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Abstract. Some invariant tensors in two Naveira classes of Riemannian prod-

uct manifolds are considered. These tensors are related with natural connec-

tions, i.e. linear connections preserving the Riemannian metric and the prod-
uct structure.

Introduction

A Riemannian almost product manifold (M,P, g) is a differentiable manifold M
for which almost product structure P is compatible with the Riemannian metric g
such that an isometry is induced in any tangent space of M .

The systematic development of the theory of Riemannian almost product mani-
folds was started by K. Yano in [15].

In [11] A. M. Naveira gave a classification of Riemannian almost product mani-
folds with respect to the covariant differentiation ∇P , where ∇ is the Levi-Civita
connection of g. This classification is very similar to the Gray-Hervella classification
in [1] of almost Hermitian manifolds.

M. Staikova and K. Gribachev gave in [13] a classification of the Riemannian
almost product manifolds with trP = 0. In this case the manifold M is even-
dimensional.

For the classW1 of the Staikova-Gribachev classification is validW1 =W3⊕W6,
where W3 and W6 are classes of the Naveira classification. In some sense these
manifolds have dual geometries.

In [10], a connection ∇′ on a Riemannian almost product manifold (M,P, g) is
called natural if ∇′P = ∇′g = 0. In [9], a tensor on such a manifold is called a
Riemannian P -tensor if it has properties similar to the properties of the Kähler
tensor in Hermitian geometry. In [4], a Riemannian P -tensor K is defined on
(M,P, g) ∈ W3 ∪W6 by the curvature tensor R of ∇ and the structure P .
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In the present work1, we study manifolds (M,P, g) from the class W3 ∪W6 for
which the curvature tensor of each natural connection is a Riemannian P -tensor.

We consider three tensors B(L), A(L) and C(L) determined by arbitrary Rie-
mannian P -tensor L, where B(L) is the Bochner tensor introduced in [13]. We
prove that B(R′) = B(K) for arbitrary natural connection ∇′ in Theorem 3.1. In
Theorem 4.1 we prove that A(R′) = A(K) if ∇′ is the canonical connection in-
troduced in [10]. In Theorem 5.1 we prove that C(R′) = C(K) if ∇′ is a natural
connection with parallel torsion. Moreover, we consider a tensor E(L) determined
by a curvature-like tensor L. In Theorem 6.1 we prove that E(R′) = E(R) for the
natural connection ∇′ = D, considered in [3], in the case when D has a parallel
torsion.

1. Preliminaries

Let (M,P, g) be a Riemannian almost product manifold, i.e. a differentiable
manifold M with a tensor field P of type (1, 1) and a Riemannian metric g such
that P 2x = x, g(Px, Py) = g(x, y) for any x, y of the algebra X(M) of the smooth
vector fields on M . Further x, y, z, w will stand for arbitrary elements of X(M) or
vectors in the tangent space TcM at c ∈M .

In [11] A.M. Naveira gives a classification of Riemannian almost product mani-
folds with respect to the tensor F of type (0,3), defined by F (x, y, z) = g ((∇xP ) y, z) ,
where ∇ is the Levi-Civita connection of g.

In this work we consider manifolds (M,P, g) with trP = 0. In this case M is an
even-dimensional manifold. We assume that dimM = 2n.

Using the Naveira classification, in [13] M. Staikova and K. Gribachev give a
classification of Riemannian almost product manifolds (M,P, g) with trP = 0.
The basic classes of this classification are W1, W2 and W3. Their intersection is
the class W0 of the Riemannian P -manifolds ([12]), determined by the condition
F = 0. This class is an analogue of the class of Kähler manifolds in the geometry
of almost Hermitian manifolds.

The class W1 from the Staikova-Gribachev classification consists of the Rie-
mannian product manifolds which are locally conformal equivalent to Riemannian
P -manifolds. This class plays a similar role of the role of the class of the conformal
Kähler manifolds in almost Hermitian geometry. We will say that a manifold from
the class W1 is a W1-manifold.

The characteristic condition for the class W1 is the following

W1 : F (x, y, z) = 1
2n

{
g(x, y)θ(z)− g(x, Py)θ(Pz)

+ g(x, z)θ(y)− g(x, Pz)θ(Py)
}
,

where the associated 1-form θ is determined by θ(x) = gijF (ei, ej , x). Here gij will
stand for the components of the inverse matrix of g with respect to a basis {ei} of
TcM at c ∈M . The 1-form θ is closed, i.e. dθ = 0, if and only if (∇xθ) y = (∇yθ)x.
Moreover, θ ◦ P is a closed 1-form if and only if (∇xθ)Py = (∇yθ)Px.

