
International Electronic Journal of Geometry
Volume 6 No. 1 pp. 151-158 (2013) c©IEJG

INTEGRATING THE DIFFERENTIAL EQUATIONS INSPIRED
BY THE UMBILICITY CONDITION FOR ROTATION
HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE

PETER T. HO AND BOGDAN D. SUCEAVĂ

(Communicated by Murat TOSUN)

Abstract. U. Dursun obtained explicit parametrizations of rotation hyper-
surfaces in the Lorentz-Minkowski ambient space. The pointwise umbilicity
condition yields a differential equation in each of the cases described by Dur-
sun’s parametrizations. In the present work we study the direct solutions of
these differential equations.

1. Introduction

Recently, Uǧur Dursun [11] obtained explicit parametrizations of rotation hy-
persurfaces in the Lorentz-Minkowski ambient space Ln+1; related ideas have been
pursued in a later work [12]. The origin of the problem of characterizing umbilicity
can be traced back to Delaunay’s work [10]; for the history of the mathematical
idea one can see the introduction in [11] and its references. It is natural to ask when
such rotational hypersurfaces have all points umbilics. A point of a hypersurface is
called an umbilic if all the principal curvatures are equal (see e.g. [16], p.72). Thus,
the geometric condition we study is that all the principal curvatures are equal at
every point. The pointwise umbilicity condition yields a differential equation in
each case of Dursun’s parametrizations obtained in [11]. The direct solutions of
these differential equations are the object of the present work.

The structure of our paper naturally follows the cases discussed in [11].
Our question is motivated by the geometry of the De Sitter space-time (see [1];

for an exposition see [13]), which represents one of the particular solutions in the
present study (see Corollary 3.3 in [11]).

The study of umbilics on hypersurfaces has a long history; they are extensively
discussed in the classical literature (see e.g. Chapter 4 in [15]; see also the more
recent monograph by Bang-Yen Chen [8]). The length of the interval where the
principal curvatures lie is called the spread of the shape operator (for the study
of the conformal invariant see [17], and for the algebraic foundations [14]). This
geometric quantity, the spread of shape operator, represents, intuitively, how far a
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point of a submanifold is from being an umbilic. This direction of study pursues
along the lines of the thorough study of the umbilical condition [2, 3, 4].

We describe first our notations, which are along the lines of notations used in
[11].

Let Ln+1 denotes the (n+1)−dimensional Lorentz-Minkowski space, that is, the
real vector space Rn+1 endowed with the Lorentzian metric 〈, 〉 = (dx1)2 + . . . +
(dxn)2 − (dxn+1)2, where (x1, ..., xn+1) are the canonical coordinates in Rn+1. A
vector x of Ln+1 is said to be space-like if 〈x, x〉 > 0 or x = 0, time-like if 〈x, x〉 < 0,
or light-like (or null) if 〈x, x〉 = 0 and x 6= 0.

An immersed hypersurface Mq of Ln+1 with index q (q = 0, 1) is called space-
like (Riemannian) or time-like (Lorentzian) if the induced metric, which, as usual,
is also denoted by 〈, 〉 on Mq has the index 0 or 1, respectively. The de Sitter n-
space Sn

1 (x0, c) centered at x0 ∈ Ln+1, c > 0, is a Lorentzian hypersurface of Ln+1

defined by
Sn

1 (x0, c) = {x ∈ Ln+1| 〈x− x0, x− x0〉 = c2}.
The index T used below indicates the times axis direction.

We also use the following notation. Let Θ(u1, ..., un−2) be an orthogonal parametriza-
tion of the unit sphere Sn−2(1) in the Euclidean space En−1 generated by {η1, η2, ...ηn−1} :
(1.1)
Θ(u1, ..., un−2) = cos u1η1 + sin u1 cos u2η2 + · · ·+ sin u1 · · · sin un−3 cos un−2ηn−2+

+sin u1 · · · sinun−3 sin un−2ηn−1,

where 0 < ui < π, for i = 1, ..., n− 3, and 0 < un−2 < 2π.

