Commun.Fac.Sci.Univ.Ank.Series A1
Volume 58, Number 2, Pages 1-10 (2009)
ISSN 1303-5991

AN EFFICIENT STORAGE FORMAT FOR LARGE SPARSE
MATRICES

ATYOUB FARZANEH, HOSSEIN KHEIRI AND MEHDI ABBASPOUR SHAHMERSI

ABSTRACT. In this paper we consider linear system Az = b where A is a large
sparse matrix. A new efficient, simple and inexpensive method for storage of
coefficient matrix A was presented. The purpose of this method is to reduce the
storage volume of large non-symmetric sparse matrices. The results shows that
the proposed method is very inexpensive in comparison with current methods
such as Coordinate format, Compressed Sparse Row (CSR) format and Mod-
ified Sparse Row (MSR) format.

1. INTRODUCTION

Consider a linear system

Az =10 (1.1)
where A is a large random nonsingular sparse matrix of the order n x n, and b is
given column vector of order n. Such systems of linear equations are frequently en-
countered in almost all scientific and engineering applications. For instance, sparse
matrices appear in various applications including structural analysis, computational
fluid dynamics, economic modeling, financial analysis, numerical optimization, sta-
tistical modeling, power network analysis, electromagnetic, meteorology, medical
imaging, data mining, finite-element simulations, decision support systems in man-
agement science, circuit simulations, information retrieval and many more. A num-
ber of significant advancements in sparse matrix computations have been made in
recent years [1, 8].

The irregular nature of sparse matrix-vector multiplication, Az = b, has led to
the development of a variety of compressed storage formats, which are widely used
because they do not store any unnecessary elements. In this paper we introduce a
new method for storage of matrix A which we called it Compressed Sparse Vector
(CSV) format. We show that storage volume and computational cost in CSV

Received by the editors April 06, 2009; Accepted: July 07, 2009.
1991 Mathematics Subject Classification. 65F50;65F50; 68P20;68P20.

Key words and phrases. Sparse matrix; Storage schemes; Data structures .

©2009 Ankara University

2 AIYOUB FARZANEH, HOSSEIN KHEIRI AND MEHDI ABBASPOUR SHAHMERSI

format is less than other existent methods such as Coordinate, CSR and MSR
storage formats. The CSV format can be used for all arbitrary sparse matrices
such as non-square matrices.

The outline of the paper is as follows. First, three popular storage format (Co-
ordinate, CSR and MSR formats) illustrated in the next section. In section 3, the
CSV format for storing the matrix A is given. In section 4, advantages of CSV
storage method is described briefly, and finally, numerical examples are given to il-
lustrate performance and effectiveness of the new method in section 5. We present
a case study of a 5x5 sparse matrix to show the data structures and the algorithm
to storage coefficient matrix of Az = b using the CSV format.

2. STORAGE SCHEMES

In many scientific computations the manipulation of sparse matrices is con-
sidered the crux of the design. Generally the non-zero elements in a sparse matrix
constitutes a very small percentage of data. This irregular nature of sparse matrix
problems has led to the development of a variety of compressed storage formats [1,
3 - 6, 9-11]. There are more than thirteen different storage formats for coefficient
matrix A [2]. which are widely used. The Coordinate format, Compressed Sparse
Row (CSR) and Modified Sparse Row (MSR) formats are three important storage
methods which have been widely used in most sources [2 - 11].

2.1. The Coordinate Storage Format. The simplest storage scheme for
sparse matrices is the so-called Coordinate format. The data structure consists of
three arrays: (1) AA a real array containing all the real or complex values of the
nonzero elements of A in any order; (2) JR an integer array containing their row
indices; and (3) JC a second integer array containing their column indices. All
three arrays are of length Nz, the number of nonzero elements [3].

For example let A be an square matrix of the order 5x5

10 0 2 0
34 0 5 0
6 0 7 8 9
A= 0 0 10 11 O
0 0 0 0 12

This matrix will be represented (for example) by:

AA 12, 9. 7. 5. 1. 2. 11. 3. 6. 4 8. 10
JR[5 3 3 2 1 1 4 2 3 2 3 4]
JC [5 5 3 41 441 1 2 4 3]

AN EFFICIENT STORAGE FORMAT FOR LARGE SPARSE MATRICES 3

In this example, the elements are listed in an arbitrary order. But, they are
usually listed by row or columns.

