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Abstract. In this paper, we first define the concept of framed submersions
between framed metric manifolds, then we provide an example and show that
the vertical and horizontal distributions of such submersions are invariant with
respect to the framed metric structure of the total manifold. Moreover, we
obtain various properties of the O’Neill’s tensors for such submersions and
find the integrability of the horizontal distribution. We also find necessary
and sufficient conditions for a framed submersion to be totally geodesic. The
study is focused on fundamental properties and the transference of structures
defined on the total manifold.

1. Introduction

The theory of Riemannian submersion was introduced by O’Neill and Gray in
[12] and [9], respectively. Presently, there is an extensive literature on the Rie-
mannian submersions with different conditions imposed on the total space and
on the fibres. Riemannian submersions were considered between almost complex
manifolds by Watson in [20] under the name of almost Hermitian submersion. He
showed that if the total manifold is a Kähler manifold, the base manifold is also a
Kähler manifold. Riemannian submersions between almost contact manifolds were
studied by Chinea in [3] under the name of almost contact submersions. Since
then, Riemannian submersions have been used as an effective tool to describe the
structure of a Riemannian manifold equipped with a differentiable structure. For in-
stance, Riemannian submersions have been also considered for quaternionic Kähler
manifolds[10]. This kind of submersions have been studied with different names by
many authors(see [7], [8],[13], [19] and more).

On the other hand, let (M, g) be a Riemannian manifold equipped with a framed
metric structure, i.e. an endomorphism ϕ of the tangent bundle such that ϕ3+ϕ = 0
and which is compatible with g; the compatibility means that for each X, Y ∈ TM
we have g(ϕX, Y ) = −g(X, ϕY ) [22]. Moreover we assume that the kernel of ϕ
is of constant rank and parallelizable, i.e. there exist global vector fields ξ1, ..., ξs
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spanning kerϕ. Such manifolds are necessarily of dimension 2m+s where 2m is the
rank of ϕ. The study of such manifolds was started by Blair, Goldberg and Yano
([1], [5], [6]). Later such structures were considered by other authors([2],[11],[16],
[17]). In this paper, we define framed submersions between almost framed metric
manifolds and study the geometry of such submersions. We observe that framed
submersion has also rich geometric properties.

The paper is organized as follows. In section 2, we collect basic definitions, some
formulas and results for later use. In section 3, we introduce the notion of framed
submersions and give an example of framed submersion. Moreover, we investi-
gate properties of O’Neill’s tensors and show that such tensors have nice algebraic
properties for framed submersions. We find the integrability of the horizontal dis-
tribution. We also find necessary and sufficient conditions for a framed submersion
to be totally geodesic. Finally, section 4 is focused on the transference of structures
defined on the total manifold.

2. Preliminaries

In this section we are going to recall main definitions and properties of framed
metric manifolds and Riemannian submersions.
Let M be a (2m + s)- dimensional framed metric manifold [21](or almost s-contact
metric manifold[18]) with a framed metric structure (ϕ, ξj , ηj , g), j ∈ {1, ..., s},
that is, ϕ is a (1, 1)−tensor field defining an f−structure of rank 2m; ξ1, ..., ξs are s
vector fields; η1, ..., ηs are s 1-forms and g is a Riemannian metric on M such that

(2.1) ϕ2 = −I +
s∑

j=1

ηj ⊗ ξj , ηj(ξi) = δj
i , ϕ(ξj) = 0, ηj ◦ ϕ = 0,

(2.2) g(ϕX, ϕY ) = g(X, Y )−
s∑

j=1

ηj(X)ηj(Y ),

(2.3) Φ(X,Y ) = g(X, ϕY ) = −Φ(Y, X),

(2.4) g(X, ξj) = ηj(X)

for all X, Y ∈ Γ(TM) and i, j ∈ {1, ..., s}[21].

