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SCREEN ALMOST CONFORMAL LIGHTLIKE GEOMETRY IN

INDEFINITE KENMOTSU SPACE FORMS

FORTUNÉ MASSAMBA

(Communicated by Ramesh SHARMA)

Abstract. We introduce a new class of lightlike hypersurfaces, namely, Screen
Almost Conformal (SAC) lightlike hypersurfaces of indefinite Kenmotsu space

forms, tangent to the structure vector field. We show that, under a certain

condition, these hypersufaces and the leaves of its integrable screen distribu-
tions belong to the same class of η-Einstein, non extrinsic sphere, non-Ricci

semi-symmetric and non-semi-parallel manifolds. We also prove that there is

an integrable distribution whose leaves are space forms, Einstein and satisfy
some symmetry properties. Theorems on integral manifolds and integrable,

auto-parallel distributions are obtained. We finally characterize the relative
nullity space in a proper totally contact umbilical SAC-lightlike hypersurface

of an indefinite Kenmotsu space form.

1. introduction

Kenmotsu in [14] studied a class of almost contact Riemannian manifolds sat-
isfying some special conditions. Such manifolds are called Kenmotsu manifolds.
Several authors have studied properties of Kenmotsu manifolds since then. In [13],
for instance, the authors partially classified Kenmotsu manifolds and considered
manifolds admitting a transformation which keeps the Riemannian curvature ten-
sor and Ricci tensor invariant.

As is well known, the geometry of lightlike submanifolds [3] is different because of
the fact that their normal vector bundle intersects with the tangent bundle. Thus,
the study becomes more difficult and strikingly different from the study of non-
degenerate submanifolds. This means that one cannot use, in the usual way, the
classical submanifold theory to define any induced object on a lightlike submanifold.
To deal with this anomaly, the lightlike submanifolds were introduced and presented
in a book by Duggal and Bejancu [3]. They introduced a non-degenerate screen
distribution to construct a non-intersecting lightlike transversal vector bundle of the
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tangent bundle. Since then, a suitable choice of an integrable screen distribution
has produced several new results on lightlike geometry (see, e.g, [9] and many more
references therein). Also, see [15] for a different approach to deal with lightlike
(degenerate) submanifolds. Jin, in a series of papers, studied and characterized
the geometry of screen conformal lightlike hypersufaces of semi-Riemannian space
forms, for instance Kähler, Lorentzian space form (see [12] and references therein).
For lightlike cases of almost contact manifolds in general, some specific discussions
on this matter can be found in [17], [18], [19], [20], [21], [22], [23], [24] and references
therein.

We know that the shape operator plays a key role in studying the geometry
of submanifolds [3]. Motivated by above line of direction, the aim of this paper
is to introduce the concept of screen almost conformal distributions of lightlike
hypersufaces of Kenmotsu space forms. That is, we study lightlike hypersufaces of
Kenmotsu space forms, tangent to the structure vector field, whose shape operators
are almost conformal to shape operators of their corresponding screen distributions.
We also investigate the effect of almost conformal condition on the geometry of
leaves of some integrable distributions and relative nullity foliations.

The paper is organized as follows. In Section 2, we recall some basic definitions
for indefinite Kenmotsu manifolds and lightlike hypersurfaces of semi-Riemannian
manifolds. In Section 3, we introduce a new class of screen almost conformal (SAC)-
lightlike hypersurface M of an indefinite Kenmotsu space form M(c), tangent to
the structure vector field, supported by an example. We prove that the proper
totally contact umbilical SAC-lightlike hypersurface M belongs to the class of to-
tally contact geodesic, η-Einstein, non-Ricci semi-symmetric and non-semi-parallel
manifolds. We also discuss the effect of the change of the screen distribution on
different results found. In Section 4, we investigate the geometry of leaves in a
screen almost conformal lightlike hypersuface M of an indefinite Kenmotsu space
form M(c), tangent to the structure vector field. These leaves are η-Einstein, non-
extrinsic sphere, non-Ricci semi-symmetric and non-semi-parallel manifolds, under
a certain condition. We prove that any integral manifold M ′ of S(TM) is proper

totally umbilical and locally a product manifold M̂ ′ × Lξ, where M̂ ′ is proper to-

tally umbilical leaf of D̂ and Lξ is a non-degenerate curve. We show that there

is an integrable distribution D̂, subbundle of TM , whose leaves are space forms
of constant curvature 2ϕλ2, proper totally umbilical, Einstein, locally symmetric
and Ricci semi-symmetric (Theorem 4.5). Under a certain condition, we prove that
the distribution D ⊥< ξ > in (3.4) is integrable, auto-parallel and M is locally a
product M∗ × C, where M∗ is a proper totally contact leaf of D ⊥ 〈ξ〉 and C is a
lightlike curve tangent to the distribution φ(N(TM)) (Theorem 4.6). By Theorem
5.1, Section 5, we characterize the relative nullity space in a proper totally contact
umbilical SAC-lightlike hypersurface of an indefinite Kenmotsu space form.

2. Preliminaries

Let M be a (2n + 1)-dimensional manifold endowed with an almost contact
structure (φ, ξ, η), i.e., φ is a tensor field of type (1, 1), ξ is a vector field, and η is
a 1-form satisfying

(2.1) φ
2

= −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and φξ = 0.



SCREEN ALMOST CONFORMAL LIGHTLIKE GEOMETRY 3

Then (φ, ξ, η, g) is called an indefinite almost contact metric structure on M if
(φ, ξ, η) is an almost contact structure on M and g is a semi-Riemannian metric on
M such that [4], for any vector field X, Y on M

(2.2) g(φX, φY ) = g(X,Y )− η(X) η(Y ).

It follows that, for any vector field X on M , η(X) = g(ξ,X).
Now, we give the following definition by adapting the one for Riemannian case

given in [14].
An indefinite almost contact metric structure (φ, ξ, η, g) is called an indefinite

Kenmostu structure if

(2.3) ∇Xξ = X − η(X)ξ, (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX,

where ∇ is the Levi-Civita connection for the semi-Riemannian metric g. We call
M an indefinite Kenmotsu manifold (see [11] for details). Here, without loss of
generality, the vector field ξ is assumed to be spacelike, that is, g(ξ, ξ) = 1. The
Kenmotsu structure defined in [14] differs from the indefinite Kenmotsu one only
by the positiveness of the metric involved and so, the main results in [14] remain
unchanged for the indefinite case. We denote by Γ(Ξ) the set of smooth sections of
the vector bundle Ξ.

A plane section σ in TpM is called a φ-section if it is spanned by X0 and φX0,

where X0 is a unit tangent vector field orthogonal to ξ. The sectional curvature of
a φ-section σ is called a φ-sectional curvature. If an indefinite Kenmotsu manifold
M has constant φ-sectional curvature c, then, by virtue of the Proposition 12 in
[14], the curvature tensor R of M is given by

R(X,Y )Z =
c− 3

4
{g(Y , Z)X − g(X,Z)Y }+

c+ 1

4
{η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y , Z)η(X)ξ + g(φY ,Z)φX

−g(φX,Z)φY − 2g(φX, Y )φZ}, X, Y , Z ∈ Γ(TM).(2.4)

An indefinite Kenmotsu manifold M of constant φ-sectional curvature c will be
called indefinite Kenmotsu space form and denoted M(c).

Example 2.1. We consider the 7-dimensional manifold M
7

= {x ∈ R7 : x7 > 0},
where x = (x1, x2, ..., x7) are the standard coordinates in R7. Let us consider the

vector fields e1, e2, ..., e7, linearly independent at each point of M
7
, as a combination

of frames { ∂
∂xi
}. Let g be the semi-Riemannian metric defined by g(ei, ej) = 0, ∀ i 6=

j, i, j = 1, 2, ..., 7 and g(ek, ek) = 1, ∀ k = 1, 2, 3, 4, 7, g(em, em) = −1, ∀m = 5, 6.
Let η be the 1-form defined by η(·) = g(·, e7). Let φ be the (1, 1) tensor field defined
by φe1 = −e2, φe2 = e1, φe3 = −e4, φe4 = e3, φe5 = −e6, φe6 = e5, φe7 = 0.

Using the linearity of phi and g, we have φ
2
X = −X + η(X)e7, g(φX, φY ) =

g(X,Y )−η(X)η(Y ). Thus, for e7 = ξ, (φ, ξ, η, g) defines an almost contact metric

structure on M
7
. Let ∇ be the Levi-Civita connection with respect to the metric g

and let us choose the vector fields e1, e2, ..., e7 to be ei = ex7
∑7
j=1 fij(x1, ..., x6) ∂

∂xj
,

det(fij) 6= 0 and e7 = ξ = − ∂
∂x7

, where functions fij are defined such that the action

of ∇ on the basis {e1, ..., e7} is given by ∇eiei = −ξ, ∀i = 1, 2, 3, 4, ∇emem = ξ,
∀m = 5, 6, ∇e1e5 = ex7e6, ∇e1e6 = −ex7e5, ∇e2e5 = ex7e6, ∇e2e6 = −ex7e5,
∇e5e1 = ex7e6, ∇e5e2 = ex7e6, ∇e6e1 = −ex7e5, ∇e6e2 = −ex7e5, and other
covariant derivatives ∇eiej = 0, ∀i 6= j, i, j = 1, 2, ..., 6. The non-vanishing brackets
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are given by, for i = 1, 2, 3, ..., 6, [ei, e7] = ei. By Koszul’s formula, we have
∇eie7 = ei, ∀i = 1, 2, ..., 6, and ∇e7e7 = 0. Using these relations, (φ, ξ, η, g) is

an indefinite Kenmostu structure in M
7
. Therefore, (M

7
, φ, ξ, η, g) is an indefinite

Kenmostu manifold with constant sectional curvature c = −1.