2.2. The CSR Storage Format. The CSR format was originally suggested
by A. Brameller [3] and D. J. Rose [4]. This format is the most popular scheme
for storing large sparse matrices. In the above example (coordinate format), if the
elements were listed by row, the array JC which contains redundant information
might be replaced by an array which points to the beginning of each row instead.
This would involve non-negligible saving in storage. Storing given matrix A with a
CSR scheme requires three one-dimensional arrays AA, JR, and JC of length Nz,
Nz, and n + 1 respectively, where n is the number of rows and Nz is the total
number of nonzero elements in the matrix A.

The array AA contains the non-zero elements of A stored row-by-row, JR con-
tains the column indices which correspond to the non-zero elements in the array
AA, and JC contains n + 1 pointers which delimit the rows of non-zero elements in
the array AA, as illustrated below.

Consider matrix (2), this matrix will be represented by:

AA |1 2. 3 4 5. 6. 7. 8 9. 10. 11. 12.
JR [1 41 2 41345 3 45]
JC [1 3 6 10 12 13]

2.3. The MSR Storage Format. The Modified Sparse Row (MSR) format
has only two parallel arrays of equal length (Nz+41): A real array AA and an integer
array JA. The first n position in AA contains the diagonal elements of the matrix in
order. The position n + 1 of the array AA is not used, but may sometimes be used
to carry other information concerning the matrix. Starting at position n + 2, the
non-zero elements of AA excluding its diagonal elements, are stored by row. For
each element AA(k), the integer JA(k) represents its column index on the matrix.
The n + 1 first position of JA contains the pointer to the beginning of each row in
AA and JA.

Thus for Matrix (2), the two arrays will be as follows:

AA [1. 4. 7. 11. 12. = 2. 3. 5. 6. 8 9. 10.|
JA [7 8 10 13 14 14 4 1 4 1 4 5 3]

The star denotes an unused location. Notice that JA(n) =JA(n + 1) = 14,
indicating that the last row is a zero row, once the diagonal element has been
removed [2]. The restriction of MSR method is that principal diagonal element of
coefficient matrix must be non-zero [2].

4 AIYOUB FARZANEH, HOSSEIN KHEIRI AND MEHDI ABBASPOUR SHAHMERSI

3. THE COMPRESSED SPARSE VECTOR (CSV) STORAGE FORMAT

Now we introduce a new efficient method which like MSR, format has two
arrays but can be used for storing sparse matrices with arbitrary sparsity patterns.
First we consider the following method which is the main idea for the Compressed
Sparse Vector (CSV) format.

Suppose A is a non-square m x n large sparse matrix. We consider two arrays as
AA and TA of length Nz + 1, where Nz is the number of non-zero elements in A.
The first n position in the array AA contains the non-zeroes of A stored row-by-row
and the first n position in IA contains the indices of non-zero elements that results
from row counting indexing which assigns a number for any element and only saves
the indices of non-zero elements in IA and non-zero elements in AA; and m and n
are the last elements in AA and IA respectively.

For instance consider matrix (2), the arrays AA and IA are as follows:

AA 1 2 3 45 6 7 8 9 10 11 12]
TA [1 4 6 7 9 11 13 14 15 18 19 25|

In this version, by increasing dimensions of matrix A, the index value increases
rapidly necessitating large amount of space assignments for storing indexes.

In order to overcome this problem, we implement new version of indexing called
Compressed Sparse Vector (CSV) format, in which we start indexing from the first
element of matrix, a;1, by considering two states as follows:

Case 1. If a;;= 0, it takes No.1 as index and we go to the next element, and
counting continues till the first non-zero element, then we store coupled non-zero
element and its associated index, and indexing continues starting from No.l from
next element until the last non-zero element is received.

Case 2. If ay; # 0, it takes No.1 as index then we store this non-zero element
and its related index as first coupled, and indexing continues from next element
starting from the number 1 as described in Case 1 and Case 2.

