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NOTES ON COMMUTATIVITY OF PRIME RINGS WITH
GENERALIZED DERIVATION

OZNUR GOLBASI AND EMINE KOG

ABSTRACT. In this paper, we extend the results concerning generalized deriva-
tions of prime rings in [2] and [8] for a nonzero Lie ideal of a prime ring R.

1. INTRODUCTION

Let R denote an associative ring with center Z. For any z,y € R, the symbol
[z, y] stands for the commutator zy — yx. Recall that a ring R is prime if xRy = 0
implies x = 0 or y = 0. An additive mapping d : R — R is called a derivation if
d(zy) = d(x)y + zd(y) holds for all z,y € R.

Recently, M. Bresar defined the following notation in [6]. An additive mapping
f: R — R is called a generalized derivation if there exists a derivation d: R — R
such that

fzy) = f(z)y + 2d(y), forallz,ye R.

One may observe that the concept of generalized derivation includes the concept of
derivations, also of the left multipliers when d = 0. Hence it should be interesting
to extend some results concerning these notions to generalized derivations.

Let S be a nonempty subset of R. A mapping f from R to R is called centralizing
on Sif [f(x),z] € Z for all z € S and is called commuting on S if [f(z), z] = 0 for all
x € S. The study of such mappings was initiated by E. C. Posner in [12]. During the
past few decades, there has been an ongoing interest concerning the relationship
between the commutativity of a ring and the existence of certain specific types
of derivations of R. In [4], R. Awtar proved that a nontrivial derivation which is
centralizing on Lie ideal implies that the ideal is contained in the center a prime
ring R with characteristic different from two or three. P. H. Lee and T. K. Lee
obtained same result while removing the characteristic not three restriction in [11].
In [3], N. Argag and E. Albag extended this result for generalized derivations of a
prime ring R and in [8], O. Golbagi proved the same result for a semiprime ring R.
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The first purpose of this paper is to show this theorem for a nonzero Lie ideal U of
R such that u? € U for all u € U.

On the other hand, in [1], M. Asraf and N. Rehman showed that a prime ring R
with a nonzero ideal I must be commutative if it admits a derivation d satisfying
either of the properties d(zy) + zy € Z or d(xy) — zy € Z, for all z,y € R. In [2],
the authors explored the commutativity of prime ring R in which satisfies any one
of the properties when f is a generalized derivation:

(i) f(ay) — wy € 7,

(11) f(zy) + 2y € Z, (i60) f(zy) — yx € Z,

() f(zy) + yx € Z(v) f(z)f(y) —2y € Z

(v) f(x) f(y) + 2y € Z,

for all z,y € R. The second aim of this paper is to prove these theorems for a
nonzero Lie ideal U of R such that u? € U for all uw € U.

2. PRELIMINARIES

Throughout the paper, we denote a generalized derivation f : R — R deter-
mined by a derivation d of R with (f,d) and make some extensive use of the basic
commutator identities:

[z,y2] = ylz, 2] + [z, y]2

[zy, 2] = [z, 2]y + z[y, 2]

Notice that uv +vu = (u + v)? — u? — v? for all u,v € U. Since u? € U for all
uw € U,uv+vu € U. Also uv —vu € U, for all u,v € U. Hence, we find 2uv € U for
all u,v e U.

Moreover, we shall require the following lemmas.

Lemma 2.1. [9, Lemma 1]Let R be a semiprime, 2—torsion free ring and U a
nonzero Lie ideal of R. Suppose that [U,U) C Z, then U C Z.

Definition 2.2. Let R be aring, AC R. C(A) ={z € R|za =az, forall a € A}
is called the centralizer of A.

Lemma 2.3. [5, Lemma 2]Let R be a prime ring with characteristic not two. If U
a noncentral Lie ideal of R , then Cr(U) = Z.

Lemma 2.4. [5, Lemma 4]Let R be a prime ring with characteristic not two,
a,b € R. If U a noncentral Lie ideal of R and aUb =0, then a =0 or b = 0.

Lemma 2.5. [5, Lemma 5]Let R be a prime ring with characteristic not two and
U a nonzero Lie ideal of R. If d is a nonzero derivation of R such that d(U) = 0,
then U C Z.

