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BY THE UMBILICITY CONDITION FOR ROTATION
HYPERSURFACES IN LORENTZ-MINKOWSKI SPACE
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ABSTRACT. U. Dursun obtained explicit parametrizations of rotation hyper-
surfaces in the Lorentz-Minkowski ambient space. The pointwise umbilicity
condition yields a differential equation in each of the cases described by Dur-
sun’s parametrizations. In the present work we study the direct solutions of
these differential equations.

1. INTRODUCTION

Recently, Ugur Dursun [11] obtained explicit parametrizations of rotation hy-
persurfaces in the Lorentz-Minkowski ambient space L™*!; related ideas have been
pursued in a later work [12]. The origin of the problem of characterizing umbilicity
can be traced back to Delaunay’s work [10]; for the history of the mathematical
idea one can see the introduction in [11] and its references. It is natural to ask when
such rotational hypersurfaces have all points umbilics. A point of a hypersurface is
called an umbilic if all the principal curvatures are equal (see e.g. [16], p.72). Thus,
the geometric condition we study is that all the principal curvatures are equal at
every point. The pointwise umbilicity condition yields a differential equation in
each case of Dursun’s parametrizations obtained in [11]. The direct solutions of
these differential equations are the object of the present work.

The structure of our paper naturally follows the cases discussed in [11].

Our question is motivated by the geometry of the De Sitter space-time (see [1];
for an exposition see [13]), which represents one of the particular solutions in the
present study (see Corollary 3.3 in [11]).

The study of umbilics on hypersurfaces has a long history; they are extensively
discussed in the classical literature (see e.g. Chapter 4 in [15]; see also the more
recent monograph by Bang-Yen Chen [8]). The length of the interval where the
principal curvatures lie is called the spread of the shape operator (for the study
of the conformal invariant see [17], and for the algebraic foundations [14]). This
geometric quantity, the spread of shape operator, represents, intuitively, how far a
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point of a submanifold is from being an umbilic. This direction of study pursues
along the lines of the thorough study of the umbilical condition [2, 3, 4].

We describe first our notations, which are along the lines of notations used in
[11].

Let L™ denotes the (n+ 1)—dimensional Lorentz-Minkowski space, that is, the
real vector space R"*! endowed with the Lorentzian metric {,) = (dz1)? + ... +
(dv,)? — (dv,i1)?, where (21,...,2,41) are the canonical coordinates in R*+1. A
vector x of L™+ is said to be space-like if (x,z) > 0 or z = 0, time-like if (z, z) < 0,
or light-like (or null) if (x,z) = 0 and z # 0.

An immersed hypersurface M, of L"™! with index ¢ (¢ = 0,1) is called space-
like (Riemannian) or time-like (Lorentzian) if the induced metric, which, as usual,
is also denoted by (,) on M, has the index 0 or 1, respectively. The de Sitter n-
space S} (zg, c) centered at 7o € L™+, ¢ > 0, is a Lorentzian hypersurface of L"*!
defined by

SH(wo, ) = {x € L™ (x — mg, x — m0) = *}.
The index T used below indicates the times axis direction.

We also use the following notation. Let ©(uq, ..., uy—2) be an orthogonal parametriza-
tion of the unit sphere S*~2(1) in the Euclidean space E"~! generated by {01, 12, ...7,_1} :
(1.1)

O(U1, vy Up—2) = COSUIN + siD U1 COS UM + + -+ + SIN U7 - - - SIN Uy, —3 COS Up—2Mp—2+

+sinuy - - SinUp—3SINUp—27Mn—1,

where 0 < u; < m, fori=1,...,mn—3, and 0 < u,_o < 27.

2. THE DIFFERENTIAL EQUATION CORRESPONDING TO THE UMBILICITY
CONDITION FOR ROTATIONAL HYPERSURFACES WITH TIME-LIKE AXIS

Dursun proved in [11] the following result. Let M, r be a rotation hypersurface
of L, 11 with the index ¢ and time-like axis parameterized by
(2.1)
fT(uL ey Unp—1, t) = ¢(t) Sil’l un—le)(ula .. aun—2) + ¢(t) COS Up—1Tn + w(t)’r]n-i-la

where 0 < u,—; < 7. Then the directions of parameters are principal directions,
and the principal curvatures along the coordinate curves u;, i = 1,...,n — 1, are all
equal and given by

v

P\ (9 — )

with multiplicity n — 1, and the principal curvature along the coordinate curve t is
given by

A=—

6~ G
(62 = ¥2)y/e(9? —4?)
where ¢ = sgn(¢? —¢?) = Fl,and ¢ =0if e =1, and ¢ = 1 if e = —1.
It should be pointed out here that Dursun obtains the umbilicity condition from
the study of the constant mean curvature condition (see Theorem 3.2 in [11]) using

geometric characterizations to establish his Corollary 3.3. Our study relies on a
direct integration process in the differential equation (2.4).

