomes a step function that is constant within each a priori deter-
mined time interval but varies between intervals. However, the resulting estimates
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are unsmooth and impact of the number of intervals is not obvious. In the 1990�s
several authors developed non-parametric methods for modeling time-dependent
hazard ratio as a smooth �exible function of time [16].
Splines are a better tool for exploring nonlinear relationships and �exible statis-

tical techniques. There are two classes of splines: regression splines and smoothing
splines. Regression splines are piecewise polynomials joined at control points that
are called knots. Linear splines constitute a set of connected line segments, which
are continuous functions with discontinuous �rst derivative at the knots. Quadratic
splines have continuous �rst derivatives, cubic splines continuous �rst and second
derivatives. They are very attractive for non-parametric modeling; but, choosing
the number of knots or the location of knots is arbitrary [19]. An alternative to the
regression spline is the smoothing spline. The smoothing splines have knots located
at every unique value of the continuous predictor variable, and include a penalty for
over�tting. The smoothing splines have been used in generalized additive models
[7].
A large number of works have been done on the regression spline methods and

varying-coe¢ cient models. Some of these studies among the others are: Sleeper
and Harrington [18], Gray [9], Hastie and Tibshirani [11], Gray [10], Hess [12],
Kooperberg et al. [13], Rosenberg [17], Abrahamowicz et al. [1], Cai and Sun [3].
In this study, testing of PH hypothesis based on the Grambsch-Therneau test

[8] has been considered. Time-dependent model, piecewise PH model with two and
three intervals, and regression splines model with four degrees of freedom have been
considered for modelling non-proportionality. These models are illustrated with the
kidney transplantation data.

2. proportional hazards model

In the Cox PH model, introduced by Cox [4], the hazard at time t is de�ne as:

�(t;x) = �0(t) exp

 
pX
i=1

�ixi

!
(1)

where, �(t;x) is the hazard rate at time t for individual with covariate vector
x. �1; �2; :::; �p are the unknown regression parameters called log hazard ratios
and represent the e¤ect of each covariate on the logarithm of the hazard. �0 is
an unspeci�ed non-negative function of time called baseline hazard. The model
assumes that the hazard ratio between two subjects with �xed covariates is constant.
When the assumption of proportionality does not hold, the Cox PH model may
produce biased results and the alternative models have to be considered.

3. piecewise proportional hazards model

The piecewise PH model incorporates non-proportional hazards in the Cox model
by representing hazard ratio as a step function of time [15]. Hazard ratio is constant
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within each of r pre-speci�ed time intervals but varies between the intervals. Within
the i-th interval (j = 1; :::; r), the hazard is expressed by:

�(t;x) = �0(t) exp

 
pX
i=1

(�i + 
ji)xi

!
(2)

where 
1i = 0. The log hazard ratio equals to �i in the �rst interval and (�i+ 
ji)
in the subsequent intervals for j = 2; :::; r. The PH model becomes a special case
of the piecewise model [16]. In this study the piecewise analysis is limited with
two and three intervals, because there are many failures on the beginning of the
follow-up period.

4. regression splines model

A spline is a piecewise polynomial that has continuous derivatives at the points
where pieces join. When a continuous covariate a¤ects the log hazard in a smooth
fashion, a spline function is natural choice for approximating the covariate trans-
formation [18].
The non-parametric spline model is de�ned as:

�(t;x) = �0(t) exp

 
pX
i=1

�i(t)xi

!
(3)

where x = (x1; :::; xp) is a vector of p covariates, �0(t) is an unspeci�ed baseline
hazard function corresponding to x = 0, and �i(t) is the logarithm of the hazard
ratio at time t corresponding to a unit increase in covariate xi. This model is gen-
eralized PH model with the constant log hazard ratios �i are replaced by estimable
functions of time �i(t). The e¤ects of some covariates may still be constant. It is
assumed that non-constant functions �i(t) lie in a pre-chosen polynomial regression
spline space. Regression splines are smooth piecewise polynomials with pieces that
join at knots. The degrees of polynomial pieces and the number and location of
knots may vary. k is the spline order (or polynomial degree k � 1) and m is the
number of knots. A space of regression splines is linear, and its dimension is m+k.
For each i the following expression can be written:

�i(t) =

riX
j=1

�ijgij(t) (4)

where ri is the dimension of regression spline space for i-th covariate and �ij is
the regression parameter and gij(t) are basis function for this space. A useful basis
for this linear space is given by de Boor [5] and called B-splines. B-spline base
functions are numerically well-conditioned. Model (3) can be rewritten as:

�(t;x) = �0(t) exp

0@ pX
i=1

riX
j=1

�ijyij(t)

1A (5)
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where yij(t) = gij(t)xi [1].
De Boor [5] gave an algorithm to compute B-splines of any degree from B-splines

of lower degree. Because a zero-degree B-spline is a constant on one interval between
two knots, it is simple to compute B-splines of any degree. The choice of knots has
been a subject much research, too many knots lead to over�tting of the data, too
few knots lead to under�tting [6].
The degree of freedom for the �t is given by the number of basis functions, equal

to the number of �tted regression coe¢ cients. For regression splines, the degree of
freedom equals the number of knots plus 1. One degree of freedom corresponds a
straight line. Increasing the degrees of freedom corresponds to more complicated
curves [19].

5. application to kidney transplant patients

The data has been collected from register of patients at Başkent University
Hospital and it consists of survival data of 93 patients who were operated kidney
transplantation [2]. The beginning of the lifetimes is de�ned as the operation time
and the end point of the lifetimes are the rejection of kidney or the death of the
patients. The follow-up time is 35 months and the eighteen failures have been
observed during the study period. Various covariates have been collected and only
four of them included in this study. These covariates are patient age, donor age,
disease duration and sex.
First, the Cox PH model is �tted to the data. The results of the univariate and

multivariable Cox PH models are summarized in Table 1, giving the estimators of
hazard ratios for each covariate and their con�dence intervals and its p-value from
the likelihood ratio test. Donor age is the only covariate that shows a statistically
signi�cant impact on the survival at the level of � = 0:05 in the context of both
the univariate and multivariable Cox PH models.

Table 1-Univariate and multivariable Cox proportional hazards analysis
Univariate analysis Multivariable analysis

Covariates Hazard 95% conf. p-value Hazard 95% conf. p-value
ratio intervals ratio intervals

Patient age 0,998 0,957 1,042 0,944 0,999 0,952 1,047 0,950
Donor age 1,046 1,005 1,089 0,028 1,045 1,003 1,089 0,037
Disease duration 1,088 0,984 1,204 0,999 1,074 0,770 1,190 0,170
Sex 0,821 0,292 2,302 0,710 0,848 0,288 2,499 0,176

The proportional hazards model hypotheses are tested for each covariate based
on scaled Schonfeld residuals [19]. In Figure 1 the plot of scale residuals are given
against ordered time along with spline smooth together 90% con�dence intervals.
The Grambsch-Therneau test has p-value= 0:041 for donor age and this provides
the evidence that the covariate donor age violates the PH assumption at the level
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of � = 0:05. The impact of the donor age score clearly changes with time and this
time-varying e¤ect can be seen in Figure 1. The other covariates do not show a time-
varying pattern. The p-values for covariates patient age, disease duration, and sex
are respectively 0:478, 0:584, and 0:567. When the assumption of proportionality
does not hold, alternative models have to be considered.
For categorical covariates apparent non-proportionality can be handled by strati-

�cation, but this is impossible for continuous covariates. To model non-proportional
hazards, an interaction term between the covariates and a pre-speci�ed parametric
function is included in the Cox PH model [4]. Several functions are considered in
this study. These are f(t) = t, f(t) = ln t and f(t) =

p
t.

Table 2 demonstrates that some conclusions depend on the number of inter-
vals, considered function and regression splines model. For patient age and disease
duration, non-proportionality of hazards is signi�cant with two and three inter-
vals. First two time-dependent models suggested that PH hypothesis is rejected
for patient age, donor age and disease duration. For splines model, PH assumption
is statistically signi�cant for all the covariates. In the piecewise model with two
intervals and splines model p-value could not compute for sex.
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Figure 1- Test of proportional hazards with a spline smooth for all covariates.
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Table 2- Testing the proportional hazards hypothesis p-values based on
multivariable model

Piecewise model Time-dependent model Splines
Covariate Two intervals Three intervals t ln t

p
t

Patient age 0,004 0,015 0,002 0,000 0,006 0,707
Donor age 0,194 0,226 0,036 0,001 0,020 0,297
Disease duration 0,002 0,001 0,022 0,033 0,167 0,624
Sex - 0,216 0,375 0,022 0,234 -

Comparisons of goodness-of-�t of di¤erent univariate models by using the Akaike
Information Criterion (AIC) are given in the Table 3. Lower AIC values indicate
better �t. For each covariate, the best �tting model is identi�ed by � * �. The
numbers in the same row show the di¤erence in AIC values between respective
models and the best model. AIC values in Table 3 show that time-dependent
models �t much better than the other models.