Let (M, g) be a (2n + 1)-dimensional semi-Riemannian manifold with index s,
0 < s < 2n+ 1 and let (M, g) be a hypersurface of M , with g = g|M . M is said to

be a lightlike hypersurface of M if g is of constant rank 2n− 1 and the orthogonal
complement TM⊥ of tangent space TM , defined as TM⊥ =

⋃
p∈M{Yp ∈ TpM :

gp(Xp, Yp) = 0, ∀Xp ∈ TpM}, is a distribution of rank 1 on M [3]: TM⊥ ⊂
TM and then coincides with the radical distribution RadTM = TM ∩ TM⊥. A
complementary bundle of TM⊥ in TM is a rank 2n−1 non-degenerate distribution
over M . It is called a screen distribution and is denoted by S(TM). Existence of
S(TM) is secured provided M is paracompact. However, in general, S(TM) is not
canonical (thus it is not unique) and the lightlike geometry depends on its choice
but it is canonically isomorphic to the vector bundle TM/RadTM [15].

A lightlike hypersurface endowed with a specific screen distribution is denoted
by the triple (M, g, S(TM)). As TM⊥ lies in the tangent bundle, the following
result has an important role in studying the geometry of a lightlike hypersurface.

Theorem 2.1. [3] Let (M, g, S(TM)) be a lightlike hypersurface of (M, g). Then,
there exists a unique vector bundle N(TM) of rank 1 over M such that for any non-
zero section E of TM⊥ on a coordinate neighborhood U ⊂M , there exists a unique
section N of N(TM) on U satisfying g(N,E) = 1 and g(N,N) = g(N,W ) = 0, for
any W ∈ Γ(S(TM)|U ).

Throughout the paper, all manifolds are supposed to be paracompact and smooth.
We denote by ⊥ and ⊕ the orthogonal and nonorthogonal direct sum of two vector
bundles. By Theorem 2.1, we may write down the following decompositions

TM = S(TM) ⊥ TM⊥,(2.5)

TM = TM ⊕N(TM) = S(TM) ⊥ (TM⊥ ⊕N(TM)).(2.6)

Let ∇ be the Levi-Civita connection on (M, g), then, using the decomposition (2.6),
we have the Gauss and Weingarten formulae in the form,

(2.7) ∇XY = ∇XY + h(X,Y ) and ∇XV = −AVX +∇⊥XV,
for any X, Y ∈ Γ(TM |U ), V ∈ Γ(N(TM)), where ∇XY , AVX ∈ Γ(TM) and
h(X,Y ), ∇⊥XV ∈ Γ(N(TM)). ∇ is an induced symmetric linear connection on M ,
∇⊥ is a linear connection on the vector bundle N(TM), h is a Γ(N(TM))-valued
symmetric bilinear form and AV is the shape operator of M in M .

Equivalently, consider a normalizing pair {E,N} as in Theorem 2.1. Then (2.7)
takes the following form,

(2.8) ∇XY = ∇XY +B(X,Y )N and ∇XN = −ANX + τ(X)N,

where B, AN , τ and ∇ are called the local second fundamental form, the local
shape operator, the transversal differential 1-form and the induced linear torsion-
free connection, respectively, on TM |U .

From (2.8), we have the identities B(·, E) = 0, B(X,Y ) = g(∇XY,E) and

(2.9) τ(X) = g(∇⊥XN,E).
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Let P be the projection morphism of TM on S(TM) with respect to the orthogonal
decomposition of TM . We have,

(2.10) ∇XPY = ∇∗XPY + C(X,PY )E, and ∇XE = −A∗EX − τ(X)E,

for any X, Y ∈ Γ(TM), E ∈ Γ(TM⊥), where ∇∗XPY and A∗EX belong to
Γ(S(TM)). C, A∗E and ∇∗ are called the local second fundamental form, the local
shape operator and the induced linear metric connection, respectively, on S(TM).
The induced linear connection ∇ is not a metric connection and we have

(2.11) (∇Xg)(Y,Z) = B(X,Y )θ(Z) +B(X,Z)θ(Y ),

where θ is a differential 1-form locally defined on M by θ(·) := g(N, ·). The lo-
cal second fundamental forms B and C, respectively, of M and on S(TM) are
related to their shape operators by g(A∗EX,PY ) = B(X,PY ), g(A∗EX,N) = 0,

g(ANX,PY ) = C(X,PY ) and g(ANX,N) = 0. We denote by R, R and R∗ the
curvature tensors of ∇, ∇ and ∇∗, respectively. Using the Gauss-Weingarten equa-
tions for M and S(TM), we obtain the Gauss-Codazzi equation for M and S(TM)
such that, for any X, Y , Z, W ∈ Γ(TM),

g(R(X,Y )Z,PW ) = g(R(X,Y )Z,PW ) +B(X,Z)C(Y, PW )

−B(Y,Z)C(X,PW ),(2.12)

g(R(X,Y )Z,E) = (∇XB)(Y, Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)

− τ(Y )B(X,Z),(2.13)

g(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW ) + C(X,PZ)C(Y, PW )

− C(Y, PZ)C(X,PW ),(2.14)

g(R(X,Y )PZ,N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ) + τ(Y )C(X,PZ)

− τ(X)C(Y, PZ).(2.15)

3. Screen almost conformal Lightlike hypersurfaces of indefinite
Kenmotsu manifolds

Let (M,φ, ξ, η, g) be an indefinite Kenmotsu manifold and (M, g) be a lightlike
hypersurface of (M, g), tangent to the structure vector field ξ (ξ ∈ TM).

If E is a local section of TM⊥, it is easy to check that φE 6= 0 and g(φE,E) = 0,
then φE is tangent to M . Thus φ(TM⊥) is a distribution on M of rank 1 such that
φ(TM⊥) ∩ TM⊥ = {0}. This enables us to choose a screen distribution S(TM)
such that it contains φ(TM⊥) as a vector subbundle. If we consider a local section
N of N(TM), we have φN 6= 0. Since g(φN,E) = −g(N,φE) = 0, we deduce
that φE belongs to S(TM) and φN is also tangent to M . At the same time, since
g(φN,N) = 0, we see that the component of φN , with respect to E, vanishes. Thus
φN ∈ Γ(S(TM)), i.e., φ(N(TM)) is also a vector subbundle of S(TM) of rank 1.
From ( refequa1), we have g(φN, φE) = 1. Therefore, φ(TM⊥) ⊕ φ(N(TM)) is a
non-degenerate vector subbundle of S(TM) of rank 2.

If M is tangent to the structure vector field ξ, we may choose S(TM) so that ξ
belongs to S(TM). Using this, and since g(φE, ξ) = g(φN, ξ) = 0, there exists a
non-degenerate distribution D0 of rank 2n− 4 on M such that

(3.1) S(TM) = {φ(TM⊥)⊕ φ(N(TM))} ⊥ D0 ⊥< ξ >,
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where 〈ξ〉 is the distribution spanned by ξ. The distribution D0 is invariant under
φ, i.e. φ(D0) = D0. Moreover, from (2.5) and (3.1), we obtain the decompositions

TM = {φ(TM⊥)⊕ φ(N(TM))} ⊥ D0 ⊥< ξ >⊥ TM⊥,(3.2)

TM = {φ(TM⊥)⊕ φ(N(TM))} ⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕N(TM)).(3.3)

Now, we consider the distributions on M , D := TM⊥ ⊥ φ(TM⊥) ⊥ D0, D
′ :=

φ(N(TM)). Then, D is invariant under φ and

(3.4) TM = (D ⊕D′) ⊥ 〈ξ〉.
Let us consider the local lightlike vector fields U := −φN , V := −φE. Then,
from (3.4), any X ∈ Γ(TM) is written as X = RX +QX + η(X)ξ, QX = u(X)U,
where R and Q are the projection morphisms of TM into D and D′, respectively,
and u is a differential 1-form locally defined on M by

(3.5) u(X) := g(V,X), ∀ X ∈ Γ(TM).

Applying φ to X and (2.1), one obtains φX = φX + u(X)N, where φ is a tensor
field of type (1, 1) defined on M by φX := φRX. In addition, we obtain, φ2X =
−X + η(X)ξ + u(X)U and ∇Xξ = X − η(X)ξ. Using (2.1), we derive

(3.6) g(φX, φY ) = g(X,Y )− η(X)η(Y )− u(Y )v(X)− u(X)v(Y ),

where v is a differential 1-form locally defined on M by v(·) = g(U, ·). We have the
following identities, for any X ∈ Γ(TM), ∇Xξ = X − η(X)ξ and

B(X, ξ) = 0,(3.7)

C(X, ξ) = θ(X).(3.8)

Let M be a lightlike hypersurface of an indefinite Kenmotsu space form M(c) with
ξ ∈ TM . Then, the relation (2.4) becomes, for any X, Y , Z ∈ Γ(TM),

(3.9) R(X,Y )Z = g(X,Z)Y − g(Y, Z)X.