2. The Differential Equation Corresponding to the Umbilicity
Condition for Rotational Hypersurfaces with Time-Like Axis

Dursun proved in [11] the following result. Let Mq,T be a rotation hypersurface
of Ln+1 with the index q and time-like axis parameterized by
(2.1)
fT (u1, . . . , un−1, t) = φ(t) sin un−1Θ(u1, . . . , un−2) + φ(t) cos un−1ηn + ψ(t)ηn+1,

where 0 < un−1 < π. Then the directions of parameters are principal directions,
and the principal curvatures along the coordinate curves ui, i = 1, ..., n− 1, are all
equal and given by

λ = − ψ̇

φ
√

ε(φ̇2 − ψ̇2)

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

µ =
ψ̇φ̈− ψ̈φ̇

(φ̇2 − ψ̇2)
√

ε(φ̇2 − ψ̇2)

where ε = sgn(φ̇2 − ψ̇2) = ∓1, and q = 0 if ε = 1, and q = 1 if ε = −1.
It should be pointed out here that Dursun obtains the umbilicity condition from

the study of the constant mean curvature condition (see Theorem 3.2 in [11]) using
geometric characterizations to establish his Corollary 3.3. Our study relies on a
direct integration process in the differential equation (2.4).
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Proposition 2.1. Let Mq,T be a rotation hypersurface of Ln+1 with the index q
and time-like axis parameterized by
(2.2)
fT (u1, . . . , un−1, t) = φ(t) sin un−1Θ(u1, . . . , un−2) + φ(t) cos un−1ηn + ψ(t)ηn+1,

where 0 < un−1 < π. Then this hypersurface has all points umbilics if and only if
φ2(t) = ψ2(t) + 2Cψ(t) + K, at every t in the domain of definition.

Proof: The condition that the hypersurface has equal principal curvatures at
every point is:

(2.3) − ψ̇

φ
√

ε(φ̇2 − ψ̇2)
=

ψ̇φ̈− ψ̈φ̇

(φ̇2 − ψ̇2)
√

ε(φ̇2 − ψ̇2)

After simplifications, this equation becomes:

−ψ̇φ̇2 + ψ̇ · ψ̇2 = ψ̇φφ̈− ψ̈φφ̇

which can be rearranged as

(2.4) −ψ̇(φ̇2 + φφ̈) + ψ̇3 + ψ̈φφ̇ = 0

or:
−ψ̇

d

dt
(φφ̇) + ψ̇3 + ψ̈φφ̇ = 0.

By using the substitution u = φφ̇, the equation becomes:

(2.5) −ψ̇
du

dt
+ ψ̇3 + ψ̈u = 0

Under the restriction ψ̇ 6= 0, the equation becomes an ordinary linear differential
equation:

(2.6)
du

dt
+

(
− ψ̈

ψ̇

)
u = ψ̇2.

The integrating factor is: ρ = (ψ̇)−1, which yields the linear differential equation:

(2.7)
1
ψ̇
· du

dt
+

(
− ψ̈

(ψ̇)2

)
· u = ψ̇.

Completing the derivative in the left-hand side term, we get:
d

dt

(
u

ψ̇

)
= ψ̇.

Thus we obtain, for some real constant C :
u

ψ̇
= ψ + C.

Therefore u = ψψ̇ + Cψ̇. Bearing in mind the substitution that precedes relation
(2.5) we have:

φ · φ̇ = ψ · ψ̇ + Cψ̇.

Integrating with respect to t both sides, we get, for C and K real constants:

(2.8) φ2(t) = ψ2(t) + 2Cψ(t) + K.

The solution exists when C and K are such that ψ2(t) + 2Cψ(t) + K ≥ 0. ¤
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As a remark, equation (2.8) can be rewritten in the form φ2 = (ψ + C)2 + K1.

3. The Differential Equation Corresponding to the Umbilicity
Condition for Rotational Hypersurfaces of First Kind with

Space-Like Axis

In the paper [11], Dursun discusses the rotational hypersurfaces of first kind.
They are obtained as follows. Suppose that the axis of rotations is the xn-axis,
that is, the vector η = (0, . . . , 0, 1, 0) is the direction of the rotation axis, and Π is
the xnxn+1-plane. Let γ(t) = ψ(t)ηn + φ(t)ηn+1 be a parametrization of γ in the
plane Π with xn+1 = φ(t) > 0, t ∈ I ⊂ R. in the plane Π with xn+1 = φ(t) > 0,
t ∈ I ⊂ R. Thus Dursun gave a parametrization of a rotation hypersurface of the
first kind Mq,S1 of Ln+1 with space-like axis as
(3.1)
fS1(u1, . . . , un−1, t) = φ(t) sinh un−1Θ(u1, . . . , un−2 + ψ(t)ηn + ψ(t) cosh un−1ηn+1,

where 0 < un−1 < ∞, which is also called a hyperbolic rotation hypersurface of
Ln+1 as parallels of Mq,S1 are hyperbolic spaces Hn−1(0,−φ(t)).