1Partially supported by project NI11-FMI-004 of the Scientific Research Fund, Paisii Hilen-
darski University of Plovdiv, Bulgaria
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In [13] it is proved that W1 =W3⊕W6, where W3 and W6 are the classes from
the Naveira classification determined by the following conditions:

W3 : F (A,B, ξ) = 1
ng(A,B)θv(ξ), F (ξ, η, A) = 0,

W6 : F (ξ, η, A) = 1
ng(ξ, η)θh(A), F (A,B, ξ) = 0,

where A,B, ξ, η ∈ X(M), PA = A, PB = B, Pξ = −ξ, Pη = −η, θv(x) =
1
2 (θ(x)− θ(Px)), θh(x) = 1

2 (θ(x) + θ(Px)). In the case when trP = 0, the above

conditions for W3 and W6 can be written for any x, y, z in the following form:

W3 : F (x, y, z) = 1
2n

{
[g(x, y) + g(x, Py)] θ(z)

+ [g(x, z) + g(x, Pz)] θ(y)
}
, θ(Px) = −θ(x),

W6 : F (x, y, z) = 1
2n

{
[g(x, y)− g(x, Py)] θ(z)

+ [g(x, z)− g(x, Pz)] θ(y)
}
, θ(Px) = θ(x).

In [13], a tensor L of type (0,4) with properties

L(x, y, z, w) = −L(y, x, z, w) = −L(x, y, w, z),

L(x, y, z, w) + L(y, z, x, w) + L(z, x, y, w) = 0

is called a curvature-like tensor. Such a tensor on a Riemannian almost product
manifold (M,P, g) with the property

L(x, y, Pz, Pw) = L(x, y, z, w)

is called a Riemannian P -tensor in [9]. This notion is an analogue of the notion of
a Kähler tensor in Hermitian geometry.

Let S be a (0,2)-tensor on a Riemannian almost product manifold. In [13] it is
proved that

ψ1(S)(x, y, z, w) = g(y, z)S(x,w)− g(x, z)S(y, w)

+ S(y, z)g(x,w)− S(x, z)g(y, w)
(1.1)

is a curvature-like tensor if and only if S(x, y) = S(y, x), and the tensor

(1.2) ψ2(S)(x, y, z, w) = ψ1(S)(x, y, Pz, Pw)

is curvature-like if and only if S(x, Py) = S(y, Px). Obviously

ψ2(S)(x, y, Pz, Pw) = ψ1(S)(x, y, z, w).

If ψ1(S) and ψ2(S) are curvature-like tensors, then (ψ1 + ψ2) (S) is a Riemannian
P -tensor. The tensors

(1.3) π1 =
1

2
ψ1(g), π2 =

1

2
ψ2(g), π3 = ψ1(g̃) = ψ2(g̃)

are curvature-like, where g̃(x, y) = g(x, Py), and the tensors π1 + π2, π3 are Rie-
mannian P -tensors.

The curvature tensor R of ∇ is determined by R(x, y)z = ∇x∇yz − ∇y∇xz −
∇[x,y]z and the corresponding tensor of type (0,4) is defined as followsR(x, y, z, w) =
g(R(x, y)z, w). We denote the Ricci tensor and the scalar curvature of R by ρ and
τ , respectively, i.e. ρ(y, z) = gijR(ei, y, z, ej) and τ = gijρ(ei, ej). The associ-
ated Ricci tensor ρ∗ and the associated scalar curvature τ∗ of R are determined by
ρ∗(y, z) = gijR(ei, y, z, Pej) and τ∗ = gijρ∗(ei, ej). In a similar way there are de-
termined the Ricci tensor ρ(L) and the scalar curvature τ(L) for any curvature-like
tensor L as well as the associated quantities ρ∗(L) and τ∗(L).
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In [10], a linear connection∇′ on a Riemannian almost product manifold (M,P, g)
is called a natural connection if ∇′P = ∇′g = 0.

In [2], it is established that the natural connections∇′ on aW1-manifold (M,P, g)
form a 2-parametric family, where the torsion T of ∇′ is determined by

T (x, y, z) =
1

2n
{g(y, z)θ(Px)− g(x, z)θ(Py)}

+ λ {g(y, z)θ(x)− g(x, z)θ(y)

+g(y, Pz)θ(Px)− g(x, Pz)θ(Py)}

+ µ {g(y, Pz)θ(x)− g(x, Pz)θ(y)

+g(y, z)θ(Px)− g(x, z)θ(Py)} ,

(1.4)

where λ, µ ∈ R.
Let Q be the tensor determined by

(1.5) ∇′xy = ∇xy +Q(x, y).