Using (2.4), (2.13) and (2.15), we obtain, for any X, Y , Z ∈ Γ(TM),

(∇XB)(Y, Z)− (∇YB)(X,Z) = τ(Y )B(X,Z)

− τ(X)B(Y,Z),(3.10)

and (∇XC)(Y, PZ)− (∇Y C)(X,PZ) = g(X,PZ)θ(Y )− g(Y, PZ)θ(X)

+ τ(X)C(Y, PZ)− τ(Y )C(X,PZ).(3.11)

The relation between R and R is given by

R(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y,Z)ANX.(3.12)

Using (3.9), the curvature tensor R of M is expressed as

R(X,Y )Z = g(X,Z)Y − g(Y,Z)X +B(Y,Z)ANX −B(X,Z)ANY.(3.13)

Therefore, for any X, Y , Z, W ∈ Γ(TM),

g(R(X,Y )PZ, PW ) = g(X,PZ)g(Y, PW )− g(Y, PZ)g(X,PW )

+B(Y,Z)C(X,PW )−B(X,Z)C(Y, PW ),(3.14)

and g(R(X,Y )PZ,N) = g(X,PZ)θ(Y )− g(Y, PZ)θ(X).(3.15)

Let us consider the following distribution

(3.16) D̂ =
{
φ(TM⊥)⊕ φ(N(TM))

}
⊥ D0,
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so that the tangent space of M is written

(3.17) TM = D̂ ⊥ 〈ξ〉 ⊥ TM⊥.

Let P̂ be the morphism of S(TM) on D̂ with respect to the orthogonal decompo-
sition of S(TM) such that

(3.18) P̂X = PX − η(X)ξ, ∀X ∈ Γ(TM).

It is easy to check that P̂ is also a projection. We have, for any X, Y ∈ Γ(TM),

(3.19) B(X,PY ) = B(X, P̂Y ), C(X,PY ) = C(X, P̂Y ) + θ(X)η(Y ).

Define the induced Ricci type tensor R(0,2) of M , respectively, as

R(0,2)(X,Y ) = trace(Z −→ R(Z,X)Y ),∀X, Y ∈ Γ(TM).(3.20)

Since the induced connection ∇ on M is not a Levi-Civita connection, in general,
R(0,2) is not symmetric. Therefore, in general, it is just a tensor quantity and has
no geometric or physical meaning similar to the symmetric Ricci tensor of M .

Let consider a local quasi-orthogonal frame field {X0, N,Xi}i=1,...,2n−1 on M ,
where {X0, Xi} is a local frame field on M with N , the unique section given in
Theorem 2.1, and E = X0. Locally, (3.20) is given by (see [3], for details)

(3.21) R
(0,2)
ls −R(0,2)

sl = 2dτ(Xl, Xs) and R
(0,2)
0k −R(0,2)

k0 = 2dτ(X0, Xk),

where R
(0,2)
ls := R(0,2)(Xs, Xl) and R

(0,2)
0k := R(0,2)(Xk, X0). Using (2.12), a direct

calculation gives

(3.22) R(0,2)(X,Y ) = −(2n− 1)g(X,Y ) +B(X,Y )trAN −B(ANX,Y ),

where trace tr is written with respect to g restricted to S(TM). The Ricci tensor
does not depend on the choice of E of TM⊥. From (3.22), we have [10]

(3.23) R(0,2)(X,Y )−R(0,2)(Y,X) = B(ANX,Y )−B(ANY,X).

The tensor field R(0,2) of a lightlike hypersurface M of an indefinite Kenmotsu
manifold M is called induced Ricci tensor [7] if it is symmetric.

For historical reasons, we still call R(0,2) an induced Ricci tensor, but, we denote
it by Ric only if it is symmetric.

It is well known that the second fundamental form and the shape operator of a
non-degenerate submanifold are related by means of the metric tensor field. Con-
trary to this we see from (2.8) and (2.10) that in case of lightlike hypersurface,
there are interrelations between these geometric objects and those of its screen
distribution. More precisely, the second fundamental forms of the lightlike hyper-
surface M and its screen distribution S(TM) are related to their respective shape
operator AN and A∗E . This consolidates the fact that the geometry of a lightlike
hypersurface depends on a choice of screen distribution. As the shape operator is
an information tool in studying geometry of submanifolds, we are led to consider
lightlike hypersurfaces whose shape operators are almost the same as the one of
their screen distribution.

Now, we introduce a new class, called screen almost conformal, briefly, SAC-
lightlike hypersurface of an indefinite Kenmotsu manifold, as follows.
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A lightlike hypersurface (M, g, S(TM)) of an indefinite Kenmotsu manifold M
with ξ ∈ TM is screen almost conformal (SAC) if the shape operator AN and A∗E
of M and its screen distribution S(TM), respectively, are related by

(3.24) AN = ϕA∗E + α⊗ ξ,

where ϕ is non-vanishing smooth function and α is a differential 1-form on U in M .
It is easy to see that α = θ on U in M and (3.24) becomes

(3.25) AN = ϕA∗E + θ ⊗ ξ.

This is equivalent to

(3.26) C = ϕB + θ ⊗ η.

In particular, we say that M is screen almost homothetic if ϕ is a non-zero constant.
In case U = M the screen almost conformality is said to be global. If θ vanishes,
then M is a screen conformal lightlike hypersurface [9].

As an example of SAC-lightlike hypersurface, we have:

Example 3.1. Let M be a hypersurface of (M
7
, φ, ξ, η, g), indefinite Kenmostu

manifold defined in Example 2.1, given by M = {x ∈M7
: x5 =

√
2(x4 +x3), f3i =

f4i = f5i = 0, f33 = f44 = f55 = 1}. Thus, the tangent space TM is spanned
by {Ui}, where U1 = e1, U2 = e2, U3 = e4 − e3, U4 = 1√

2
(e4 + e3) − e5, U5 =

e6, U6 = ξ and the 1-dimensional distribution TM⊥ of rank 1 is spanned by E,
where E = 1√

2
(e4 + e3) − e5. It follows that TM⊥ ⊂ TM . Then M is a 6-

dimensional lightlike hypersurface of M
7
. Also, the transversal bundle N(TM) is

spanned by N = 1
2{

1√
2
(e4 + e3) + e5}. Using the almost contact structure of M

7

and the decomposition (3.1), D0 is spanned by
{
F, φF

}
, where F = U1, φF = −U2

and the distributions 〈ξ〉, φ(TM⊥) and φ(N(TM)) are spanned, respectively, by ξ,
φE = − 1√

2
U3+U5 and φN = 1

2{−
1√
2
U3−U5}. Hence, M is a lightlike hypersurface

of M
7
. Denote by ∇ the Levi-Civita connection on M

7
. Then, by straightforward

calculations, we obtain ∇U1N = 1
2e
x7e6, ∇U2N = 1

2e
x7e6, ∇U3N = ∇U5N =

∇U6N = 0, ∇EN = −ξ, ∇U1E = −ex7e6, ∇U2E = −ex7e6, ∇U3E = ∇U5E =
∇U6

E = ∇EE = 0. Using these equations above, the differential 1-form τ vanishes
i.e. τ(X) = 0, for any X ∈ Γ(TM). So, from the Gauss and Weingarten formulae
we infer ANU1 = − 1

2e
x7e6, ANU2 = − 1

2e
x7e6, ANU3 = ANU5 = ANU6 = 0,

ANE = ξ, A∗EU1 = ex7e6, A∗EU2 = ex7e6, A∗EU3 = A∗EU5 = A∗EU6 = A∗EE = 0.
These imply that, for any X ∈ Γ(TM), ANX = ϕA∗EX + θ(X)ξ, with ϕ = − 1

2 .
Therefore, M is a screen almost homothetic lightlike hypersuface of an indefinite

Kenmostu manifold (M
7
, φ, ξ, η, g), tangent to the structure vector field ξ.

If (M, g, S(TM)) is a SAC-lightlike hypersurface of an indefinite manifold M
with ξ ∈ TM , then, using (3.23) and B(ξ, ·) = 0, we have,

(3.27) R(0,2)(X,Y )−R(0,2)(Y,X) = ϕB(A∗EX,Y )− ϕB(A∗EY,X) = 0.

Therefore, a locally (or globally) SAC-lightlike hypersurface M of an indefinite
Kenmotsu space form M(c) with ξ ∈ TM , admits an induced Ricci tensor.
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In the sequel, we need the following relations, for any X, Y ∈ Γ(TM),

(∇Xθ)Y = −C(X,Y ) + τ(X)θ(Y ),(3.28)

(∇Xη)Y = g(X,Y )− η(X)η(Y ).(3.29)

Using (3.28) and (3.29), the covariant derivative of C gives,

(∇XC)(Y, PZ) = X(ϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ)

+ η(PZ){−ϕB(X,Y ) + τ(X)θ(Y )}
+ θ(Y ){g(X,PZ)− η(X)η(PZ)},(3.30)

and using (3.10), the left hand side of (3.11) is given by

(∇XC)(Y, PZ)− (∇Y C)(X,PZ) = {X(ϕ)− ϕτ(X)}B(Y, PZ)

− {Y (ϕ)− ϕτ(Y )}B(X,PZ) + g(X,PZ)η(Y )

− g(Y, PZ)θ(X) + {τ(X)θ(Y )− τ(Y )θ(X)}η(PZ).(3.31)

On the other hand, using (3.18), the relation (3.11) becomes

(∇XC)(Y, PZ)− (∇Y C)(X,PZ) = g(X,PZ)θ(Y )− g(Y, PZ)θ(X)

+ ϕτ(X)B(Y, PZ)− ϕτ(Y )B(X,PZ)

+ {τ(X)θ(Y )− τ(Y )θ(X)}η(PZ).(3.32)

Putting the pieces (3.31) and (3.32) together, we have

{X(ϕ)− 2ϕτ(X)}B(Y, PZ) = {Y (ϕ)− 2ϕτ(Y )}B(X,PZ).(3.33)

Theorem 3.1. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite
Kenmotsu space form (M(c), g) with ξ ∈ TM . Then, for any X, Y ∈ Γ(TM),

(3.34) {E(ϕ)− 2ϕτ(E)}B(X,PY ) = 0.