Lemma 2.6. [5, Theorem 2]Let R be a prime ring with characteristic not two and
U a noncentral Lie ideal of R. If d is a nonzero derivation of R, then Cr(d(U)) = Z.

Lemma 2.7. [11, Theorem 5]Let R be a prime ring with characteristic not two and
U a nonzero Lie ideal of R. If d is a nonzero derivation of R such that [u,d(u)] € Z,
for alluw € U, then U C Z.
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3. RESULTS

The following theorem gives a generalization of Posner’s well known result
[12, Lemma 3] and a partial extension of [7, Theorem 4.1].

Theorem 3.1. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u* € U for allu € U. If R admits nonzero generalized derivations (f,d)
and (g, h) such that f(uw)v = ug(v), for all u,v € U, and if d,h # 0, then U C Z.
Proof. We have
fwv =ug(v), for all u,v € U. (3.1)
Replacing u by [z,u]u,z € R in (3.1) and applying (3.1), we get
[z, u))uv + [z, uld(u)v = [z, u]ug(v)
[, ulg(w)v + [z, uld(w)v = [z, uJug(v),
and so
[z, u](g(u)v + d(u)v — ug(v)) =0, for all u,v € U,z € R. (3.2)
Substituting xy for z in (3.2) and using this, we get
[z, u]R(g(u)v + d(u)v —ug(v)) = 0, for all u,v € U,z € R.
Since R is prime ring, the above relation yields that
u € Z or g(u)v+ d(u)v —ug(v) =0, for allv e U,z € R.

Weset K ={ueU|ueZ}and L ={u €U | g(u)v+ d(u)v — ug(v) = 0, for
all v € U}. Clearly each of K and L is additive subgroup of U. Morever, U is the
set-theoretic union of K and L. But a group can not be the set-theoretic union of
two proper subgroups, hence K = U or L =U.

In the latter case, g(u)v + d(u)v — ug(v) = 0, for all u,v € U. Now, taking 2vw
instead of v in this equation and using this, we have

wvh(w) =0, for all u,v,w € U.

That is uUR(U) = (0), for all uw € U. By Lemma 2.4 and Lemma 2.5, we get v = 0
or U C Z. This implies U C Z for any cases. U

Corollary 1. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of R
such that u?> € U for all u € U. If R admits nonzero generalized derivations (f,d)
and (g, h) such that f(uw)u = ug(u), for all u € U, and if d,h # 0, then U C Z.

Corollary 2. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of R
such that u?> € U for all uw € U. If R admits a nonzero generalized derivation (f,d)
such that [f(u),u] =0, for allu € U,and if d # 0, then U C Z.

Corollary 3. Let R be a 2—torsion free prime ring. If R admits nonzero generalized
derivations (f,d) and (g,h) such that f(x)y = zg(y), for all z,y € R, and if
d,h # 0, then R is commutative ring.
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Corollary 4. Let R be a 2—torsion free prime ring. If R admits nonzero generalized
derivations (f,d) and (g, h) such that f(x)x = zg(x), for allx € R, and if d,h # 0,
then R is commutative ring.

Using the same techniques with necessary variations in the proof of Theorem
3.1, we can give the following corollary which a partial extends [3, Lemma 12] even
without the characteristic assumption on the ring.

Corollary 5. Let R be prime ring concerning a monzero generalized derivation
(f,d) such that [f(z),z] =0, for all x € R, and if d # 0, then R is commutative
ring.

Lemma 3.2. Let R be a prime ring with characteristic not two, a € R. If U a
noncentral Lie ideal of R such that u?> € U for alluw € U and aU C Z(Ua C Z)
then a € Z.

Proof. By the hyphotesis, we have
[au,a] =0,
and so
alu,a] =0, for all u € U.
Replacing u by 2uv in this equation, we arrive at
aufv,a] =0, for all u,v € U.

We get a =0 or [v,a] =0, for all v € U, by Lemma 2.4, and so ¢ € Z by Lemma
2.3. U

Theorem 3.3. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u? € U for all u € U. If R admits a generalized derivation (f,d) such
that f(uv) —uv € Z, for all u,v € U, and if d # 0, then U C Z.

