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EDGEWORTH SERIES APPROXIMATION FOR CHI-SQUARE
TYPE CHANCE CONSTRAINTS

MEHMET YILMAZ

ABSTRACT. We introduce two methods for approximation to distribution of
weighted sum of chi-square random variables. These methods can be more use-
ful than the known methods in literature to transform chi-square type chance
constrained programming (CCP) problem into deterministic problem. There-
fore, these are compared with Sengupta (1970)’s method. Some examples are
illustrated for the purpose of comparing the solutions of these methods.

1. INTRODUCTION

The distribution of positive weighted combination of chi-square random variables
with any degrees of freedom arises in many application areas such as communication
theory, reliability of systems, engineering, industry etc. Many authors are interested
in obtaining such as above distribution. Literature review of this subject was given
by Johnson et al. (1994). Recent work of Castafio et al. (2005) derived a Laquerre
expansion which has been used to evaluate distribution function of the sum of
weighted central chi-square random variables. But it is more complicated for using
stochastic programming. The best known example of a skewed sum is the chi-square
distribution, of course chi-square distribution is itself asymptotically normal, thus
this led us to approximate the distribution of a sum of weighted chi-square random
variables by an expansion method based on central limit theorem (see Kendall,
1945; Patnaik, 1949; Feller, 1966 and Lehmann, 1999).

Next section can be viewed as recalling Castafio et al. (2005)’s work. Introduced
methods will be compared with their work which can be seen a main tool of this
paper for further discussions. In section three, we will give two methods based
on normal approximation. These are called first and second edgeworth expansion
respectively. We can adapt suggested methods to linear combination of independent
random variables assumed to having finite fourth central moments. Chi-square
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random variables have important role in many application areas of stochastic model.
On the other hand, methods can be applied to solve CCP problem. In other words,
it should be found their convenient deterministic equivalents to solve such a CCP
problem. Two methods have some advantages of finding deterministic equivalents
of chance constraints as these will be presented in fourth section.

2. LAQUERRE EXPANSION

Let X1, X3, ..., X;, be independent chi-square random variables with v; (i = 1,2, ...,n)

n
degrees of freedom, respectively. Consider > a;X;, where a; > 0. Distribution of
i=1

n
> a; X; as a Laquerre series expansion is given by Castano et al. (2005) as follows:
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where ¢ = max; ’ T . This expansion converges uniformly in any finite
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interval, for all y, and S conveniently chosen. They also showed with illustrative
examples that if y, = p/10 and 8 = (a1 + a,) /2 are chosen, then truncation error
bound is quite small. Therefore our results will be compared with each other for

the same values of g and 5.
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3. EXPANSION FOR DISTRIBUTIONS

In this section, we will introduce two known expansions for sum of independent
and identical random variables related to the central limit theorem. These are
called as first and second edgeworth expansion in the literature. First edgeworth
expansion which is well known yields more approximated probability than normal
approximation does. Also, second edgeworth expansion could be better than the
first for the sum of chi-square random variables (see Kendall, 1945; Patnaik, 1949
and Lehmann, 1999). Hence, extensions of two methods for the weighted chi-square
random variables, are set up the following subsection.

Theorem 3.1. Let X1, Xo, ..., X,, be independent continuous random variables such
that E |Xj|3 <o (j=1,2,...,n), for large values of n, then

i i Zﬂ: i » 2
B E(.7’1X>§x = B(a) + A0 g0y o) (2)

(1) 6(ui™)® (n57) :

18 used approximation to standard normal distribution. Here ® and ¢ stand for
standard normal cumulative distribution function, its density function respectively

and ,uggn) denotes Z1E (X, — EXj)k (Feller, 1966 Chapter XVI).
§=
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The first term given in (2) is known as first term edgeworth expansion in the
literature. The second term edgeworth expansion can be defined without loss of
generality as follows:

Subtract from the right side of (2) the term

Ky, 5 K§ 5 3
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where K3 and K, are third and fourth cumulants of 22— (see Wallace,

Z(XJ_E(Xj))2
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1958). If the random variables are identically distributed then the quantity given
in (3) can be written as
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3.1. Set-up for Weighted Chi-Square Random Variables. Consider random
variables X; (i = 1,2, ...,n) distributed as chi-square with v; (i = 1,2, ...,n) degrees
of freedom. The probability density function of X; (i = 1,2,...,n) is given by
1 Yi_q ZT; .
V) = —x.> exp(——), x; >0, v; >0 (G =1,2,...,n).