Proof. The proof follows from (3.33). �

Under the hypothesis of Theorem 3.1, one can prove that if E(ϕ)− 2ϕτ(E) 6= 0,
then M is totally geodesic. Thus, M satisfies the symmetry proprieties studied in
[16] for lightlike geometry in indefinite Sasakian manifolds. But if M is not totally
geodesic, then, ϕ on M satisfies E(ϕ)− 2ϕτ(E) = 0.

A submanifold M is said to be a totally umbilical lightlike hypersurface of a
semi-Riemannian manifold M if its local second fundamental form B satisfies

(3.35) B(X,Y ) = λg(X,Y ), ∀X, Y ∈ Γ(TM),

where λ is a smooth function on U ⊂M . If M is a totally umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu manifold M with ξ ∈ TM , then, M is
totally geodesic [18]. It follows that a Kenmotsu M does not admit any non-totally
geodesic, totally umbilical SAC-lightlike hypersurface with almost conformal screen
distribution. From this point of view, Bejancu considered the concept of totally
contact umbilical submanifolds in [1].

A lightlike hypersurface (M, g) is said to be totally contact umbilical if its second
fundamental form h satisfies ([18]),for any X, Y ∈ Γ(TM),

(3.36) h(X,Y ) = H {g(X,Y )− η(X)η(Y )}+ η(X)h(Y, ξ) + η(Y )h(X, ξ),

where H = ρN being the mean curvature vector of M (ρ a smooth function on
U ⊂M). If ρ is nowhere vanishing on M , then the latter is said to be proper totally
contact umbilical.
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Let us assume that the screen distribution S(TM) of M is integrable and let M ′

be a leaf of S(TM). Then, using (2.8) and (2.10), we obtain

(3.37) ∇XY = ∇′XY + h′(X,Y ),

for any X, Y ∈ Γ(TM ′), where ∇′ and h′ are the Levi-Civita connection and the
second fundamental form of M ′ in M . Thus,

(3.38) h′(X,Y ) = C(X,Y )E +B(X,Y )N, ∀X, Y ∈ Γ(TM ′).

Lemma 3.1. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite
Kenmotsu space form (M(c), g) with ξ ∈ TM . Then, S(TM) is integrable.

The proof of this lemma is similar to the one for Theorem 2.3 in [3, page 89].
S(TM) being integrable, M is locally a product manifold L ×M ′, where L is an
open subset of a lightlike geodesic ray in M and M ′ is a leaf of S(TM).

If M is a totally contact umbilical SAC-lightlike hypersurface, the shape opera-
tors A∗E and AN are given by, for any X ∈ Γ(TM),

(3.39) A∗EX = ρP̂X and ANX = ρϕP̂X + θ(X)ξ.

Using the relations (3.39), the trace of the shape operator AN , with respect to g
restricted to S(TM), is given by,

(3.40) trAN = 2(n− 1)ϕρ.

Taking (3.39) in (3.13), the curvature tensor R of M is given by,

R(X,Y )Z = g(X,Z)Y − g(Y, Z)X − ϕρ2{g(X,Z)P̂ Y − g(Y, Z)P̂X}

+ ϕρ2{η(X)P̂ Y − η(Y )P̂X}η(Z) + ρ[{g(Y,Z)− η(Y )η(Z)}θ(X)

− {g(X,Z)− η(X)η(Z)}θ(Y )]ξ, ∀X,Y, Z ∈ Γ(TM).(3.41)

A lightlike hypersurface M is said to be η-Einstein if its induced Ricci tensor Ric
satisfies

(3.42) Ric = ag + bη ⊗ η,

where the non-zero functions a and b are not necessarily constant on M .
For η-Einstein lightlike hypersurfaces, due to the symmetry of the induced degen-

erate metric g, the Ricci tensor is symmetric, and the notion of η-Einstein manifold
does not depend on the choice of the screen distribution S(TM).

Theorem 3.2. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . Then,
M is η-Einstein.

Proof. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike hy-
persurface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . From
(3.39) and using (3.40), the induced Ricci type tensor (3.22) becomes

Ric(X,Y ) = −(2n− 1)g(X,Y ) + 2(n− 1)ϕρ2{g(X,Y )− η(X)η(Y )}
− ϕρ2{g(X,Y )− η(X)η(Y )} = ag(X,Y ) + bη(X)η(Y ),(3.43)

where a = −(2n− 1) + (2n− 3)ϕρ2 and b = −(2n− 3)ϕρ2. This induced Ricci type
tensor is symmetric and then called an induced Ricci tensor which is satisfied the
relation (3.42). Therefore, M is η-Einstein. �
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A lightlike submanifold M of a semi-Riemannian manifold M is said to be Ricci
semi-symmetric if the following condition is satisfied ([6], [26])

(3.44) (R(W1,W2) ·Ric)(X,Y ) = 0, ∀W1,W2, X, Y ∈ Γ(TM),

where R and Ric are induced Riemannian curvature and Ricci tensor on M , re-
spectively. The latter condition is equivalent to

−Ric(R(W1,W2)X,Y )−Ric(X,R(W1,W2)Y ) = 0.

Let M is a SAC-lightlike hypersurface of a Kenmotsu space form M(c) with ξ ∈
TM . If M is proper totally contact umbilical, by Theorem 3.2, M is η-Einstein with
a = −(2n−1)+(2n−3)ϕρ2 and b = −(2n−3)ϕρ2. Using (3.41) and (3.43), the left-
hand side of (3.44) gives −Ric(R(E, V )U, ξ) − Ric(U,R(E, V )ξ) = (2n − 1)ρ 6= 0.
This implies that a proper totally contact umbilical SAC-lightlike hypersurface M
is not Ricci semi-symmetric. Therefore,

Theorem 3.3. There exist no proper totally umbilical SAC-lightlike hypersurfaces
M of indefinite Kenmotsu space forms (M(c) with ξ ∈ TM that are Ricci semi-
symmetric.

As an example to this theorem, let us consider the manifold to be M
7

= {x ∈
R7 : x7 > 0}, where x = (x1, x2, ..., x7) are the standard coordinates in R7. The
vector fields, ep = x7

∂
∂xp

, eq = −x7
∂
∂xq

, for any p = 1, 2, 3, 4, q = 5, 6, 7 are linearly

independent at each point of M
7
. Endowing with the same almost contact structure

as in Example 2.1, M
7

is an indefinite Kenmotsu space form with c = −1. The

hypersurface M of M
7

given by x5 =
√

2 (x2 + x3) is lightlike and having a local
quasi-orthogonal field of frames U1 = e1, U2 = e2 − e3, U3 = 1√

2
(e2 + e3) − e5,

U4 = e4, U5 = e6, U6 = ξ, N = 1
2{

1√
2
(e2 + e3)}+ e5 along M , we get ∇U3N = −ξ

and ∇XN = 0, ∀X ∈ Γ(TM), X 6= U3 and τ(X) = 0, ∀X ∈ Γ(TM). By (2.8)
and (2.10), we have, ANU3 = ξ, ANX = 0, ∀X ∈ Γ(TM), X 6= U3, A∗EX = 0
and ∇XE = 0, ∀X ∈ Γ(TM). We have AN = θ ⊗ ξ and M is totally geodesic but
not proper totally umbilical and its screen distribution is almost conformal. The
components of R ·Ric vanish, that is, (R(·, ·) ·Ric)(ep, eq) = 0, ∀ p, q, r, s, i.e. M
is Ricci semi-symmetric.

A submanifold M is said to be semi-parallel if its second fundamental form h
satisfies ([21]), for any W1, W2, X, Y ∈ Γ(TM),

(R(W1,W2) · h)(X,Y ) = 0,(3.45)

that is , h(R(W1,W2)X,Y ) + h(X,R(W1,W2)Y ) = 0.

Theorem 3.4. Let M be a SAC-lightlike hypersurface of an indefinite Kenmotsu
space form (M(c) with ξ ∈ TM . If the component of the second fundamental form
h(V,U) 6= 0, then, M is not semi-parallel.