Dursun proved the following. Let Mq,S1 be a rotation hypersurface of the first
kind of Ln+1 with the index q and space-like axis parameterized by (3.1). Then the
direction of parameters are principal directions, and the principal curvatures along
the coordinate curves ui, i = 1, ..., n− 1, are all equal and given by

(3.2) λ = − ψ̇

φ
√

ε̄(ψ̇2 − φ̇2)

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

(3.3) µ =
ψ̈φ̇− ψ̇φ̈

(ψ̇2 − φ̇2)
√

ε̄(ψ̇2 − φ̇2)
,

where ε̄ = sgn(ψ̇2 − φ̇2 = ∓1, and q = 0 if ε̄ = 1, and q = 1 if ε̄ = −1.
In this context, we prove the following.

Proposition 3.1. Let Mq,S1 be a rotation hypersurface of the first kind of Ln+1

with the index q and space-like axis parameterized by (3.1). Suppose that both φ

and ψ are at least twice differentiable. Additionally, suppose that ψ̇ 6= 0 for the
interval of definition. Then this hypersurface has all points umbilics if and only if
φ2(t) = ψ2(t) + 2Cψ(t) + K, for every t in the domain of definition.

Proof: The condition that the hypersurface has equal principal curvatures at
every point is:

−ψ̇3 − ψ̇φ̇2 = ψ̇φ̈φ− ψ̈φ̇φ.

This differential equation can be rewritten as:

ψ̈φ̇φ− ψ̇3 − ψ̇(φ̇2 + φ̈φ) = 0.

We group the terms in the last bracket as a derivative:

−ψ̇

[
d

dt
(φ̇φ)

]
− ψ̇3 − ψ̈φ̇φ = 0.
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We see that this integration process is the same as in the case of rotational hyper-
surfaces with time-like axis. We are using the same integration factor that leads to
a similar prime integral for the differential equation, with a solution similar to the
one found in the previous section. ¤

4. The Differential Equation Corresponding to the Umbilicity
Condition for Rotation Hypersurfaces of Second Kind with

Space-Like Axis

In section 5 of the work [11], Dursun studied rotation hypersurfaces of the second
kind M1,S2 with space-like axis and constant mean curvature. Let γ(t) = φ(t)ηn−1+
ψ(t)ηn be a parametrization of γ in the plane Π considered to be xn−1xn. Let
xn−1 = φ(t) > 0, t ∈ I ⊂ R. For this plane, the curve γ is space-like. In this
content, Dursun gave a parametrization of a hypersurface of the second kind Mq,S2

of the Lorentz space Ln+1 with space like-axis as:
(4.1)
f(S2)(u1, . . . , un−1, t) = φ(t) cosh un−1Θ(u1, . . . , un−2+ψ(t)ηn+φ(t) sinh un−1ηn+1,

where the coordinate un−1 can take any real values. The image of this function
is called a pseudospherical rotation hypersurface of Ln+1, as parallels of Mq,S2 are
actually pseudospheres Sn−1

1 (0, φ(t)) when n > 2. In [11] it is shown that the index
q = 1, thus it is legitimate to talk about M1,S2 .

In [11] it is proved the following result. Let M1,S2 be a rotation hypersurface
of the second kind of Ln+1 with space-like axis parameterized by (4.1). Then the
direction of parameters are principal directions, and the principal curvatures along
the coordinate curves ui, i = 1, ..., n− 1, are all equal and given by

(4.2) λ = − ψ̇

φ
√

(ψ̇2 + φ̇2)
,

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

(4.3) µ =
ψ̇φ̈− ψ̈φ̇

(ψ̇2 + φ̇2)
√

(ψ̇2 + φ2)
.

In this context, we prove the following.

Proposition 4.1. Let M1,S2 be a rotation hypersurface of the second kind of Ln+1

with space-like axis parameterized by (4.1). Suppose that both φ and ψ are at least
twice differentiable. Additionally, suppose that ψ̇ 6= 0 for the interval of definition.
Then this hypersurface has all points umbilics if and only if φ2(t) = −ψ2(t) +
2Cψ(t) + K, for every t in the domain of definition.

Proof: The geometric condition we study is that all principal curvatures are
equal. This is expressed by λ(t) = µ(t), at every t in the domain of definition. This
condition generates the differential equation:

−ψ̇

φ
=

ψ̇φ̈− ψ̈φ̇

(ψ̇2 + φ̇2)
.