M:
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Proposition 2.1. Let M, 1t be a rotation hypersurface of Lni1 with the index q
and time-like axis parameterized by

(2.2)

frlug, ... tp_1,t) = &(t) sinup_10 (U1, ..., Un—2) + P(t) COS Up_11n + Y (t)Mnt1,
where 0 < u,_1 < w. Then this hypersurface has all points umbilics if and only if
P (t) = V2(t) + 209 (t) + K, at every t in the domain of definition.

Proof: The condition that the hypersurface has equal principal curvatures at
every point is:

s i
e —4?) (52 —?)\/e(d? —4?)
After simplifications, this equation becomes:
—d? + 1 - §? = Pod — bod
which can be rearranged as
(2.4) —(@% + ¢0) +4° + dd =0

or:

.d . ) .
—9=(69) +9° + 66 = 0.
By using the substitution u = ¢q5, the equation becomes:
. d . ;
(2.5) —wdi; + 19 +u=0

Under the restriction 1/) # 0, the equation becomes an ordinary linear differential
equation:

du 1/1 o

The integrating factor is: p = (1/'))_1, which yields the linear differential equation:

1 du 1/) s

Completing the derivative in the left-hand side term, we get:

d (u .
dt@:”

Thus we obtain, for some real constant C' :
U
- = 'IZJ + C.
(4
Therefore u = L/M/) + C@/}. Bearing in mind the substitution that precedes relation

(2.5) we have:

¢ d=1- 1+ 0.
Integrating with respect to t both sides, we get, for C' and K real constants:
(2.8) P> (t) = P> (t) + 2C9(t) + K.

The solution exists when C' and K are such that ¢?(t) + 2C%(t) + K > 0. O
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As a remark, equation (2.8) can be rewritten in the form ¢? = (v + C)? + K;.

3. THE DIFFERENTIAL EQUATION CORRESPONDING TO THE UMBILICITY
CONDITION FOR ROTATIONAL HYPERSURFACES OF FIRST KIND WITH
SPACE-LIKE AXIS

In the paper [11], Dursun discusses the rotational hypersurfaces of first kind.
They are obtained as follows. Suppose that the axis of rotations is the x,-axis,
that is, the vector n = (0,...,0,1,0) is the direction of the rotation axis, and II is
the zpzp41-plane. Let () = ¥ (¢)n, + ¢(t)nn+1 be a parametrization of v in the
plane IT with 2,41 = ¢(¢t) > 0, t € I C R. in the plane II with 2,11 = ¢(t) > 0,
t € I C R. Thus Dursun gave a parametrization of a rotation hypersurface of the
first kind M, s, of L™ with space-like axis as
(3.1)
fo,(ur, ..o up—1,t) = ¢(t) sinhu,—10(u1, ..., up—2 + V)N, + ¥(t) cosh up_17n41,
where 0 < u,_1 < oo, which is also called a hyperbolic rotation hypersurface of
L™+ as parallels of M, s, are hyperbolic spaces H"~1(0, —¢(t)).

Dursun proved the following. Let M, s, be a rotation hypersurface of the first
kind of L"*! with the index ¢ and space-like axis parameterized by (3.1). Then the
direction of parameters are principal directions, and the principal curvatures along
the coordinate curves u;, i = 1,...,n — 1, are all equal and given by

v

P\ E(W? — ¢?)

with multiplicity n — 1, and the principal curvature along the coordinate curve t is
given by

(3.2) A=

39— i
(2 — )y fe(a2 - )

Whereézsgnwg—qp:?L andg=0ife=1,and¢=1if e = —1.
In this context, we prove the following.

(33) p=

Proposition 3.1. Let M, s, be a rotation hypersurface of the first kind of L™*
with the index q and space-like axis parameterized by (3.1). Suppose that both ¢
and v are at least twice differentiable. Additionally, suppose that b # O for the

interval of definition. Then this hypersurface has all points umbilics if and only if
&% (t) = Y2(t) + 2C%(t) + K, for every t in the domain of definition.

Proof: The condition that the hypersurface has equal principal curvatures at
every point is:

—° = §* = Pod — oo,
This differential equation can be rewritten as:
Vog — 4 — ) (&? + 6¢) = 0.

We group the terms in the last bracket as a derivative:

Td . e
- {dt(éﬁ(ﬁ)} —¢° =Yoo = 0.
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We see that this integration process is the same as in the case of rotational hyper-
surfaces with time-like axis. We are using the same integration factor that leads to
a similar prime integral for the differential equation, with a solution similar to the
one found in the previous section. (I

4. THE DIFFERENTIAL EQUATION CORRESPONDING TO THE UMBILICITY
CONDITION FOR ROTATION HYPERSURFACES OF SECOND KIND WITH
SPACE-LIKE AXIS

In section 5 of the work [11], Dursun studied rotation hypersurfaces of the second
kind M; g, with space-like axis and constant mean curvature. Let v(t) = ¢(t)n,—1+
Y(t)n, be a parametrization of v in the plane II considered to be z,_jx,. Let
Tp—1 = ¢(t) > 0,t € I C R. For this plane, the curve =y is space-like. In this
content, Dursun gave a parametrization of a hypersurface of the second kind M, s,
of the Lorentz space L™t with space like-axis as:

(4.1)
JS2)(u, .oy un—1,t) = ¢(t) coshup _10(us, ..., Un—2+P ()N +o(t) sinh wy 17541,

where the coordinate u,_; can take any real values. The image of this function
is called a pseudospherical rotation hypersurface of L™t as parallels of M, s, are
actually pseudospheres S77*(0, (t)) when n > 2. In [11] it is shown that the index
¢ = 1, thus it is legitimate to talk about M g,.