[z 0:) F(%)Q%IZ xp( 9 ), Ti Vi (i n)
The central moments pl(l) (1 =1,2,3,4) can be obtained by evaluating the following
integral,

(1) | e Vi1 T
= o [ (x — ;)" " exp(—=)dx
1y, r(%)ﬁoﬂ ) p(=3)
j=o \J L'(%) ’ T

Hence ugl) =0, ,uél) = 2u;, /Jél) = 8v; and /@(11) = 12v2 4 48v; are calculated. From

now on, we can set up (2) and (3) for the weighted sum of chi-square variables. Let

M= avs, My=23" av;, My=8Y" adv;, M,=48" alv;. (5)
1=1 =1 1=1 1=1

My, (k > 1) denote cumulants of > a;(X; — E(X;)), then P(>] a;X; < t) is
i= =1

=1 i=
approximated as
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where x = t\;M%;, and My, = Y a} (1207 + 48v;). First and second edgeworth
i=1

approximations for distributionl of weighted sum of chi-square random variables
can be given respectively in (6) and (7). Here the second expression (7*) can be
viewed as modified and extended version for weighted sum, this modified expansion
allows to get better results than the other when the chi-square random variables
have different degrees of freedom. Otherwise, (7) and (7*) give same result for
V1 = V2 = ... = Up.

In Table 1, we first compare our results for P (2)(%1) + 2xf1) < t), n = 2 and

a1 = az, v1 = ve. Here FE, SE and LE denote first term edgeworth expansion,
second term edgeworth expansion and Laquerre expansion. These are calculated
from Matlab.
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Notes: (i) Since the weights are equal and random variables are independent and
identically distributed, if the quantity P(2x%1) + 2x%1) < t) can be arranged as

P (X%z) < %), then it is easy to compare FE and SE by checking chi-square tables.

Table 1 and Table 3 are specially presented because of these probabilities are easily
checked from chi-square tables. So that tabulations could be useful to find an
answer how close FE and SE to exact values.

(i) Various approximation methods of distribution of weighted sum of chi-square
random variables can be seen in Johnson et al. (1994) (see Chapter 8 pp. 444),
but most of these methods is stated by infinite series like as laquerre expansion.
Therefore, although these methods perform to get better results on calculating such
probabilities, it is difficult to apply them to solve CCP problem.

TABLE 1. Computed probability for n=2

Probability Probability

t FE SE Table t FE SE Table

1 1270543 .254516 | .221199 14 | 963116 | .948052 .969803
2 396554 398387 | .393469 15 977128 | .953374 | 976482
3 .522127 | 528358 | .527633 16 .986832 | .962457 | .981684
4 .632981 1632981 .632120 | 17 | 992955 | 972816 | .985736
5 .719540 .713310 | .713495 18 1996495 | .982209 | .988891
6 LT79478 777645 | 776870 | 19 1998376 | .989421 1991348
7 .817288 .833316 | .826226 | 20 1999299 | .994258 | .993262
8 841345 881673 | .864665 | 21 L999718 | 997144 | .994752
9 .860103 1919114 | .894601 22 1999894 | .998694 | .995913
10 | .879227 | .941962 | 917915 | 23 1999963 | .999450 | .996817
11 .900625 1950659 | .936072 | 24 1999988 | .999786 | .997521
12 | .923259 1950254 | .950213 | 25 1999996 | .999923 | .998069
13 | .944795 1947631 1961226 | 26 1999998 | .999974 1998496
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For different degrees of freedom and different weights with two components, the

quantity of P(1.4X(22) + 3.3)(%3) < t) is computed four methods and given in Table
2. Here MSE stands for modified second term edgeworth expansion.

TABLE 2. Computed probability for different weights and different d.f.

t Probability t Probability
FE SE MSE LE FE SE MSE LE
1 .052810 .018692 .009360 .005370 20 .821447 837584 .858319 796862

2 .080648 | .048156 | .035514 | .025903 | 23 | .864742 | .896060 | .909979 [ .840833

3 113955 .084896 .069164 .061071 26 .899254 1931859 1936024 .869576

4 152607 | .128397 | .110049 | 107597 | 29 | 930412 | .949092 | .946081 .888062

5 196217 177708 157473 .161835 32 957071 .957580 .951884 .899791

8 349154 | .346375 | .326752 | .340898 | 35 | 976768 [ .965710 | .960616 [ .907145

11 511898 513718 .504839 .505808 38 .989046 .975693 .972394 1911648

14 | .653359 | .651804 | .658688 | .636213 | 41 | .995507 | .985435 | .983735 | .914189

17 .755804 L757199 775934 .731156

Now, it is assumed that for n = 4 with equal weights and equal d.f., the quantity
of P(2xf1) + 2xf1) + 2)&1) + 2)&1) < t) is tabulated and given Table 3.

TABLE 3. Computed probability for equal weights and equal d.f.