Proof. If f =0, then wv € Z for all u,v € U. In particular wU C Z, for all u € U.
Hence U C Z by Lemma 3.2. Hence onward we assume that f # 0.
By the hyphotesis, we have

fwv 4+ ud(v) —uwv € Z, for all u,v € U. (3.3)
Replacing v by 2uw in (3.3), we get
2((f (uw) — uw)v + vwd(v)) € Z, for all u,v,w € U.
Commuting this term with v € U, we arrive at
wwld(v),v] + uw, v]d(v) + [u, v]wd(v) = 0, for all u,v,w € U. (3.4)
Taking u by 2tu in (3.4) and using this equation, we get
[t, v]uwd(v) = 0, for all u,v,w,t € U.
We can write [¢t,v]Ud(v) = 0, for all v,t € U. This yields that
[t,v] =0or d(v) =0, forall t € U.
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by Lemma 2.4. We set
K={veU|ltv]=0,foralteU}
and
L={velU]|d() =0}
Then by Braur’s trick, we get either U = K or U = L. In the first case, U C Z

by Lemma 2.3, and in the second case U C Z by Lemma 2.5. This completes the
proof. O

Corollary 6. Let R be a 2—torsion free prime ring. If R admits a generalized
derivation (f,d) such that f(zy) —xy € Z, for all x,y € R, and if d # 0, then R is
commutative ring.

Theorem 3.4. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u* € U for all w € U. If R admits a generalized derivation (f,d) such
that f(uv) +wv € Z, for all u,v € U, and if d # 0, then U C Z.

Proof. If f is a generalized derivation satisfying the property f(uv) + uv € Z, for
all u,v € U, then (—f) satisfies the condition (—f)(uv) —uv € Z, for all u,v € U
and hence by Theorem 3.3, U C Z. O

Corollary 7. Let R be a 2—torsion free prime ring. If R admits a generalized
derivation (f,d) such that f(zy) +xy € Z, for all x,y € R, and if d # 0, then R is
commutative ring.

Theorem 3.5. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u* € U for all w € U. If R admits a generalized derivation (f,d) such
that f(uv) —vu € Z, for all u,v € U, and if d # 0, then U C Z.

Proof. If f = 0, then vu € Z for all u,v € U. Applying the same arguments as
used in the begining of the proof of Theorem 3.1, we get the required result. Hence
onward we assume that f # 0.

By the hypothesis, we have

fluv) —vu € Z, for all u,v € U. (3.5)

Replacing v by 2wv in (3.5), we get f(2uwv) — 2wvu € Z, for all u,v,w € U.
Commuting this term with v € U, we have

[f (ww)v + vwd(v) — wvu,v] =0
and so
[f (uw)v — wuv + wuv + vwd(v) — wou,v] = 0, for all u,v,w € U.
Using the (3.5), we arrive at
[wuv + uwd(v) — wvu,v] =0
and so

[w, v][u, v] + w[[u, v],v] + uwld(v),v] + [u, v]wd(v) + uw,v]d(v) = 0. (3.6)
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Substituting 2uw for w in (3.6) equation and using this, we obtain that
[u, v]wlu, v] + [u, v]uwd(v) = 0, for all u,v,w € U. (3.7
Now taking v by u + v in (3.7) and using this equation, we get
[, v]uwd(v) = 0, for all u,v,w € U.
By Lemma 2.4, we get [u,v]u =0 or d(v) =0, for all u € U. We set
K={veU|lu,vu=0, forallu € U}
and
L={veU]d(w)=0}.
Then by Braur’s trick, we get either U = K or U = L. If U = L, then U C Z by
Lemma 2.5. If U = K, then [u,v]u = 0, for all w € U. Writing v by 2vt in this, we
arrive at
[u,v]tu = 0, for all u,v,t € U.

Again using Lemma 2.4, we have [u,v] = 0, for all u,v € U, and so U C Z by

Lemma 2.3. 0

Corollary 8. Let R be a 2—torsion free prime ring. If R admits a generalized
derwation (f,d) such that f(xy) —yx € Z, for all x,y € R, and if d # 0, then R is
commutative ring.