In [11] it is proved the following result. Let M; s, be a rotation hypersurface
of the second kind of L"*! with space-like axis parameterized by (4.1). Then the
direction of parameters are principal directions, and the principal curvatures along
the coordinate curves u;, ¢ = 1,...,n — 1, are all equal and given by

Y

o\ (% + )

with multiplicity n — 1, and the principal curvature along the coordinate curve ¢ is
given by

(4.2) A=—

Vd — g .
(2 + ¢2)\/ (V2 + ¢?)

In this context, we prove the following.

(4.3) w=

Proposition 4.1. Let M s, be a rotation hypersurface of the second kind of L™*
with space-like axis parameterized by (4.1). Suppose that both ¢ and ¢ are at least
twice differentiable. Additionally, suppose that ¥ # 0 for the interval of definition.
Then this hypersurface has all points umbilics if and only if ¢*(t) = —?(t) +
2CY(t) + K, for every t in the domain of definition.

Proof: The geometric condition we study is that all principal curvatures are
equal. This is expressed by A(t) = u(t), at every t in the domain of definition. This
condition generates the differential equation:

i _ dé— i
¢ (Y249

Cross-multiplying, we get:

V69 + 6% + 47 —gd = 0.
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By grouping
D(99+ O%) +§° = Pod =0,
we naturally see that the substitution v = q/)(b yields the linear equation
P2t =0,
Under the condition ¢ # 0 on the domain of definition, we get:
du w

2
- — - 0.
iy u+
Using the integrating factor p(t) = ¥, we obtain the linear ordinary differential
equation:
1 du 9 .
S u=—9
G dt 42
which can be integrated, starting from
d (1
(5=
and obtaining:
cod=— v+
which yields . ) )
¢ = =i + C.
By integrating one more time this relation, we obtained the claimed result. O

5. THE DIFFERENTIAL EQUATION CORRESPONDING TO THE UMBILICITY
CONDITION FOR ROTATIONAL HYPERSURFACES WITH LIGHT-LIKE AXIS

Finally, we discuss in this section the last case, when the hypersurface has a
light-like axis. Dursun obtains that the rotation hypersurface M, j, of L"*! with
light-like axis is defined as (see equation (2.8) in [11]):

(5.1)
Fr(uny et 1, t) = 20(8) 1O (ur, s tn—2) + V20 + V2( () = (t)up 1 )41,

with w,—1; # 0. Here, the basis has been chosen such that 74 = (1,0,...,0),
s = (0,1,0,..,0),... 7—1 = (0,0,...,0,1,0,0), 7, = %(0,0, ..,0,1,—1), and
Nnt1 = %(O, 0,...,0,1,1). Dursun proved the following. Let M, 1, be a rotation hy-
persurface of L, 1 with the index ¢ and time-like axis parameterized by (5.1). Then
the direction of parameters are principal directions, and the principal curvatures

along the coordinate curves u;, for i = 1,...,n — 1 are equal and given by

¢

201/ g0
with multiplicity n — 1, and the principal curvature along the coordinate curve t is
given by

A=

G
A/
where é = sgn(¢1)) = T1,and ¢ =0if é =1, and ¢ = 1 if £ = —1.
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We integrate the differential equation obtained from the umbilicity condition,
under the restriction ¢ # 0.

Proposition 5.1. Let M, 1 be a rotation hypersurface of L1 with the index q

and time-like axis parameterized by (5.1). Suppose ¢5 = 0. Suppose also that ¢ > 0.
Then this hypersurface has all points umbilics if and only if there exists the
constants C' and K such that

1

——=Cy+ K.
¢
Proof: The differential equation we need to integrate is:
6 _ i
2¢ Ay

By cross-multiplying, we can write (with two identical terms among them):
V66— (§)* — (9)* — ¢t = 0.

This relation can be rewritten as:

.o d & ST .
7/1'¢dt<¢>—¢'[¢77/1+¢¢]-

We regroup the terms as follows:
cd (o _[(d)\d,
Voo <¢> = <¢> %(Wb)-

£(@0/0) _ (o)

This can be rewritten as:

(¢/¢)  Wo
When we integrate both sides with respect to t, we get:
é .
£~ cou.
¢
Separating the two functions we have:
é .

This differential equation integrates as
L_ Cy+ K
p .

O

This last case completes the discussion of the direct integration question of the
differential equations obtained from the pointwise umbilicity condition on the ro-
tational hypersurfaces in all the cases in Dursun’s classification from [11].
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