Proof. From the left hand-side of (3.45), we have, (R(V, ξ) ·h)(U, ξ) = h(V,U) 6= 0,
i.e. M is not semi-parallel. �

If a SAC-lightlike hypersurface M , of an indefinite Kenmotsu space form M(c)
with ξ ∈ TM , is proper totally contact umbilical, then its second fundamental form
h satisfies (3.36) and h(V,U) = ρ 6= 0. Therefore, there exist submanifolds on M
which satisfy the hypotheses of the Theorem 3.4.
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In [23], the author showed that if the second fundamental form h of M satisfies
(3.36), then ρ satisfies the partial differential equations

E(ρ) + ρτ(E)− ρ2 = 0, ξ(ρ) + ρ(τ(ξ) + 1) = 0,(3.46)

and P̂X(ρ) + ρτ(P̂X) = 0, ∀X ∈ Γ(TM).(3.47)

If a SAC-lightlike hypersurface M is proper totally contact umbilical, then, ρ satis-

fies the equations (3.46) and (3.47). Since X = P̂X + η(X)ξ+ θ(X)E, using (3.46)
and (3.47), one obtains X(ρ) + ρ{τ(X) + η(X)} = ρ2θ(X) and the mean curva-
ture vector H = ρN of M satisfies ∇⊥EH = ρ2N , ∇⊥ξ H = −ρN and ∇⊥PXH = 0,

PX 6= ξ, ∀X ∈ Γ(TM). This means that H is not parallel, that is, the totally
contact umbilical SAC-lightlike hypersurface M of a Kenmotsu space form M(c)
with ξ ∈ TM is not an extrinsic sphere (see [5] and [23] for details).

Let ϑ be the mean curvature 1-form, that is, the dual differential 1-form of the
mean curvature vector H of M . Then ϑ is locally defined by

(3.48) ϑ(X) = g(H,X) = ρθ(X), ∀X ∈ Γ(TM),

which leads to τ(X) = ϑ(X)−X(ln |ρ|)−η(X). Now, putting this relation together
with the relations (3.21), we have

R
(0,2)
ls −R(0,2)

sl = Xl(ϑ(Xs))−Xl(Xs(ln |λ|))−Xl(η(Xs))− ϑ(∇Xl
Xs)

+∇Xl
Xs(ln |λ|) + η(∇Xl

Xs)−Xs(ϑ(Xl)) +Xs(Xl(ln |λ|))
+Xs(η(Xl)) + ϑ(∇Xs

Xl)−∇Xs
Xl(ln |λ|)− η(∇Xs

Xl)

= 2dϑ(Xl, Xs),(3.49)

and similarly, we have R
(0,2)
0k − R

(0,2)
k0 = 2dϑ(X0, Xk). This means that R(0,2) is

symmetric on M if and only if dϑ = 0 on U ⊂ M , that is ϑ is closed. If R(0,2) is
a symmetric Ricci tensor Ric, then, the 1-form ϑ is closed. Using (2.11), we have,
for any X, Y , Z ∈ Γ(TM),

(∇Xg)(Y, Z) = {g(X,Y )− η(X)η(Y )}ϑ(Z) + {g(X,Z)− η(X)η(Z)}ϑ(Y ).

If ϑ vanishes identically on M , then ∇ is a torsion-free metric connection on M .
By Theorem 2.2 in [3, page 88], M is totally geodesic. This contradicts the above
statement on the geodesibility of M . Therefore, ϑ 6= 0 and we obtain another class
of lightlike hypersurface whose induced Ricci tensor is symmetric.

The geometry of lightlike hypersurfaces depends on the vector bundles S(TM)
and N(TM). It is known that the local second fundamental form B of M on U is
independent of the choice of the above vector bundles. This means that all results
depending only on B are stable with respect to any change of those vector bundles.

Suppose a screen S(TM) changes to another screen S̃(TM). The following are the
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local transformation equations due to this change (see [3] for details):

W̃i =

2n−1∑
j=1

W j
i (Wj − εjfjE) ,(3.50)

Ñ = N − 1

2
g(W,W )E +W,(3.51)

τ̃(X) = τ(X) +B(X, Ñ −N),(3.52)

Ã∗EX = A∗EX +B(X,N − Ñ)E,(3.53)

∇̃XY = ∇XY +B(X,Y ){1

2
g(W,W )E −W},(3.54)

for any X, Y ∈ Γ(TM |U ), where εi are signature of the orthonormal basis {Wi},
W =

∑2n−1
i=1 fiWi is the characteristic vector field of the screen change and W j

i and

fi are smooth functions on U such that {W j
i } are (2n−1)×(2n−1) semi-orthogonal

matrices. Denote by ω the dual 1-form of W with respect to the induced metric g
of M [3], that is,

(3.55) ω(X) = g(X,W ), ∀ X ∈ Γ(TM).

Let P and P̃ be projections of TM on S(TM) and S̃(TM), respectively, with re-
spect to the orthogonal decomposition of TM . Using (3.51), it is easy to check

that P̃X = PX−ω(X)E and C̃(X, P̃Y ) = C̃(X,PY ), ∀X, Y ∈ Γ(TM). The rela-

tionship between the second fundamental forms C and C̃ of the screen distribution

S(TM) and S̃(TM), respectively, is given by (using (3.51) and (3.54)),

(3.56) C̃(X,PY ) = C(X,PY )− 1

2
ω(∇XPY +B(X,Y )W ).

If M is a proper totally contact umbilical SAC-lightlike hypersurface of a Kenmotsu

space form M(c) with ξ ∈ TM , then M is not totally geodesic. Since θ̃ = θ + ω,

the 1-forms τ̃ and τ , and the shape operators Ã∗E and A∗E are related, respectively,

as τ̃(X) = τ(X) +ρω(P̂X) and Ã∗EX = A∗EX−ρω(P̂X)E. The dual differential 1-
form ϑ of the mean curvature vector H of M depends on the subbundle N(TM) and

letting ϑ̃ be another induced object with respect to another transversal subbundle

Ñ(TM). Then, the mean curvature 1-forms ϑ̃ and ϑ are related as ϑ̃(X) = ϑ(X) +
ρω(X), ∀X ∈ Γ(TM).

Theorem 3.5. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu manifold (M, g) with ξ ∈ TM . The 1-form
τ in (2.9) and the shape operator A∗E in (2.10) all two are independent of S(TM) if
and only if the 1-form ω in (3.55) is proportional to the 1-form η, i.e. ω = ω(ξ)η.
Moreover, the mean curvature 1-form ϑ in (3.48) is independent of S(TM) if and
only if the 1-form ω vanishes identically on M .

If the screen distribution S(TM)′ generated by {W̃ ′i} as given in (3.50) is screen
locally almost conformal, then by (3.26), (3.56) and the fact that B = B′, we ob-
tain g(∇XPY,W ) = ψB(X,Y ) − 2η(Y )ω(X), for some smooth function ψ on M .
Using the symmetry of B, we obtain g(∇XPY − ∇Y PX,W ) = 2{η(X)ω(Y ) −
η(Y )ω(X)}. Thus, we have g(∇XY − ∇YX,W ) = 2{η(X)ω(Y ) − η(Y )ω(X)},
∀X, Y ∈ Γ(S(TM)), that is, ω([X,Y ]) = 2{η(X)ω(Y ) − η(Y )ω(X)}. Hence,
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the 1-form ω in (3.55) vanishes identically on the first derivative space distribution
Span{[X,Y ]x : Xx, Yx ∈ Γ(S(Tx))} if and only if η(X)ω(Y ) = η(Y )ω(X).

4. Geometry of leaves of screen almost conformal lightlike
hypersurface

Let (M, g, S(TM)) be a screen almost conformal (SAC) lightlike hypersurface of
an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . Now, we investigate the
effects of almost conformality condition on the geometry of leaves of some integrable
distributions with specific attention to those of screen distribution S(TM), the

distributions D̂ and D ⊥ 〈ξ〉. Since the screen distribution S(TM) of a screen
almost conformal lightlike hypersurface M is integrable, let M ′ be a leaf of S(TM).
Then, using (3.37), we obtain

∇XY = ∇′XY + h′(X,Y ) = ∇′XY +B(X,Y )(ϕE +N),(4.1)

for any X, Y ∈ Γ(TM ′), where ∇′ and h′ = B ⊗ (ϕE + N) are the Levi-Civita
connection on M ′ and the second fundamental form h′ of M ′, respectively.

Theorem 4.1. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite
Kenmotsu manifold (M, g) with ξ ∈ TM and a leaf M ′ of S(TM). Then,

(i) M is totally geodesic,
(ii) M is proper totally contact umbilical,
(iii) M is minimal,

if and only if and only if M ′ is so immersed as a submanifold of M .

Suppose that M is a proper totally contact umbilical SAC-lightlike hypersurface.
By Theorem 4.1, the leaf M ′ is proper totally contact geodesic and we have,

(4.2) ∇XY = ∇′XY + h′(X,Y ), ∀X,Y ∈ Γ(TM ′),

where h′(X,Y ) = H ′{g(X,Y )− η(X)η(Y )} is the second fundamental form on M ′

and H ′ = ρϕE + ρN is the mean curvature vector of the leaf M ’.
From (3.14), we have, for any X, Y , Z, W ∈ Γ(TM),

g(R(X,Y )PZ, PW ) = g(X,PZ)g(Y, PW )− g(Y, PZ)g(X,PW )

+ ϕρ2{g(Y, PZ)− η(Y )η(PZ)}{g(X,PW )− η(X)η(PW )}
− ϕρ2{g(X,PZ)− η(X)η(PZ)}{g(Y, PW )− η(Y )η(PW )}
+ ρθ(X)η(PW ){g(Y, PZ)− η(Y )η(PZ)}
− ρθ(Y )η(PW ){g(X,PZ)− η(x)η(PZ)}.(4.3)

On the other hand, using the Gauss and Weingarten equations, the curvature ten-
sors R and R′ of ∇ and ∇∗, respectively, are related by

R(X,Y )PZ = R′(X,Y )PZ + C(X,PZ)A∗EY − C(Y, PZ)A∗EX

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ) + τ(Y )C(X,PZ)

− τ(X)C(Y, PZ)}E,(4.4)
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where (∇XC)(Y, PZ) = X(C(Y, PZ))− C(∇∗XY, PZ)− C(Y,∇∗XPZ). Thus,

g(R(X,Y )PZ, PW ) = g(R′(X,Y )PZ, PW )− ϕρ2{g(Y, PZ)− η(Y )η(PZ)}
× {g(X,PW )− η(X)η(PW )}+ ϕρ2{g(X,PZ)− η(X)η(PZ)}{g(Y, PW )

− η(Y )η(PW )} − ρθ(Y )η(PZ){g(X,PW )− η(X)η(PW )}
+ ρθ(X)η(PZ){g(Y, PW )− η(Y )η(PW )}.