Cross-multiplying, we get:

ψ̇φφ̈ + ψ̇φ̇2 + ψ̇3 − ψ̈φφ̇ = 0.
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By grouping
ψ̇(φφ̈ + φ̇2) + ψ̇3 − ψ̈φφ̇ = 0,

we naturally see that the substitution u = φφ̇ yields the linear equation

ψ̇
du

dt
− ψ̈u + ψ̇3 = 0.

Under the condition ψ̇ 6= 0 on the domain of definition, we get:

du

dt
− ψ̈

ψ̇
u + ψ̇2 = 0.

Using the integrating factor ρ(t) = ψ̇−1, we obtain the linear ordinary differential
equation:

1
ψ̇

du

dt
− ψ̈

ψ̇2
u = −ψ̇

which can be integrated, starting from
d

dt

(
1
ψ̇

u

)
= −ψ̇

and obtaining:
1
ψ̇

φφ̇ = −
∫

ψ̇ + C

which yields
φφ̇ = −ψψ̇ + Cψ̇.

By integrating one more time this relation, we obtained the claimed result. ¤

5. The Differential Equation Corresponding to the Umbilicity
Condition for Rotational Hypersurfaces with Light-Like Axis

Finally, we discuss in this section the last case, when the hypersurface has a
light-like axis. Dursun obtains that the rotation hypersurface Mq,L of Ln+1 with
light-like axis is defined as (see equation (2.8) in [11]):
(5.1)
fL(u1, ..., un−1, t) = 2φ(t)un−1Θ(u1, ..., un−2)+

√
2φη̂n +

√
2(ψ(t)−φ(t)u2

n−1)η̂n+1,

with un−1 6= 0. Here, the basis has been chosen such that η̂1 = (1, 0, ..., 0),
η̂2 = (0, 1, 0, ..., 0),... η̂n−1 = (0, 0, ..., 0, 1, 0, 0), η̂n = 1√

2
(0, 0, ..., 0, 1,−1), and

η̂n+1 = 1√
2
(0, 0, ..., 0, 1, 1). Dursun proved the following. Let Mq,L be a rotation hy-

persurface of Ln+1 with the index q and time-like axis parameterized by (5.1). Then
the direction of parameters are principal directions, and the principal curvatures
along the coordinate curves ui, for i = 1, ..., n− 1 are equal and given by

λ = − φ̇

2φ

√
ε̂φ̇ψ̇

with multiplicity n− 1, and the principal curvature along the coordinate curve t is
given by

µ =
φ̇ψ̈ − ψ̇φ̈

4φ̇ψ̇

√
ε̂φ̇ψ̇

where ε̂ = sgn(φ̇ψ̇) = ∓1, and q = 0 if ε̂ = 1, and q = 1 if ε̂ = −1.
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We integrate the differential equation obtained from the umbilicity condition,
under the restriction φ̇ 6= 0.

Proposition 5.1. Let Mq,L be a rotation hypersurface of Ln+1 with the index q

and time-like axis parameterized by (5.1). Suppose φ̇ 6= 0. Suppose also that φ > 0.
Then this hypersurface has all points umbilics if and only if there exists the

constants C and K such that

− 1
φ

= Cψ + K.

Proof: The differential equation we need to integrate is:

− φ̇

2φ
=

φ̇ψ̈ − ψ̇φ̈

4φ̇ψ̇
.

By cross-multiplying, we can write (with two identical terms among them):

ψ̇φφ̈− (φ̇)2ψ̇ − (φ̇)2ψ̇ − φφ̇ψ̈ = 0.

This relation can be rewritten as:

ψ̇ · φ2 d

dt

(
φ̇

φ

)
= φ̇ · [φ̇ψ̇ + φψ̈].

We regroup the terms as follows:

ψ̇φ
d

dt

(
φ̇

φ

)
=

(
φ̇

φ

)
d

dt
(ψ̇φ).

This can be rewritten as:
d
dt (φ̇/φ)

(φ̇/φ)
=

d
dt (ψ̇φ)

ψ̇φ
.

When we integrate both sides with respect to t, we get:

φ̇

φ
= Cφψ̇.

Separating the two functions we have:

φ̇

φ2
= Cψ̇.

This differential equation integrates as

− 1
φ

= Cψ + K.

¤

This last case completes the discussion of the direct integration question of the
differential equations obtained from the pointwise umbilicity condition on the ro-
tational hypersurfaces in all the cases in Dursun’s classification from [11].
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