Probability Probability

t FE SE Table t FE SE Table

1| 0.084731 | 0.055542 | 0.026499 | 19 | 0.934601 | 0.950864 | 0.950253
3 | 0.202297 | 0.187806 | 0.173358 | 21 | 0.960512 | 0.959886 | 0.967203
5 | 0.356660 | 0.356825 | 0.355364 | 23 | 0.979135 | 0.968419 | 0.978516
7 | 0.519523 | 0.522086 | 0.522122 | 25 | 0.990414 | 0.978251 | 0.986004
9 | 0.659839 | 0.657276 | 0.657452 | 27 | 0.996176 | 0.987358 | 0.990926
11 | 0.760777 | 0.760613 | 0.760270 | 29 | 0.998675 | 0.993836 | 0.994141
13 | 0.825538 | 0.840030 | 0.835210 | 31 | 0.999600 | 0.997470 | 0.996231
15 | 0.868807 | 0.897996 | 0.888291 | 33 | 0.999895 | 0.999120 | 0.997583
17 | 0.903581 | 0.933492 | 0.925113 | 35 | 0.999976 | 0.999740 | 0.998455

We will show the results for P(3.lx?1) + 2.9)&2) + 4.3)(%

3) T 1.7x%4) < t) (Different
weights, different d.f. for n = 4) in Table4.
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TABLE 4. Computed probability for different weights and different d.f.

t Probability t Probability

FE SE MSE LE FE SE MSE LE
6 .018190 | .002247 | .001344 | .005749 17 | .211790 | .202263 | .191458 .195038
8 .037324 | .019293 .016464 | .017641 20 299419 | .295326 | .284566 285651

10 .063205 .044634 .039674 .039390 | 25 1459163 459568 1453601 437698

13 115891 .099525 .091436 .092387 | 30 609774 .609422 611860 568382

15 160379 .147097 137336 .140013

We can see that for n = 2, for smaller values of ¢, the MSE is closer to Laquerre
expansion, on the contrary, for larger values of ¢, first term expansion gets better
results. For n = 4, SE and MSE are almost better than FE.

4. CHANCE CONSTRAINED STOCHASTIC MODEL

Chance constrained programming method was originally introduced by Charnes
and Cooper (1959). One of the common problems in the practical application of
mathematical programming is the difficulty of determining the proper values of the
model coeflicients. The true values of these coefficients may not become known
until after a solution has been chosen and implemented. This can sometimes be
attributed solely to the inadequacy of the investigation. However, the values of
these coefficients take on often are influenced by random events that impossible to
predict. In short, some or all of the model coefficients may be random variables. We
will introduce simple stochastic model with one probabilistic constraint as follows:

max(min)z(a) = g(a),
P aiXi <t] > 1-— a,
(Loxi<r) Q
a; >0, i=1,2,..n,
aec(0,1).

where « is the specified probability. Here, it is assumed that a; (i = 1,2,...,n)
decision variables are deterministic, technologic coefficients; X; (i = 1,2,...,n) are
random variables. Thus, the problem is to find deterministic equivalent of proba-
bilistic constraint. On the purpose of this paper, we consider the chance constrained
stochastic programming problem when the X;’s are random variables distributed
as chi-square. The equivalent deterministic problem is obtained by three methods.
First two methods are related to first term and second term edgeworth expansion
introduced previous section. Third method offered by Sengupta (1970) can be easily
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n

transform to (8) into its deterministic equivalent. Such that, P(} a; X;<t) > 1—«
i=1

is equivalent to

2in'u

t (é aiE(Xi)> — X{) (2 a?E(XZ-)) > 0. (9)

n .
Here F (X;) =v;, v= ) v; and va) denotes inverse distribution function with v
i=1

degrees of freedom on ‘Zcfle 1 — a level.

We will compare values of the objective function of model, which are obtained
from these three methods by giving numerical examples, and we will discuss on
these results by illustrating examples in this section. We will also compare three
methods with Laguerre expansion introduced by Castafio et al. (2005), since their
tool still gives more appropriate result.

Example 4.1. For n = 2, here is simple stochastic model with one chance con-
straint, it is assumed that the random variables have the same chi-square distribu-
tion with degrees of freedom 1 and independent:

maxz = aj + as,
P (andy) +azxdy) <4) = 06, (10)
1 S ay, a2 S 6.

Solutions have been obtained by using Lingo 9.0. and presented in Table 5.