(4.5)

From (4.3) and (4.5) the curvature tensor R′ of M ′ is given by

R′(X,Y )Z = g(X,Z)Y − g(Y,Z)X + 2ϕρ2{g(Y, Z)− η(Y )η(Z)}P̂X

− 2ϕρ2{g(X,Z)− η(X)η(Z)}P̂ Y, ∀X,Y, Z ∈ Γ(TM ′),(4.6)

and he non-zero functions ρ and ϕ satisfy X(ρ) + ρ(τ(X) + η(X)) = 0 and X(ϕ)−
2ϕτ(X) = 0, for any X ∈ Γ(TM ′). Using this, the Ricci type tensor Ric′ of M ′

gives Ric′(X,Y ) = {−(2n − 1) + 4(n − 1)ϕρ2}g(X,Y ) − 4(n − 1)ϕρ2η(X)η(Y ).
Therefore, we have

Theorem 4.2. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . Let M ′

be a leaf of S(TM). Then, M ′ is η-Einstein.

It is easy to check that (R′(ξ, V ) · Ric′)(U, ξ) = −(2n − 1) 6= 0 and (R′(V, ξ) ·
h′)(ξ, U) = H ′ 6= 0. Then, we have

Lemma 4.1. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . There
exist no leaves of S(TM) that are Ricci semi-symmetric and semi-parallel.

From partial differential equation on ρ and ϕ above, one obtains, for any X ∈
Γ(TM ′), g(∇′⊥X H ′, E) = X(ρ) + ρτ(X) = −ρη(X) and g(∇′⊥X H ′, N) = ϕX(ρ) +
ρ{X(ϕ)−ϕτ(X)} = −ρϕη(X), where ∇′⊥ is a linear connection on N(TM)⊕TM⊥
along M ′ defined by ∇′⊥X E = ∇∗⊥X E = −τ(X)E and ∇′⊥X N = ∇⊥XN = τ(X)N .
We have, g(∇′⊥X H ′, E) 6= 0 and g(∇′⊥X H ′, N) 6= 0, ∀X ∈ Γ(TM). That is, the mean
curvature vector H ′ of the leaf M ′ is not parallel. We have,

Theorem 4.3. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmostu space form (M(c), g) with ξ ∈ TM . Let M ′

be a leaf of S(TM). Then M ′ is not an extrinsic sphere.

The result of this theorem on proper totally contact umbilical SAC-lightlike
hypersurfaces is similar to the one found in [23, Theorem 5.10].

Now, referring to the decomposition (3.17), for any X ∈ Γ(TM), Y ∈ Γ(D̂), we
have

(4.7) ∇XY = ∇̂XY + ĥ(X,Y ),

where ∇̂ is a linear connection on the bundle D̂ and ĥ : Γ(TM)×Γ(D̂) −→ Γ(〈ξ〉 ⊥
TM⊥) is F(M)-bilinear. Let U ⊂ M be a coordinate neighborhood. Then, using
(3.17), (4.7) can be rewritten (locally) in the following way:

∇XY = ∇̂XY + g(∇XY, ξ)ξ + g(∇XY,N)E

= ∇̂XY − g(X,Y )ξ + C(X,Y )E,(4.8)
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and the local expression of ĥ is defined as ĥ(X,Y ) = −g(X,Y )ξ + C(X,Y )E. The

tensor ĥ is not symmetric, in general. Using (4.8), then, the distribution D̂ is
integrable if and only if it is symmetric, i.e.

(4.9) C(X,Y ) = C(Y,X), ∀X,Y ∈ Γ(D̂).

Lemma 4.2. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite

Kenmotsu space form M(c) with ξ ∈ TM . Then, the distribution D̂ in (3.16) is
integrable.

The proof follows from Lemma 3.1 and C(·, ·) = C(P̂ ·, P̂ ·) on S(TM). This result

means that the distribution D̂ is always integrable on a SAC-lightlike hypersurface

M of an indefinite Kenmotsu space form M(c) with ξ ∈ TM . Let M̂ ′ be a leaf of

D̂. Using (3.26), we have, for any X, Y , Z ∈ Γ(TM),

(4.10) (∇XC)(Y, P̂Z) = X(ϕ)B(Y, P̂Z) + ϕ(∇XB)(Y, P̂Z).

Mimicing the technique used to derive (3.33), one obtains,

(4.11) {E(ϕ)− 2ϕτ(E)}B(X, P̂Z) = −g(X, P̂Z).

By relation (4.11), since X = P̂X + η(X)ξ + θ(X)E and B(·, ξ) = 0, we have

(4.12) {E(ϕ)− 2ϕτ(E)}B(P̂X, P̂Z) = −g(P̂X, P̂Z).

This relation implies that {E(ϕ)− 2ϕτ(E)} 6= 0 and B 6= 0 along M̂ ′. From (3.26)
and (4.12), we have

B(P̂X, P̂Y ) = ρg(P̂X, P̂Y ) and C(P̂X, P̂Y ) = ϕρg(P̂X, P̂Y ),(4.13)

where λ = −(E(ϕ)− 2ϕτ(E))−1 6= 0.(4.14)

Theorem 4.4. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite
Kenmotsu space form M(c) with ξ ∈ TM . Then, any integral manifold M ′ of

S(TM) is proper totally umbilical and locally a product manifold M̂ ′ × Lξ, where

M̂ ′ is proper totally umbilical leaf of D̂ and Lξ is a non-degenerate curve tangent
to the distribution spanned by ξ.

Proof. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite Ken-
motsu space form M(c) with ξ ∈ TM . Then, as it is mentioned above, S(TM)

and D̂ are integrable. This means that they determine foliations. The distribution
< ξ > being a 1-dimensional non-degenerate distribution, it defines a foliation.

Since S(TM) = D̂ ⊥< ξ > in (3.1), then, any integral manifold M ′ of S(TM),

immersed as a submanifold in M , is locally a product manifold M̂ ′×Lξ, where M̂ ′

is leaf of D̂ and Lξ is a non-degenerate curve tangent to ξ. By combining the first
equations of (2.8) and (2.10), we obtain

∇XY = ∇̂XY − g(X,Y )ξ +B(X,Y ){ϕE +N}

= ∇̂′XY + ĥ′(X,Y ),(4.15)

for any X, Y ∈ Γ(M̂ ′), where ∇̂′ and ĥ′ = −g ⊗ ξ + B ⊗ {ϕE + N} are the Levi-

Civita connection and second fundamental form of M̂ ′ in M , respectively. Since
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{E(ϕ) − 2ϕτ(E)} 6= 0 and B 6= 0 along M̂ ′, then, by (4.13) M̂ ′ is not totally

geodesic and its second fundamental form ĥ′ is given by

(4.16) ĥ′(X,Y ) = {−ξ + λ(ϕE +N)}g(X,Y ),

for any X, Y ∈ Γ(M̂ ′), which implies that M̂ ′ is proper totally umbilical, since
−ξ + λ(ϕE +N) 6= 0. The second fundamental form h′ of M ′ in (4.1) is related to

ĥ′ by ĥ′ = −g ⊗ ξ + h′. Therefore, M ′ is proper totally umbilical. �

The second fundamental form ĥ′ of M̂ ′ defined in (4.15) is deduced as

(4.17) ĥ′(X,Y ) = Ĥ ′g(X,Y ), ∀ X, Y ∈ Γ(TM̂ ′),

where Ĥ ′ = −ξ + λ(ϕE + N) is the mean curvature vector of the leaf M̂ ′. The

relation (4.15) becomes ∇XY = ∇̂′XY + Ĥ ′g(X,Y ), which implies

∇X∇Y Z = ∇̂′X∇̂′Y Z + Ĥ ′g(X, ∇̂′Y Z) + (∇XĤ ′)g(Y, Z)

+ Ĥ ′X(g(Y, Z)),(4.18)

and ∇[X,Y ]Z = ∇̂′[X,Y ]Z + Ĥ ′g([X,Y ], Z),(4.19)

for any X, Y , Z ∈ Γ(TM̂ ′). Form (4.18) and (4.19), we have

(4.20) R(X,Y )Z = R̂′(X,Y )Z + (∇XĤ ′)g(Y,Z)− (∇Y Ĥ ′)g(X,Z).

Since P̂X = X and η(X) = 0, ∀X ∈ Γ(TM̂ ′), the relation (4.20) reduces,

R(X,Y )Z = R̂′(X,Y )Z − (1 + 2ϕλ2){g(Y,Z)X − g(X,Z)Y },(4.21)

and X(λ) + λτ(X) = 0 and X(ϕ)− 2ϕτ(X) = 0.(4.22)

On the other hand, we have

(4.23) R(X,Y )Z = R(X,Y )Z + ϕλ2{g(X,Z)Y − g(Y,Z)X}.