Table 3- Goodness-of-�t of univariate models with di¤erences in AIC values
Piecewise model Time-dependent model Splines

Covariate Two intervals Three intervals t ln t
p
t

Patient age 30,69 27,92 * 7,97 2,30 69,94
Donor age 33,96 60,67 * 4,98 0,30 77,33
Disease duration 37,34 * 28,37 33,29 30,50 60,03
Sex - 14,18 6,59 * 1,63 -

Table 4 shows the results of testing of the proportionality for multivariable mod-
elling. In the multivariable analysis three homogeneous versions of time-dependent
models were speci�ed as a priori. Each of these models represented time-dependent
e¤ects of all covariates by one of the three functions that are f(t) = t, f(t) = ln t,
f(t) =

p
t. The optimal model is de�ned as a posteriori and the e¤ect of each

factor was represented by the function that �tted best in the univariate analysis.
The �rst row of Table 4 shows AIC values, as expected, the optimal model �ts the
data better than the three other time-dependent models. The spline model has the
biggest AIC value.
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Table 4- Testing the proportional hazards model hypothesis for
multivariable models

t ln t
p
t Optimal Splines

AIC 78,1 86,9 80,3 77,8 164,7
Overall test of PH 86,0 77,1 83,7 86,2 7,30
p-value <0,00 <0,00 <0,00 <0,00 0,504

Table 5 represents the hazard ratio estimates for donor age with di¤erent models.
The proportional hazards assumption fails to hold only the donor age. Because of
this reason, in these models four covariates are included and only the hazard ratio
of donor age has time-dependent e¤ect. All models are statistically signi�cant and
the hazard ratios are decreased over time except the splines model.

Table 5- Hazard ratio estimates for donor age
Covariate Time
and models 1 month 2 months 6 months 12 months 18 months

Donor age
Cox PH 1,045 1,045 1,045 1,045 1,045
Piecewise
Two intervals 0,961 0,961 1,072 1,072 1,072
Three intervals 0,948 1,111 1,055 1,055 1,055
Time-dependent

t 1,124 1,106 1,036 0,939 0,851
ln t 1,152 1,050 0,999 0,946 0,916p
t 1,139 1,103 1,017 0,939 0,883

Splines 0,587 0,843 0,105 10.737 10.737

6. discussions

In this study a kidney transplantation data is used to assess the performance
of di¤erent models in univariate and multivariable analysis. The piecewise PH
models, Cox PH model with time-dependent covariates and splines model are con-
sidered for this purpose. The results of piecewise models depend on the arbitrary
number of time intervals and are di¢ cult to implement in multivariable modelling
as mentioned in [16]. In the Cox model with time-dependent covariates the selec-
tion of parametric function is very important. Restricting the analysis to a single
a priori selected parametric function may result biased estimates. The optimal
model is de�ned by estimating di¤erent parametric function and selecting the best
�tting model. The di¤erent parametric estimates �t data equally well and also
induces overestimation bias. The regression spline model is �exible modelling for
non-proportionality of the hazard ratio. But surprisingly, spline model did not �t
the data well. Probably that is because the data is collected in relatively short-term
study and most of the failures are observed at the beginning of the study.
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ÖZET

Cox orant¬l¬ hazard (OH) modeli durdurulmuş yaşam sürdürme
verisini modellemek üzere en çok kullan¬lan yöntemdir. Cox OH
modelinin temel varsay¬m¬ hazard¬n orant¬l¬ olmas¬d¬r. Hazard
oran¬ise eşde¼gi̧skenler üzerinde do¼grusald¬r. Baz¬yaşam sürdürme
çal¬̧smalar¬nda bu varsay¬m sa¼glanamayabilir. Hazard¬n orant¬l¬
olmas¬n¬n varsay¬lamad¬¼g¬ durumda, hazard oran¬n¬ zaman¬n bir
fonksiyonu olarak tahmin etmek üzere farkl¬parametrik olmayan
regresyon yöntemleri önerilmi̧stir.
Bu çal¬̧smada orant¬l¬olmayan hazard için, parçal¬orant¬l¬ha-

zard modeli ve parametrik olmayan regresyon spline modeli dikkate
al¬nm¬̧s ve modeller böbrek nakli verisine uygulanm¬̧st¬r.
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