TABLE 5. Model solutions for (10)

t=4 | Decision Variables (a) Objective Function (2)
FE a1=3.977762 a2=1.000000 | 4.977762
MSE | @1=3.909999 a2=1.000000 | 4.909999
SM a1=2.182713 a9=2.182713 4.365427

Even if Lingo Program yields to global solutions for three methods on the proba-
bility level at 0.6, the solutions are checked by using Laquerre expansion method,
except for SM (Sengupta’s method), FE and SE are not greater than 0.6. Further-
more, among the three methods, when they are compared with each other according
to their objective function values, SM has the least value. But Laquerre expansion
shows that the solution of the model approximately is a; = 3.825538 and ay = 1,
and the objective function value is 4.825538. In this situation, SE and FE methods
give better result than SM method does. It can be emphasized that even if FE and
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SE are related to large sample theory, these can also perform to get better results
for two weighted components.

Example 4.2. For n = 2, suppose that random variables are independent but not

identically distributed, then the model is setting up as follows:

maxz = aj + as,
P (alxé) + azx%4) < t) > 0.6,

ai,az > 1.

Solutions have been obtained for some values of ¢ and given in Table 6.

TABLE 6. Model solutions for (11)

Decision variables (a) Objective Function (z2)
FE a1=1.399968 a2=1.000000 | 2.399968
t=7 | MSE | @1=1.397556 a2=1.000000 | 2.397556
SM a1=1.319666 a2=1.000000 | 2.319666
FE a1=1.935567 a2=1.000000 | 2.935567
t=8 | MSE | @;=1.886886 a2=1.019945 2.906831
SM a1=1.554859 a2=1.099452 2.654311
FE a1=2.491195 a=1.000000 | 3.491195
t=9 | MSE | @1=2.122746 a2=1.147438 | 3.270185
SM a1=1.749217 a2=1.236883 | 2.986100
FE a1=3.053301 a2=1.000000 | 4.053301
t=10 | MSE | @1=3.049645 a2=1.000000 | 4.049645
SM a1=1.943574 a2=1.374315 | 3.317889

(11)

We can see from Table 6 that FE and MSE yield better solutions than SM, according
to their objective function values.

Example 4.3. For n = 4, random variables are identically and independently dis-
tributed, and model has one chance constraint and some deterministic constraints,

maxz = a1a2a30a4,
P (alx%l) + GJQX%l) + a3X%1) + a4X%1) S t) Z 067
2a0 + 4ayg < 20,
a1 + 3ag < 15,
ajay > 4,
az <5,
as Z 2.
Solutions have been obtained for some values of ¢ and given in Table 7.

(12)
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TABLE 7. Model solutions for (12)

Decision variables (a) Fl?n}ijt?z:"(z )
=1 =2.
FE |y oousise ag —omzazn | 7O
t=7 | SE 621:01.5890701040801 Zi i;:gggggg p—
SM | solution can not be found
=1 =2.
FE | oo Croosoms ap o | DTS
=1 =2.
=8 [ SB | o T o 4y —som | 152200
—1. >
SM | L T e o ooy | 1465899
ot o v
—1.773841 a3 —2.043599
0 cE Z; —3.104133 Zi —3.104133 | 2492937
SM | L e o ossag | 2097129

From Table 7, it is possible to say that using transformed chance constraint(s) into
its (their) deterministic equivalent(s) by constructing with FE or SE in a model,
one can obtain better solution using Lingo Program.

5. CONCLUSION

In this paper, we have suggested two expansions based on normal approximation
for weighted sum of chi-square random variables. These are applied to one of the
specific stochastic model which is a chance constrained programming problem. It
is assumed that a decision variables are deterministic, technologic coefficients are
independent chi-square random variables. It is aimed to transform the chance
constraints into deterministic constraints by using these methods. We compare the
solutions of transformed deterministic model according to objective functions. As
it can be seen from Table 5, Table 6 and Table 7, FE and SE yield more feasible
results than SM method. If the random variables have chi-square distribution with
different d.f., then FE and SE result’s are closely feasible. Therefore FE and SE
are recommended to converting chance constraint into deterministic constraint for
chi-square type CCP problem.
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Ki-KARE TiPi SANS KISITLARI iCIN EDGEWORTH SERI
YAKLASIMI

OZET: Ki-kare dagihml rasgele degiskenlerin agirlikli toplammin
dagiimina yaklagim icin iki yontem tamitilmigtir. Oyle ki bu yon-
temler, ki-kare tipindeki sans kisitli problemlerin deterministik egit-
liklerinin elde edilmesinde kullanilabilir ve literatiirde bilinen y&n-
temlerden daha yararl olabilir. Bu nedenle, bu iki limit yaklagimai,
Sengupta (1970)’ nin bu tiir problemler igin 6nerdigi yontem ile
kargilagtirilmig ve bu amag dogrultusunda bazi érnekler verilmigtir.
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