A framed metric structure is called normal[21]if

(2.5) [ϕ,ϕ] + 2dηj ⊗ ξj = 0,

where [ϕ, ϕ] is the Nijenhuis torsion of ϕ given by

(2.6) [ϕ,ϕ](X, Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X, ϕY ].

A framed metric manifold (M2m+s, g, ϕ, ξj , ηj) is called
(a) almost S-manifold, if dηj = Φ;
(b) S-manifold, if dηj = dΦ and normal;
(c) K-manifold, if dΦ = 0 and normal;
(d) almost C-manifold, if dηj = 0, dΦ = 0;
(e) C-manifold, if dηj = 0, dΦ = 0 and normal[15].
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On S−manifolds we have

(∇XΦ)(Y, Z) =
1
2

s∑

i=1

[ηi(Y )g(X,Z)− ni(Z)g(X, Y )]

− 1
2

s∑

i,j=1

ηj(X)[ηi(Y )ηj(Z)− ηi(Z)ηj(Y )],(2.7)

where ∇ denotes the Levi-Civita connection of the Riemannian metric g[14].

It is easy to see that if M is a framed metric manifold, then the following iden-
tities are well known:

(2.8) N (1)(X, Y ) = [ϕ,ϕ](X, Y ) + 2
s∑

j=1

dηj(X,Y )ξj ,

(2.9) (∇Xϕ)Y = ∇XϕY − ϕ(∇XY ),

(2.10) (∇XΦ)(Y, Z) = g(Y, (∇Xϕ)Z) = −g(Z, (∇Xϕ)Y ),

(2.11) (∇Xηj)Y = g(Y,∇Xξj).

Let (M, g) and (B, g′) be two Riemannian manifolds. A surjective C∞−map
π : M → B is a C∞−submersion if it has maximal rank at any point of M. Putting
Vx = Kerπ∗x, for any x ∈ M, we obtain an integrable distribution V, which is called
vertical distribution and corresponds to the foliation of M determined by the fibres
of π. The complementary distribution H of V, determined by the Riemannian met-
ric g, is called horizontal distribution. A C∞−submersion π : M → B between two
Riemannian manifolds (M, g) and (B, g′) is called a Riemannian submersion if, at
each point x of M, π∗x preserves the length of the horizontal vectors. A horizontal
vector field X on M is said to be basic if X is π−related to a vector field X ′ on B.
It is clear that every vector field X ′ on B has a unique horizontal lift X to M and
X is basic.

We recall that the sections of V, respectively H, are called the vertical vector
fields, respectively horizontal vector fields. A Riemannian submersion π : M → B
determines two (1, 2) tensor fields T and A on M, by the formulas:

(2.12) T (E, F ) = TEF = h∇vEvF + v∇vEhF

and

(2.13) A(E, F ) = AEF = v∇hEhF + h∇hEvF

for any E, F ∈ Γ(TM), where v and h are the vertical and horizontal projections
(see [4]). From (2.12) and (2.13), one can obtain

(2.14) ∇UX = TUX + h(∇UX);

(2.15) ∇XU = v(∇XU) + AXU ;

(2.16) ∇XY = AXY + h(∇XY ),

for any X, Y ∈ Γ(H), U ∈ Γ(V). Moreover, if X is basic then
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(2.17) h(∇UX) = h(∇XU) = AXU.

We note that for U, V ∈ Γ(V), TUV coincides with the second fundamental form
of the immersion of the fibre submanifolds and for X,Y ∈ Γ(H), AXY = 1

2v[X, Y ]
reflecting the complete integrability of the horizontal distribution H. It is known
that A is alternating on the horizontal distribution: AXY = −AY X, for X, Y ∈
Γ(H) and T is symmetric on the vertical distribution: TUV = TV U, for U, V ∈ Γ(V).

We now recall the following result which will be useful for later.