The new data structure has two arrays with the following function:

* AA a real array of the length Nz + 1, that the first Nz element in AA is set
aside to store non-zero elements of matrix A of any order and the position Nz + 1
indicates the number of rows.

* IA an integer array of the length Nz + 1, that the first Nz element contains
the indices which correspond to the non-zero elements in the array AA and the
element Nz + 1 stands for the number of columns.

For example compressed format of matrix (2) using CSV format is as bellow:

AN EFFICIENT STORAGE FORMAT FOR LARGE SPARSE MATRICES 5

AA - [1 2 3 4 5 6 7 8 9 10 11 12]
A (1.3 2 1 2 2 2 1 1 3 1 6]

The pseudocode of the CSV storage method is given as follows:

3.1. ALGORITHM1. The CSV Method.
Start.

Stepl :

Define index=0, A as integer array and AA as real array.

Step2:

for i=1,...,n do

for j=1,...,m do

(i)index=index+1.

(ii) if a;,; # 0 do

(I)add a; ; to AA array

(IT) add index to IA array.

(ITI) index=0.

END DO.

END DO.

END DO.

3.2. CSV Codes with Matlab.
function ms=edited(a)

bp=|[size(a,1) size(a,2)];

bs=[0 0]; index=0;

for i=1:size(a,1)

for j=1:size(a,2)

index=index-+1;

if a(i,j) =0

bs=[index a(i,j)];

bp=[bp;bs;

index=0;

end

end

end

ms=bp;

4. ADVANTAGES OF CSV FORMAT

The CSV storage method with a very simple algorithm has special advantages.
Here we illustrate some advantages of this format.

6 AIYOUB FARZANEH, HOSSEIN KHEIRI AND MEHDI ABBASPOUR SHAHMERSI

4.1. Less Storage Volume. Considering the construction process of arrays AA
and TA, storing volume of this method has been reduced considerably in comparison
with other methods. Restarting indices values in the CSV, after passing each non-
zero element has great effect in reducing storage volume of array IA. For instance
in example 2, the results of Table 2 show that for a hepta-diagonal matrix of order
2000x2000, 7.62 MB of space is needed if the matrix stored with all its zero and
non-zero elements, if we use coordinate, CSR and MSR storage methods, the file
sizes reduces to 148.0 KB, 98.1 KB and 89.1 KB respectively, but a considerable
decrease in required volume appears using CSV storage format, with storage volume
of only 60.5 KB.

More illustrated examples have been given in numerical results.

4.2. Ease of Transpose Matrix Calculation. Calculating of transpose
matrix A in current methods has difficulties and needs more computation. For
example Coordinate format needs 3 x Nz operations to calculate transpose matrix
from the compressed format. But in CSV format we only replace the elements
Nz+1 in both arrays AA and TA with together, and after that we change counting
method. This can be done by changing the place of the last elements in AA and
TA and counting in the opposite way of the one that has been used to create the
compressed matrix; meaning that if we used row counting for the compressed matrix
we should use column approach for the transpose matrix.
For example consider matrix (2), AT can be calculated as follows:

10 0 2 O

34 0 5 0

6 0 7 8 9

0 0 10 11 O

00 0 0 12
I

Representing with CSV method (by row counting)

1 2 3 45 6 7 8 9 10 11 12

13 2 1 2 2 2 11 3 1 6
4

Replacing last elements in both arrays
2 3 45 6 7 8 9 10 11 6
32122211 3 1 12

I

1
1

AN EFFICIENT STORAGE FORMAT FOR LARGE SPARSE MATRICES 7

recalling by column counting

13 6 0 0
040 0 O
0 07 10 O
2 5 8 11 0
00 9 0 12
4.3. High Speed. Indexing algorithm of the CSV method shows that this

method is very simple, needing a decreased number of operations in the computing
and retrieving processes which makes it a quick-yielding method.

4.4. Broad Range for Storage Sparse Matrices. Considering the size of
the compressed matrix in the CSV storage method, broader range of matrices can
be represented by this method. Results in Table 4 show that the performance of
the CSV method in dense sparse matrices is better than the others. For instance,
consider matrix No.3 of the order 200x200 in the Table 4, storage volume of the
compressed matrix of all the methods that used here, except the CSV method, are
more than the storage volume of the original matrix.