Using similar arguments as above, we can prove the followings:

Theorem 3.6. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u? € U for all u € U. If R admits a generalized derivation (f,d) such
that f(uv) +vu € Z, for all u,v € U, and if d # 0, then U C Z.

Corollary 9. Let R be a 2—torsion free prime ring. If R admits a generalized
deriwation (f,d) such that f(xy) +yx € Z, for all z,y € R, and if d # 0, then R is
commutative ring.

Theorem 3.7. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u? € U for all u € U. If R admits a generalized derivation (f,d) such
that f(u)f(v) —uv € Z, for all u,v € U, and if d # 0, then U C Z.

Proof. If f = 0, then uv € Z for all u,v € U. Applying the same arguments as
used in the begining of the proof of Theorem 3.1, we get the required result. Hence
onward we assume that f # 0.

By the hypothesis, we have f(u)f(v) —uv € Z, for all u,v € U. Writing 2vw by
v in this equation yields that

2((f(u) f(v) —uw)w + f(uw)vd(w)) € Z, for all u,v,w € U. (3.8)
Commuting (3.8) with w € U, we have
[f (w)vd(w),w] =0, for all u,v,w € U. (3.9
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Substituting 2ut,t € U for u in (3.9), we obtain that
2[f (u)tvd(w), w] + 2[ud(t)vd(w), w] = 0,
Using (3.9) in this equation, we get
[ud(t)vd(w),w] = 0, for all u,v,w,t € U. (3.10)
That is
ud(t)[vd(w), w] + [ud(t), wjvd(w) = 0, for all u,v,w,t € U.
Replacing v by 2kd(m)v,k € U,m € [U,U] in this equation and using (3.10), we
arrive at
[ud(t), wlkd(m)vd(w) = 0, for all u,v,w,t,k € U,m € [U,U].

By Lemma 2.4, we get either [ud(t),w] = 0 or d(m) = 0 or d(w) = 0 for all
u,v,w,t,k € Uym € [U,U]. If d(m) = 0, for all m € [U,U], then [U,U] C Z by
Lemma 2.5, and so again using Lemma 2.1, we get U C Z. This completes the
proof.

Now we assume either [ud(t),w] = 0 or d(w) = 0 for each w € U. We set
K={weU]|[ud(t),w]=0,forall u,t € U} and L = {w € U | d(w) = 0}. Clearly
each of K and L is additive subgroup of U. Then by Braur’s trick, we get either
U= K or U = L. In the second case, U C Z by Lemma 2.5.

In the first case, [ud(t),w] = 0, for all u,w,t € U. Replacing w by d(t),t € [U, U]
in this equation and using this, we arrive at

[u, d(t)]d(t) =0, for all uw € U,t € [U,U] (3.11)

Substituting 2tu,u € U for u in (3.9) and using this, we obtain that

[t,d(t)]ud(t) =0, for all uw € U,t € [U,U].
Let
K ={te[U,U]|[td(t)] =0}
and
L={te[U,U]|d(t)=0}

of additive subgroups of [U, U]. Now using the same argument as we have done, we
get [U,U] = K or [U,U] = L. If [U,U] = L then we have required result applying
similar arguments as above. If [U,U] = K, then [U,U] C Z by Lemma 2.7, and so
again using Lemma 2.1, we get U C Z. (I

Corollary 10. Let R be a 2—torsion free prime ring. If R admits a generalized
derivation (f,d) such that f(z)f(y) —xy € Z, for all x,y € R, and if d # 0, then
R is commutative ring.

Application of similar arguments yields the following.

Theorem 3.8. Let R be a 2—torsion free prime ring and U a nonzero Lie ideal of
R such that u* € U for all w € U. If R admits a generalized derivation (f,d) such
that f(u)f(v) +uv € Z, for all u,v € U, and if d £ 0, then U C Z.
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Corollary 11. Let R be a 2—torsion free prime ring. If R admits a generalized
derivation (f,d) such that f(z)f(y) +xy € Z, for all x,y € R, and if d # 0, then

R

18 commutative ring.

OZET: Bu calismada, [2] ve [8] makalelerinde genellestirilmis tiirevli
asal halkalar i¢in elde edilen sonuglar, sifirdan farkli bir Lie ideal
i¢in incelenmigtir.
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