Lemma 2.1. (see [4],[12]). If π : M → B is a Riemannian submersion and X,Y
basic vector fields on M, π−related to X ′ and Y ′ on B, then we have the following
properties

(1) h[X, Y ] is a basic vector field and π∗h[X, Y ] = [X ′, Y ′] ◦ π;
(2) h(∇XY ) is a basic vector field π−related to (∇′X′Y ′), where ∇ and ∇′ are

the Levi-Civita connection on M and B;
(3) [E, U ] ∈ Γ(V), for any U ∈ Γ(V) and for any basic vector field E.

3. Framed Submersions

In this section, we define the notion of framed submersion, give an example and
study the geometry of such submersions. We now define a (ϕ,ϕ′)−holomorphic
map between two framed metric manifolds.

Definition 3.1. Let M2m+s and B2n+s be manifolds carrying the framed met-
ric manifolds structures (ϕ, (ξj , ηj)s

j=1, g) and (ϕ′, (ξ′j , η
′
j)

s
j=1, g

′) respectively. A
mapping π : M → B is said to be a (ϕ,ϕ′)−holomorphic map if π∗ ◦ ϕ = ϕ′ ◦ π∗.

By using the above definition, we are ready to give the following notion.

Definition 3.2. A Riemannian submersion π : M2m+s → B2n+s between the
framed metric manifolds M2m+s and B2n+s is called a framed submersion if:

(i) π∗ξj = ξ′j , j = 1, 2, ..., s
(ii) π∗ ◦ ϕ = ϕ′ ◦ π∗.

We now give an example for framed submersion.

Example 3.1. Consider the following submersion defined by

π : R4+2 → R2+2

(x1, x2, y1, y2, z1, z2) → (
x1 + x2√

2
,
y1 + y2√

2
, z1, z2).

Then, the kernel of π∗ is

V = Kerπ∗ = Span{V1 = − ∂

∂ x1
+

∂

∂ x2
, V2 = − ∂

∂ y1
+

∂

∂ y2
}

and the horizontal distribution is spanned by

H = (Kerπ∗)⊥ = Span{X =
∂

∂ x1
+

∂

∂ x2
, Y =

∂

∂ y1
+

∂

∂ y2
, ξ1 =

∂

∂z1
, ξ2 =

∂

∂z2
}.
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Hence, we have

g(X,X) = g′(π∗X, π∗X) = 4, g(Y, Y ) = g′(π∗Y, π∗Y ) = 4

and
g(ξ1, ξ1) = g′(π∗ξ1, π∗ξ1) = 1, g(ξ2, ξ2) = g′(π∗ξ2, π∗ξ2) = 1.

Thus, π is a Riemannnian submersion. Moreover, we can easily obtain that π
satisfies

π∗ξ1 = ξ′1, π∗ξ2 = ξ′2
and

π∗ϕX = ϕ′π∗X, π∗ϕY = ϕ′π∗Y.

Thus, π is a framed submersion.

The following result can be proved in a standard way.

Proposition 3.1. Let π : M → B be a framed submersion from a framed metric
manifold M onto a framed metric manifold B. If X,Y are basic vector fields on M,
π−related to X ′, Y ′ on B, then, we have

(i) h(∇Xϕ)Y is the basic vector field π−related to (∇′X′ϕ′)Y ′;
(ii) ϕX is the basic vector field π−related to ϕ′X ′.

Next proposition shows that a framed submersion puts some restrictions on the
distributions V and H.

Proposition 3.2. Let π : M → B be a framed submersion from a framed metric
manifold M onto a framed metric manifold B. Then, the horizontal and vertical
distributions are ϕ− invariant.

Proof. Consider a vertical vector field U ; it is known that π∗(ϕU) = ϕ′(π∗U).
Since U is vertical and π is a Riemannian submersion, we have π∗U = 0 from
which π∗(ϕU) = 0 follows and implies that ϕU is vertical, being in the kernel of
π∗. As concerns the horizontal distribution, let X be a horizontal vector field. We
have g(ϕX,U) = −g(X, ϕU) = 0 because ϕU is vertical and X is horizontal. From
g(ϕX, U) = 0 we deduce that ϕX is orthogonal to U and then ϕX is horizontal. ¤
Proposition 3.3. Let π : M → B be a framed submersion from a framed metric
manifold M onto a framed metric manifold B. Then, we have

(i) π∗Φ′ = Φ;
(ii) π∗η′j = ηj , j = 1, ..., s.