Putting (4.21) and (4.23) together, we obtain

R(X,Y )Z = R̂′(X,Y )Z − (1 + ϕλ2){g(Y,Z)X − g(X,Z)Y }.(4.24)

Also, using (3.41), the curvature R is expressed along the leaf M̂ ′ as

(4.25) R(X,Y )Z = −(1− ϕλ2){g(Y,Z)X − g(X,Z)Y }.

Using this and (4.24), the curvature tensor R̂′ of M̂ ′ is given by

R̂′(X,Y )Z = 2ϕλ2{g(Y, Z)X − g(X,Z)Y }.(4.26)

Therefore, M̂ ′ is a semi-Riemannian manifold of constant curvature 2ϕλ2.

Theorem 4.5. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite

Kenmotsu space form (M(c), g) with ξ ∈ TM . Let M̂ ′ be a leaf of D̂, immersed in
M as non-degenerate submanifold. Then the following assertions hold

(i) M̂ ′ is a space form of constant curvature 2ϕλ2,

(ii) M̂ ′ is Einstein,

(iii) M̂ ′ is locally symmetric, and

(iv) M̂ ′ is Ricci semi-symmetric
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Proof. Using (4.26), the Ricci tensor R̂ic
′

of the leaf M̂ ′ is given by

R̂ic
′
(X,Y ) = 2(2n− 3)ϕλ2g(X,Y ),(4.27)

for any W , X, Y , Z ∈ Γ(TM̂ ′). The covariant derivative of R̂′ is

(∇̂′W R̂′)(X,Y )Z = 2W (ϕλ2){g(Y,Z)X − g(X,Z)Y }+ 2ϕλ2{W (g(Y, Z))X

+ g(Y,Z)∇̂′WX −W (g(X,Z))Y − g(X,Z)∇̂′WY } − 2ϕλ2{g(Y, Z)∇̂′WX

− g(∇̂′WX,Z)Y } − 2ϕλ2{g(∇̂′WY, Z)X − g(X,Z)∇̂′WY }

− 2ϕλ2{g(Y, ∇̂′WZ)X − g(X, ∇̂′WZ)Y } = 2W (ϕλ2){g(Y, Z)X − g(X,Z)Y }.

Using (4.22), W (ϕλ2) = 2ϕλ2τ(W ) − 2ϕλ2τ(W ) = 0 and, for any W , X, Y ,

Z ∈ Γ(TM̂ ′), (∇̂′W R̂′)(X,Y )Z = 0, that is, the leaf M̂ ′ is locally symmetric. Now
we want to show that

(4.28) (R̂′(W1,W2) · R̂ic
′
)(X,Y ) = 0, ∀W1, W2, X, Y ∈ Γ(TM).

From (4.27), one obtains

R̂ic
′
(R̂′(W1,W2)X,Y ) = 4(2n− 3)(ϕλ2)2{g(W1, Y )g(W2, X)

− g(W2, Y )g(W1, X)},(4.29)

and

R̂ic
′
(X, R̂′(W1,W2)Y ) = 4(2n− 3)(ϕλ2)2{g(W1, X)g(W2, Y )

− g(W2, X)g(W1, Y )}.(4.30)

Putting the pieces (4.29) and (4.30) together into (4.28), one obtains that

(4.31) (R̂′(W1,W2) · R̂ic
′
)(X,Y ) = 0, ∀W1,W2, X, Y ∈ Γ(TM̂ ′),

that is, the leaf M̂ ′ is Ricci semi-symmetric, which completes the proof. �

Using (4.17) and (4.26). it is easy to see that the leaves of the integrable distri-

bution D̂ are semi-parallel.

Let ∇̂′⊥ be a linear connection on N(TM)⊕TM⊥ along M̂ ′ defined by ∇̂′⊥X E =

∇∗⊥X E = −τ(X)E and ∇̂′⊥X N = ∇⊥XN = τ(X)N , for any X ∈ Γ(TM ′). Using the

relations (4.22), the covariant derivative of the mean curvature vector Ĥ ′ of the

leaf M̂ ′ satisfies g(∇̂′⊥X Ĥ ′, E) = 0 and g(∇̂′⊥X Ĥ ′, N) = 0. This means that the mean

curvature vector Ĥ ′ of the leaf M̂ ′ is parallel. Therefore,

Lemma 4.3. Let (M, g, S(TM)) be a SAC-lightlike hypersurface of an indefinite
Kenmotsu space form (M(c), g) with ξ ∈ TM . Then, all the integral manifolds of

D̂ are semi-parallel and extrinsic spheres.

Next we deal with the geometry of the distribution D ⊥ 〈ξ〉 in (3.4). As is known
the screen distribution S(TM) of a SAC-lightlike hypersurface M is integrable. Let
Φ be the fundamental 2-form on M , locally defined by

Φ(X,Y ) = g(X,φY ).

Note that the differential 1-form u in (3.5) is related to the fundamental Φ as

u(X) = −Φ(X,E), ∀ X ∈ Γ(TM).
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Suppose that the distribution D ⊥ 〈ξ〉 is integrable. Let M∗ be a leaf of D ⊥ 〈ξ〉.
Using the decomposition (3.3) and for any X ∈ Γ(TM), Y ∈ Γ(D ⊥ 〈ξ〉), we have

(4.32) ∇XY = ∇D⊥〈ξ〉X Y + hD⊥〈ξ〉(X,Y ),

where ∇D⊥〈ξ〉 is a linear connection on D ⊥ 〈ξ〉 and hD⊥〈ξ〉 : Γ(TM) × Γ(D ⊥
〈ξ〉) −→ D′⊕N(TM) is F(M)-bilinear. Let U ⊂M be a coordinate neighborhood
as fixed in Theorem 2.1. By (3.3), for any X ∈ Γ(TM), Y ∈ Γ(D ⊥ 〈ξ〉), we have

∇XY = ∇D⊥〈ξ〉X Y + g(∇XY,E)N + g(∇XY, V )U

= ∇D⊥〈ξ〉∗X Y + hD⊥〈ξ〉∗(X,Y ),(4.33)

where hD⊥〈ξ〉∗(X,Y ) = B(X,Y )N + B(X,φY )U is the second fundamental form
of the leaf M∗.

Theorem 4.6. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . If the
fundamental 2-form Φ vanishes on D ⊥ 〈ξ〉, then the following statements hold:

(i) the distribution D ⊥ 〈ξ〉 is integrable;
(ii) the distribution D ⊥ 〈ξ〉 is auto-parallel with respect to the induced connec-

tion ∇;
(iii) M is locally a product M∗×C, where M∗ is a proper totally contact leaf of

D ⊥ 〈ξ〉 and C is a lightlike curve tangent to the distribution φ(N(TM)).

Proof. Using (2.2) and the fact that h(X,φY ) = ρg(X,φY )N with ρ 6= 0, we have,
for any X, Y ∈ Γ(D ⊥ 〈ξ〉),

2Φ(X,Y ) =
1

ρ
{g(h(X,φY ), E)− g(h(φX, Y ), E)} =

1

ρ
u([X,Y ]).(4.34)

If Φ vanishes on D ⊥ 〈ξ〉, then u([X,Y ]) = 0, for any X, Y ∈ Γ(D ⊥ 〈ξ〉),
that is, the distribution D ⊥ 〈ξ〉 is integrable (i). To prove (ii), we need to
check g(∇XE, V ) = 0, g(∇XV, V ) = 0, g(∇XY0, V ) = 0 and g(∇Xξ, V ) = 0,
for any X ∈ Γ(D ⊥ 〈ξ〉) and Y0 ∈ Γ(D0). Hence, using (3.36), we obtain
g(∇XE, V ) = ρΦ(X,E) = 0, g(∇XV, V ) = 0, g(∇XY0, V ) = ρΦ(X,Y0) = 0,
g(∇Xξ, V ) = Φ(X,E) = 0. Finally, from (i) we deduce that D ⊥ 〈ξ〉 determines
a foliation. D′ := φ(N(TM)) being a 1-dimensional distribution, it defines a folia-
tion. Let M∗ be a leaf of D ⊥ 〈ξ〉. Then, by (3.36) and for any X, Y ∈ Γ(TM∗),
the second fundamental form hD⊥〈ξ〉∗ in (4.33) of M∗ reduces

hD⊥〈ξ〉∗(X,Y ) = ρ{g(X,Y )− η(X)η(Y )}N + ρΦ(X,Y )U.

If Φ vanishes onD ⊥ 〈ξ〉, hD⊥〈ξ〉∗ becomes hD⊥〈ξ〉∗(X,Y ) = ρ{g(X,Y )−η(X)η(Y )}N .
The leaf M∗ of D ⊥ 〈ξ〉 is totally contact umbilical. So being TM = (D ⊥ 〈ξ〉)⊕D′,
we obtain (iii). �

5. Relative nullity foliations of screen almost conformal lightlike
hypersurfaces

This section is devoted to investigate relative nullity foliations in screen almost
conformal lightlike hypersurfaces M of Kenmotsu space form M(c), tangent to the
structure vector field ξ (see [22], for more details). We show that, under a certain
condition, their leaves are totally geodesic.
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The relative nullity space at a point x is defined by

T ∗0(x) = {X ∈ TxM : A∗EX = 0, ∀ E ∈ TxM⊥}.(5.1)

The dimension ν(x) of T ∗0(x) is called the index of relative nullity at x. The value
ν0 = minx∈M ν(x) is called the index of minimum relative nullity [5].