5. NUMERICAL EXAMPLES

In this section we tested the general tridiagonal, hepta-diagonal, random
and dense sparse matrices with different dimensions. The CSV method has been
compared with the Coordinate, CSR and MSR methods. Table 1 and Table 2
contain results obtained using these methods for tridiagonal and hepta-diagonal
matrices. Also in Table 3, we examined these methods on random matrices and
Table 4 is for dense matrices created by MATLAB 1.

In the Tables 1-4 the second column is for dimensions of matrices, the next col-
umn represent the number of non-zero elements, and "primary" column is for size
of matrix that stored with its zero and non-zero elements, Furthermore the columns
of "Coordinate", "CSR"?, "M SR" and "CSV", represent the storage volume of
the compressed matrices of relevant storage methods.

Example 1.

In this example three tridiagonal matrices of orders 1000, 2000, 3000 were com-
pressed with Coordinate, CSR, MSR and CSV storage formats. Table 1 shows that
the CSV method has a significant decline of storage volume in comparison with
Coordinate, CSR and MSR methods.

LAl the matrices has been saved with function dlwrite in MATLAB.
2Three values in CSR column are for storage of AA, JR and JC arrays respectively.

8 AIYOUB FARZANEH, HOSSEIN KHEIRI AND MEHDI ABBASPOUR SHAHMERSI

* | n | #zeros | Primary | coordinate CSR MSR cSV
111000 | 2998 |1.90 MB | 28.6 KB | (5.85+11.3+4.52)KB | 18.3 KB | 13.6 KB
22000 | 5998 |7.62MB | 63.8 KB | (11.7+26.0+9.40)KB | 38.8 KB | 29.2 KB
313000 | 8998 |17.1 MB| 98.9 KB | (17.54+40.64+14.2)KB | 59.3 KB | 43.9 KB
Table 1: Results for Tridiagonal Matrices
Example 2.

In this example three hepta-diagonal matrices of orders 1000, 2000, 3000 were
compressed with Coordinate, CSR, MSR and CSV storage formats. In this example
like example 1, capability of CSV method appears in Table 2.

*1'n #zeros | Primary | coordinate CSR MSR cSV
111000 | 6988 |1.90 MB| 66.8 KB | (13.6+26.5+4.73)KB | 41.3 KB | 29.2 KB
22000 | 13988 | 7.62 MB | 148.0 KB | (27.34+60.7+10.1)KB | 89.1 KB | 60.5 KB
33000 | 20988 |17.1 MB | 230.0 KB | (40.9+94.94+16.0)KB | 137.0 KB | 90.7 KB
Table 2: Results for Hepta-diagonal Matrices
Example 3.

Here, again, we used Coordinate, CSR, MSR and CSV storage methods for com-
pressing sparse matrices, which have been tested on the following three randomly
selected matrices. The systems of linear equations with the size of 5000, 6000 and
7000 were considered. The results are reported in Table 3.

n

#zeros

Primary

coordinate

CSR

MSR

csv

5000
6000
7000

D O | ¥

165777
25865
30176

47.6 MB
68.6 MB
93.4 MB

202.0 KB
320.0 KB
371.0 KB

(47.1+77.3425.6)KB
(73.64+124.04-30.4)KB
(85.94142.04-38.2)KB

125.0KB
201.0KB
233.0KB

123.0 KB
187.0 KB
220.0 KB

Example 4.

We, also, tested Coordinate, CSR, MSR and CSV storage methods for com-
pressing dense sparse matrices on the following three dense random matrices with
approximately 50 percent of non-zero elements. The systems of linear equations
with the size of 100, 150, and 200 were considered. Results of this example show
that the CSV storage format keeps its effectiveness for storage of dense matrices in
comparison with above formats. The results are reported in Table 4.