Proof. (i) If X and Y are basic vector fields on M, π−related to X ′, Y ′ on B, then
using the definition of a framed submersion, we have

(π∗Φ′)(X, Y ) = Φ′(π∗X,π∗Y ) = g′(π∗X, ϕ′π∗Y ) = g′(π∗X, π∗ϕY )
= (π∗g′)(X,ϕY ) = g(X,ϕY ) = Φ(X,Y )

which gives the proof of assertion(i).

(ii) Let X be basic. Let us consider the case of π∗η′j . We have

(π∗η′j)(X) = η′j(π∗X) = g′(π∗X, ξ′j) = g′(π∗X,π∗ξj) = (π∗g′)(X, ξj).

Since π is a Riemannian submersion, we have π∗g′ = g so that

(π∗g′)(X, ξj) = g(X, ξj) = ηj(X)

and therefore (π∗η′j)(X) = ηj(X) which implies π∗η′j = ηj as claimed. ¤
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Since each ξj is horizontal, we have ηj(U) = 0 for any vertical vector field U and
this implies Vp ⊂ kerηjp, for any p ∈ M.

We now check the properties of the tensor fields T and A for a framed submersion,
we will see that such tensors have extra properties for such submersions.

Proposition 3.4. Let π : M → B be a framed submersion. If the total space is a
S−manifold or K−manifold, then we have

(i) AXϕY = ϕAXY ;

(ii) AϕXY = ϕAXY ;

(iii) AϕXϕY = −AXY ;

(iv) AXϕX = 0;

(v) TUϕV = ϕTUV ;

(vi) TϕUV = ϕTUV,

for X, Y ∈ Γ(H) and U, V ∈ Γ(V).

Proof. We only prove (i), the other assertions can be obtained in a similar way.
From (2.7) we obtain

(∇XΦ)(Y, U) = 0.

By using (2.10) we have g((∇Xϕ)Y,U) = 0.
Thus, since the vertical and the horizontal distributions are ϕ−invariant, from
(2.16) we obtain

g(AXϕY − ϕAXY, U) = 0.

Then, we have AXϕY = ϕAXY. ¤

We now investigate the integrability of the horizontal distribution H.

Theorem 3.1. Let π : M → B be a framed submersion. If the total space is a
S−manifold or a K−manifold, then the horizontal distribution is integrable.

Proof. Let X be basic vector field on M, and U vertical and Y horizontal. By using
Proposition 3.4, then we have

g(AϕXY, U) = g(AXϕY,U) = −g(AXU,ϕY ).

From (2.17) we have h∇UX = h∇XU = AXU. Hence we obtain

(3.1) g(AϕXY, U) = −g(ϕY, h∇UX) = g(Y, ϕ∇UX).

On the other hand, from (2.7)we have (∇UΦ)(X, Y ) = g((∇Uϕ)X,Y ) = 0. By
using (2.14), we get

0 = g(Y, h∇UϕX + TUϕX − hϕ∇UX − ϕTUX)
= g(Y, h(∇UϕX − ϕ∇UX)).

Hence we get

(3.2) h∇UϕX = hϕ∇UX.
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Then, from (3.1) and (3.2) we obtain

g(AϕXY, U) = g(Y, h∇UϕX)
= g(Y, h∇ϕXU)
= g(Y, AϕXU).

Since A is skew-symmetric operator, we get g(AϕXY, U) = 0. This proves the
assertion. ¤

Theorem 3.2. Let π : M → B be a framed submersion from an almost C−manifold
M onto a framed metric manifold B. Then, the horizontal distribution is integrable.