Writing A∗E as, for any X ∈ Γ(TM),

A∗EX =

2n−4∑
i=1

B(X,Fi)

g(Fi, Fi)
Fi +B(X,V )U +B(X,U)V,(5.2)

with g(Fi, Fi) 6= 0 and using B(., ξ) = 0, it is easy to check that A∗Eξ = A∗EE = 0.
Therefore, dimT ∗0(x) ≥ 2, ∀x ∈M. Moreover

TxM
⊥ ⊥ 〈ξ〉x ⊂ T ∗0(x).(5.3)

Hence, T ∗0(x) is a degenerate distribution along M and ν0 = 2.
The orthogonal complement (T ∗0(x))⊥ of T ∗0(x) in TxM is denoted by T ∗1(x).

Proposition 5.1. Let M be a lightlike hypersurface of indefinite Kenmotsu space
form M(c) with ξ ∈ TM . The orthogonal complement T ∗1(x) of T ∗0(x) in TxM is
given by

T ∗1(x) = span{A∗EY, Y ∈ TxM, E ∈ TxM⊥} ⊥ TxM⊥.

Proof. It is obvious to check that TxM
⊥ ⊂ T ∗1(x). Then, there exists a set ∆(x)

such that
T ∗1(x) = ∆(x) ⊥ TxM⊥.

Now we want to show that ∆(x) = span{A∗EY }. Given any E ∈ TxM
⊥, Y ∈

TxM and X ∈ T ∗0(x), g(X,A∗EY ) = g(A∗EX,Y ) = 0, so, A∗EY ∈ ∆(x). On
the other hand, let Z ∈ span{A∗EY }⊥S and Y ∈ TxM , where ⊥S denotes the
orthogonality symbol in the screen distribution S(TM). We have 0 = g(Z,A∗EY ) =
g(A∗EZ, Y ),∀ Y ∈ TxM. Then, A∗EZ ∈ S(TM) ∩ TxM⊥ = {0}, that is, A∗EZ = 0
and Z ∈ T ∗0(x).

Thus span{A∗EY }⊥S ⊂ T ∗0(x) and T ∗1(x) ⊂ span{A∗EY }. Since A∗EY /∈
TxM

⊥, then ∆(x) ⊂ span{A∗EY } which completes the proof. �

Let G be the set of points in M where ν(x) = ν0. By Theorem 4.4 in [22], G is
an open set in M . We now show that the relative nullity space T ∗0(x) is a smooth
distribution. Let x0 be an element of G. From (5.3), we have

T ∗0(x0) = P (T ∗0(x0)) ⊥ Tx0M
⊥ ⊥ 〈ξ〉x0 .(5.4)

Let ⊥S denotes the orthogonality symbol in the screen distribution S(TM). For
Y ∈ Tx0

M , E ∈ Tx0
M⊥ and X ∈ P (T ∗0(x0)), we have, g(A∗EY,X) = g(Y,A∗EX) =

0, so we obtain,
span{A∗EY } ⊂ P (T ∗0(x0))⊥S .

Let Z ∈ span{A∗EY }⊥S and Y ∈ Tx0
M . We have 0 = g(Z,A∗EY ) = g(A∗EZ, Y ),

∀ Y ∈ TxM. Then A∗EZ ∈ S(TM) ∩ Tx0M
⊥ = {0}, that is, A∗EZ = 0 and Z ∈

P (T ∗0(x0)). Thus, span{A∗EY }⊥S ⊂ P (T ∗0(x0)) and P (T ∗0(x0))⊥S ⊂ span{A∗EY }.
Thus, P (T ∗0(x0))⊥S = span{A∗EY } and T ∗1(x0) = span{A∗EY } ⊥ Tx0

M⊥. There
exist vector fields Y1, ..., Y2n−ν+1 ∈ Tx0

M such that

{E(x0), A∗E(x0)Y1, ..., A
∗
E(x0)Y2n−ν+1},

represents a basis of T ∗1(x).
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Take smooth local extensions of E(x0) and Y1, ..., Y2n−ν+1 ∈ Tx0M in TM⊥ and
TM respectively. By continuity, the vector fields {E(x0), Y1, ..., Y2n−ν+1} remain
linearly independent in a neighborhood V ⊂ G of x0 and then T ∗1 is a smooth
distribution. Consequently, T ∗0 is smooth distribution.

Suppose that M is a proper totally contact umbilical SAC-lightlike hypersurface
of indefinite Kenmotsu space form M(c) with ξ ∈ TM . Let x be an element of
G. If X ∈ T ∗0(x), then A∗EX = 0. Using the fact that X = PX + θ(X)E and
A∗EE = 0, we get A∗EPX = 0, which implies that

(5.5) B(PX,PY ) = 0,∀ Y ∈ TxM.

Since B 6= 0 on M and ξ is the only vector field in S(TM) such that B(ξ, ·) = 0,
the relation (5.5) implies that PX is proportional to ξ, that is PX = η(X)ξ. Thus,
the vector field is now

(5.6) X = η(X)ξ + θ(X)E.

That is, X ∈ TxM⊥ ⊥ 〈ξ〉x and P (T ∗0(x)) = {0}. Therefore

(5.7) TxM
⊥ ⊥ 〈ξ〉x ⊂ T ∗0(x).

We have the following result.

Theorem 5.1. Let (M, g, S(TM)) be a proper totally contact umbilical SAC-lightlike
hypersurface of an indefinite Kenmotsu space form (M(c), g) with ξ ∈ TM . Then,
on G

(5.8) T ∗0 = TM⊥ ⊥ 〈ξ〉.
Moreover, the relative nullity distribution T ∗0 is integrable and the leaves are totally
geodesic in M and M .

Proof. From (5.3) and (5.7), we obtain the relation (5.8). From Gauss and Codazzi
equations, we have, for any E ∈ Γ(TM⊥) and X, Y , Z ∈ Γ(TM),

(5.9) g(R(X,Y )Z,E) = g((∇Xh)(Y,Z)− (∇Y h)(X,Z), E).

Take X ∈ Γ(TM) and Y , Z ∈ T ∗0(x), x ∈ G. Since (∇Xh)(Y,Z) = ∇⊥Xh(Y, Z) −
h(∇XY, Z)− h(Y,∇XZ), then

g((∇Xh)(Y, Z)− (∇Y h)(X,Z), E) = X(B(Y,Z))− Y (B(X,Z))

− τ(X)B(Y,Z) + τ(Y )B(X,Z)−B(∇XY,Z)−B(Y,∇XZ)

+B(∇YX,Z) +B(X,∇Y Z).(5.10)

Using (3.9) the left hand side of (5.9) vanishes and the relation (5.10) becomes

0 = X(B(Y, Z))− Y (B(X,Z))− τ(X)B(Y,Z) + τ(Y )B(X,Z)

−B(∇XY, Z)−B(Y,∇XZ) +B(∇YX,Z) +B(X,∇Y Z).(5.11)

From (5.6), Z ∈ T ∗0(x) implies that Z takes the form Z = η(Z)ξ + θ(Z)E and
B(Y,Z) = η(Z)B(ξ, PY ) + θ(Z)B(E,PY ) = 0. Similarly, B(X,Z) = 0.

On the other hand, since B(X,A∗EY ) = B(A∗EX,Y ), we have

B(∇XY,Z) = B(∇∗XPY,Z) + θ(Y )B(X,A∗EZ) = 0,(5.12)

for Z ∈ T ∗0(x). Also B(∇YX,Z) = 0.
The relation (5.11) becomes B(X,∇Y Z)−B(Y,∇XZ) = 0. But

B(Y,∇XZ) = B(Y,∇∗XPZ)− θ(X)B(A∗EY,X) = 0.



22 FORTUNÉ MASSAMBA

Consequently h(∇Y Z,PX) = 0, ∀X ∈ Γ(TM). Since M is not parallel, we deduce
that ∇Y Z ∈ TxM⊥ ⊥ 〈ξ〉x = T ∗0(x), i.e., ∇YX ∈ T ∗0(x). This implies that T ∗0(x)
is involutive with totally geodesic leaves in both M and M . �
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[4] Bonome, A., Castro, R., Garćıa-Rio, E. and Hervella, L., Curvature of indefinite almost
contact manifolds, J. geom., 58 (1997), 66-86.

[5] Dajczer, M. et al., Submanifolds and isometric immersions. Mathematics lecture series 13.

Publish or Perish, Inc., Houston, Texas, 1990.
[6] Defever, F., Ricci semi-symmetric hypersurfaces, Balkan J. of Geometry and Its Appl., 5 (1)

(2000), 81-91.
[7] Duggal, K. L., On scalar curvature in lightlike geometry, J. Geom. Phys. 57 (2)(2007), 473-

481.

[8] Duggal, K. L. and Jin, D. H., Null curves and hypersurfaces of semi-Riemannian manifolds,
World Scientific Publishing Co. Pte. Ltd, 2007.

[9] Duggal, K. L. and Sahin, B., Differential Geometry of Lightlike Submanifolds, Frontiers in

Mathematics, 2010.
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