Table 3: Results for random Matrices

n

#2er08

Primary

coordinate

CSR

MSR

csv

100
150
200

W DN | ¥

4997
11109
19953

29.3 KB
65.9 KB
117.0 KB

52.9 KB
125.0 KB
232.0 KB

(14.6+20.0)KB+630 B
(32.5+46.4)KB+951 B
(58.5+86.6+1.30)KB

33.1KB
68.2 KB
130.5KB

29.3 KB
65.1 KB
116.0 KB

AN EFFICIENT STORAGE FORMAT FOR LARGE SPARSE MATRICES 9

Table 4: Results for dense random Matrices

6. CONCLUSION

A new storage method for large sparse matrices was presented in this paper.
This new method which we called it Compressed Sparse Vector (CSV) format, for
storage of coefficient matrix A of linear system (1), has been based on row counting
indexing, in CSV method, growing rate of indices values has been controlled by
restarting indices after passing each non-zero element. In this work we considered
the case when matrix A is multi-diagonal (tri- and hepta-diagonal) and also the case
of random matrices. Results show that storage compaction in this new method is
better than other methods. Also, we showed that calculating of transpose of matrix
A is very simple without any computation cost. Furthermore, we can conclude
that application of CSV method for representing sparse matrices not only reduces
the storage volume of the compressed matrix, but also it increases the speed of
the computers in practice. Also, using this method is suitable for dense sparse
matrices, therefore, a broad range of sparse matrices could be compressed. Thus,
since memory is an issue, the method’s low storage requirements provide a means
to tackle very large problems which would otherwise be out of reach.

OZET: Bu calismada, A bir genis seyrek matris olmak iizere,

Az = b lineer sistemi ele alinarak katsayilar matrisi olan A nin,
depolanmasina iligkin etkin, basit ve kolay bir yontem verilmigtir.
Bu yontemin amaci, simetrik olmayan, genis seyrek matrislerin
depolanma hacmini kiigiiltmektir. FElde edilen sonuglar, 6ner-
ilen yontemin, Koordinat Formati, Sikigtirilmig Seyrek Satir (CSR)
Format1 ve Uyarlanmig Seyrek Satir (MSR) Formati gibi, halen kul-
lanilmakta olan formatlarla kiyaslandiginda ¢ok daha kolay oldugunu
gostermektedir

REFERENCES

[1] Esmond G. Ng and Daniel J. Pierce, Introduction to the Special Section on Sparse and
Structured Matrices and Their Applications, STAM. J. Matrix Anal. and Appl. 20, 887 (1999).

[2] Y. Saad, Modified from SPARSKIT: a basic tool kit for sparse matrix computations,(June
6, 1994).

[3] Y. Saad, Iterative Methods For Sparse Linear Systems, 2nd edition with corrections.(Jan.
3RD, 2000).

[4] A.Brameller, R.N. Allan and Y.M. Hamam, Sparsity, Pitman, New York, (1976).

[5] D.J. Rose and R.N. Willoughby, Sparse Matrix and its Applicatios, Plenum Pres, New York
, (1972).

[6] R.C. Mittal and A.H. Al-Kurdi, LU-decomposition and numerical structure for solving large
sparse nonsymmetric linear systems, Computers Math. Applic. 42, 131-155, (2001).

10

[7]

AIYOUB FARZANEH, HOSSEIN KHEIRI AND MEHDI ABBASPOUR SHAHMERSI

R.C. Mittal and A.H. Al-Kurdi, An efficient method for constructing an ILU preconditioner
for solving large systems by the GMRES method, Computers Math. Applic. 45, 1757-1772,
(2003).
A. Pinar and V. Vassilevska, Finding Nonoverlapping Substructures of a Sparse Matrix,
Electronic Transactions on Numerical Analysis (ETNA), Volume 21, 107-124, 2005.
J. Dongarra, Sparse matrix storage formats, in: Z. Bai, et al. (Eds.), Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, STAM, Philadelphia, 2000.
Electronic version available at: http://www.cs.utk.edu/ dongarra/etemplates/node372.html.
Matrix Market, Electronic version available at: http://math.nist.gov/MatrixMarket/.
E. Montagne, A. Ekambaram, An optimal storage format for sparse matrices, Information
Processing Letters. 90, 87-92, (2004).
Current address: Faculty of Mathematical Sciences, University of Tabriz, Tabriz - Iran
E-mail address: ayub_farzaneh@yahoo.com