Proof. Let X and Y be basic vector fields. It suffices to prove that v([X, Y ]) = 0, for
basic vector fields on M. Since M is an almost C−manifold, it implies dΦ(X, Y, V ) =
0, for any vertical vector V. Then, one obtains

X(Φ(Y, V ))− Y (Φ(X, V )) + V (Φ(X, Y ))
−Φ([X,Y ], V ) + Φ([X, V ], Y )− Φ([Y, V ], X) = 0.

Since [X, V ], [Y, V ] are vertical and the two distributions are ϕ−invariant, the last
two and the first two terms vanish. Thus, one gets

g([X,Y ], ϕV ) = V (g(X, ϕY )).

On the other hand, if X is basic then h(∇V X) = h(∇XV ) = AXV, thus we have

V (g(X, ϕY )) = g(∇V X, ϕY ) + g(∇V ϕY, X)
= g(AXV, ϕY ) + g(AϕY V,X).

Since, A is skew-symmetric and alternating operator, we get V (g(X,ϕY )) = 0.
This proves the assertion. ¤

Since for a C−manifold dΦ = 0, applying Theorem 3.2, we have the following
result.

Corollary 3.1. Let π : M → B be a framed submersion from a C−manifold M
onto a framed metric manifold B. Then, the horizontal distribution is integrable.

Theorem 3.3. Let π : M → B be a framed submersion from a K−manifold M
onto a framed metric manifold B. If X horizontal vector field is an infinitesimal
automorphism of ϕ−tensor field, then the fibres are totally geodesic.

Proof. Let W and V be vertical vector fields on M, X horizontal. Since M is a
K−manifold, it implies dΦ = 0. Then, we obtain:

dΦ(W,ϕV, X) = W (Φ(ϕV, X))− ϕV (Φ(W,X)) + X(Φ(W,ϕV ))
−Φ([W,ϕV ], X) + Φ([W,X], ϕV )− Φ([ϕV, X], W ) = 0.

Since [W,ϕV ] is vertical and the two distributions are ϕ−invariant, the first two
terms vanish. Thus, one gets:

X(Φ(W,ϕV )) + Φ([W,X], ϕV )− Φ([ϕV,X],W ) = 0.

Thus, we have

0 = Xg(W,V ) + g([W,X], V ) + g([ϕV, X], ϕW )
0 = g(∇XV, W ) + g(∇W X, V ) + g(ϕ[X, ϕV ],W )
0 = g([X,V ] +∇V X, W ) + g(∇W X,V ) + g(ϕ[X,ϕV ], W ).
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On the other hand, if X horizontal vector field is an infinitesimal automorphism
of ϕ−tensor field, then we have

[X,ϕV ] = ϕ[X, V ] ⇒ −[X, V ] = ϕ[X, ϕV ].

Thus, we obtain
g(TV X, W ) + g(TW X,V ) = 0.

Since TV is skew-symmetric operator, we get g(TV W,X) = 0. This proves the
assertion. ¤

From Theorem 3.3, we have the following results.

Corollary 3.2. Let π : M → B be a framed submersion from an almost C−manifold
M onto a framed metric manifold B. If X horizontal vector field is an infinitesimal
automorphism of ϕ−tensor field, then the fibres are totally geodesic.

Corollary 3.3. Let π : M → B be a framed submersion from a C−manifold M
onto a framed metric manifold B. If X horizontal vector field is an infinitesimal
automorphism of ϕ−tensor field, then the fibres are totally geodesic.

Corollary 3.4. Let π : M → B be a framed submersion from a S−manifold M
onto a framed metric manifold B. If X horizontal vector field is an infinitesimal
automorphism of ϕ−tensor field, then the fibres are totally geodesic.

4. Transference of Structures

In this section, we investigate what kind of framed structures are defined on the
base manifold, when the total manifold has some special framed structures.

We now recall that an almost Hermitian manifold (M, J, g) is an almost complex
manifold (M,J) with a J−invariant Riemannian metric g. The J−invariance of g
means that g(JX, JY ) = g(X, Y ), for any X,Y ∈ χ(M)[20].

As the fibres of a framed submersion is an invariant submanifold of M with
respect to ϕ, we have the following.

Proposition 4.1. Let π : (M2m+s, ϕ, ξ, η, g) → (B2n+s, ϕ′, ξ′, η′, g′) be a framed
submersion from a framed metric manifold M onto a framed metric manifold B.
Then, the fibres are almost Hermitian manifolds.

Proof. Denoting by F the fibres, it is clear that dimF = 2(m − n) = 2r, where
r = m − n. On (F 2r, ĝ), setting J = ϕ̂ and g|F = ĝ we have to show that (J, ĝ) is
an almost Hermitian structure. Indeed, by using the definition of a framed metric
structure we get

J2U = ϕ2U = −U +
s∑

j=1

ηj(U)ξj .

Since ηj(U) = 0, we have J2U = −U . On the other hand,

g(JV, JU) = −g(V, J2U) = g(V, U)

which achieves the proof. ¤

In the sequel, we show that base space is a normal if the total space is a normal.
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Theorem 4.1. Let π : M → B be a framed submersion. If the framed metric
structure of M is normal, then the framed metric structure of B is normal.

Proof. Let X and Y be basic. From (2.8), we have

π∗N (1)(X, Y ) = π∗([ϕ,ϕ](X,Y ) +
s∑

j=1

2dηj(X, Y )ξj).

On the other hand, π∗ϕ = ϕ′π∗ and π∗ξj = ξ′j imply that

π∗([ϕ,ϕ](X, Y )) = π∗ϕ2[X, Y ] + [ϕX, ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]
= [π∗X, π∗Y ]− η[X, Y ]π∗ξj + [π∗ϕX, π∗ϕY ]− ϕ′π∗[ϕX, Y ]
− ϕ′π∗[X, ϕY ]
= [X ′, Y ′]− g′([X ′, Y ′], ξ′j)ξ

′
j + [ϕ′X ′, ϕ′Y ′]− ϕ′[ϕ′X ′, Y ′]

− ϕ′[X ′, ϕ′Y ′].

Then, we have

(4.1) π∗[ϕ,ϕ](X, Y ) = N ′(X ′, Y ′).

In a similar way, since π is a Riemannian submersion, by using Proposition 3.3(ii),
we have

(4.2) π∗2dηj ⊗ ξj = 2dη′j ⊗ ξ′j .

Now, from (4.1) and (4.2) we obtain

π∗N (1)(X, Y ) = N ′(1)(X ′, Y ′) = 0.

¤

Proposition 4.2. Let π : M → B be a framed submersion. If the total space M is
an almost C−manifold or a K−manifold, then the base space B belongs to the same
class.

Proof. Let X, Y and Z be basic vector fields on M, π−related to X ′, Y ′ and Z ′ on
B. Since M is an almost C−manifold, it implies dΦ(X, Y, Z) = 0. Then, we have

X(Φ(Y,Z))− Y (Φ(X,Z)) + Z(Φ(X,Y ))
−Φ([X, Y ], Z) + Φ([X, Z], Y )− Φ([Y, Z], X) = 0.

On the other hand, by direct calculations, we obtain

0 = g(∇XY, ϕZ) + g(Y,∇XϕZ)− g(∇Y X,ϕZ)− g(X,∇Y ϕZ)
+ g(∇ZX, ϕY ) + g(X,∇ZϕY )− g([X, Y ], ϕZ)
+ g([X, Z], ϕY )− g([Y,Z], ϕX).

Then, by using π∗ϕ = ϕ′π∗, we get

0 = g′(∇′X′Y ′, ϕ′Z ′) + g′(Y ′,∇′X′ϕ′Z ′)− g′(∇′Y ′X ′, ϕ′Z ′)− g′(X ′,∇′Y ′ϕ′Z ′)
+g′(∇′Z′X ′, ϕ′Y ′) + g′(X ′,∇′Z′ϕ′Y ′)− g′([X ′, Y ′], ϕ′Z ′)
+g′([X ′, Z ′], ϕ′Y ′)− g′([Y ′, Z ′], ϕ′X ′)
0 = X ′(Φ′(Y ′, Z ′))− Y ′(Φ′(X ′, Z ′)) + Z ′(Φ′(X ′, Y ′))
−Φ′([X ′, Y ′], Z ′) + Φ′([X ′, Z ′], Y ′)− Φ′([Y ′, Z ′], X ′)
0 = dΦ′(X ′, Y ′, Z ′)(4.3)
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In a similar way, we have

0 = dηj = dη′j .(4.4)

Thus, from (4.3) and (4.4) if the total space M is an almost C−manifold, then the
base space B belongs to the same class.

From Theorem 4.1 we have

π∗N (1)(X, Y ) = π∗([ϕ,ϕ](X, Y ) +
s∑

j=1

2dηj(X,Y )ξj)

= [ϕ′, ϕ′](X ′, Y ′) +
s∑

j=1

2dη′j(X
′, Y ′)ξ′j

= N ′(1)(X ′, Y ′) = 0.(4.5)

On the other hand, by direct calculations, we obtain

dΦ(X,Y, Z) = dΦ′(X ′, Y ′, Z ′) = 0.(4.6)

Thus, from (4.5) and (4.6) if the total space M is a K−manifold, then the base
space B belongs to the same class. ¤

We also have the following result which shows that the other structures can be
mapped onto the base manifold.

Proposition 4.3. Let π : M → B be a framed submersion. If M belongs to any of
the classes C−manifold, almost S−manifold or S−manifold, then the base space B
belongs to the same class.
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[8] Gündüzalp, Y. and S. ahin, B., Para-contact para-complex semi-Riemannian submersions.
Bull. Malays. Math. Sci. Soc. In Press.

[9] Gray, A., Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech.
16 (1967), 715-737.

[10] Ianus., S., Mazzocco, R. and Vilcu, G.V., Riemannian submersions from quaternionic mani-
folds. Acta Appl. Math. 104 (2008), 83-89.

[11] Leo, G.D. and Lotta, A., On the structure and symmetry properties of almost S−manifolds.
Geom. Dedicata 110 (2005), 191-211.

[12] O‘Neill, B., The fundamental equations of a submersion. Michigan Math. J. 13 (1966), 459
469.



RIEMANNIAN SUBMERSIONS FROM FRAMED METRIC MANIFOLDS 99

[13] S. ahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent.
Eur. J. Math. 8 (2010), 437-447.

[14] Terlizzi, L.D., On invariant submanifolds of C−and S−manifolds. Acta Math. Hungar. 85
(1999), 229-239.

[15] Terlizzi, L.D., Scalar and ϕ−sectional curvature of a certain type of metric f−structures.
Mediterr. j. math. 3 (2006),533-547.

[16] Vaisman, I., Generalized Hopf manifolds. Geom. Dedicata 13 (1982), 231-255.
[17] Vaisman, I., A survey of generalized Hopf manifolds. Rend. Sem. Math., Univ. Politec.

Torino (1984), special issue.
[18] Vanzura, J., Almost s-contact structures. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 26

(1972), 97-115.
[19] Vilcu, G.V., 3-submersions from QR-hypersurfaces of quaternionic Kähler manifolds. Ann.

Polon. Math. 98 (2010), 301-309.
[20] Watson, B., Almost Hermitian submersions. J. Differential Geom. 11 (1976), 147-165.
[21] Yano, K. and Kon, M., Structures on manifolds. World Scientific, 1984.
[22] Yano, K., On a structure defined by a tensor field f satisfying f3 + f = 0. Tensor 14

(1963),99-109.

Department of Mathematics, Dicle University, 21280, Diyarbakır-TURKEY
E-mail address: ygunduzalp@dicle.edu.tr