The corresponding tensor of type (0,3), according to [5], satisfies

(1.6) Q(x, y, z) = T (z, x, y).

Let us recall the following statement.

Theorem 1.1 ([5]). Let R′ is the curvature tensor of a natural connection ∇′ on
a W1-manifold (M,P, g). Then the following relation is valid:

(1.7) R = R′ − g(p, p)π1 − g(q, q)π2 − g(p, q)π3 − ψ1(S′)− ψ2(S′′),

where

p = λΩ +
(
µ+ 1

2n

)
PΩ, q = λPΩ + µΩ, g(Ω, x) = θ(x),

S′(y, z) = λ
(
∇′yθ

)
z +

(
µ+ 1

2n

) (
∇′yθ

)
Pz

− 1
2n {λθ(y)θ(Pz) + µθ(y)θ(z)} ,

S′′(y, z) = λ
(
∇′yθ

)
z + µ

(
∇′yθ

)
Pz

+ 1
2n {λθ(Py)θ(z) + µθ(Py)θ(Pz)} .

2. Some properties of the natural connections on the manifolds of
the class W3 ∪W6

Let (M,P, g) is a Riemannian product manifold of the classW3 or the classW6,
i.e. (M,P, g) ∈ W3 ∪W6. Then for the 1-form θ and the vector Ω we have

(2.1) θ(Pz) = εθ(z), PΩ = εΩ,

where ε = 1 for (M,P, g) ∈ W3 and ε = −1 for (M,P, g) ∈ W6.
Let ∇′ be a natural connection on (M,P, g) ∈ W3 ∪W6.
Using (1.4), (1.6) and (2.1), we obtain for the tensor Q determined by (1.5) the

following

Q(x, y) =

[
λ+ ε

(
µ+

1

2n

)]
[g(x, y)− θ(y)x]

(µ+ ελ) [g(x, Py)− θ(y)Px] .
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Now, for the curvature tensors R and R′ of ∇ and ∇′, it is valid (1.7), where

p =
(
λ+ εµ+

ε

2n

)
Ω, q = (µ+ ελ)Ω,(2.2)

S′(y, z) =
(
λ+ εµ+

ε

2n

) (
∇′yθ

)
z − µ+ ελ

2n
θ(y)θ(z),(2.3)

S′′(y, z) = (λ+ εµ)
(
∇′yθ

)
z +

µ+ ελ

2n
θ(y)θ(z).(2.4)

Further we consider manifolds (M,P, g) ∈ W3 ∪ W6 with closed 1-form θ. In
this case, the tensor K, determined by

(2.5) K(x, y, z, w) =
1

2
[R(x, y, z, w) +R(x, y, Pz, Pw)] ,

is a Riemannian P -tensor ([4]).
If (M,P, g) ∈ W3 ∪W6 has a closed 1-form θ, then the curvature tensor R′ of a

natural connection ∇′ is also a Riemannian P -tensor. Indeed, from (1.7) it is clear,
that R′ is a Riemannian P -tensor if and only if ψ1(S′) and ψ2(S′′) are curvature-like
tensors, i.e. if and only if S′(y, z) = S′(z, y) and S′′(y, Pz) = S′′(z, Py). According
to (2.3) and (2.4), the latter conditions are valid if and only if

(2.6)
(
∇′yθ

)
z = (∇′zθ) y.

In [5], it is proved that for any W1-manifold the following equality is valid:(
∇′yθ

)
z − (∇′zθ) y = (∇yθ) z − (∇zθ) y

− 1

2n
{θ(Py)θ(z)− θ(y)θ(Pz)} .

Bearing in mind (2.1), the latter equality implies that equality (2.6) is valid on
(M,P, g) ∈ W3 ∪W6 if and only if (∇yθ) z = (∇zθ) y, i.e. if and only if the 1-form
θ is closed.

Theorem 2.1. Let the manifold (M,P, g) ∈ W3 ∪W6 be with a closed 1-form θ.
Then the following equality is valid

(2.7) K = R′ − (ψ1 + ψ2) (S),

where

S(y, z) =
(
λ+ εµ+

ε

4n

) (
∇′yθ

)
z

+
g(p, p) + g(q, q)

4
g(y, z) +

g(p, q)

2
g(y, Pz).

(2.8)

Proof. According to Theorem 1.1, for (M,P, g) it is valid the equality

R(x, y, z, w) = {R′ − g(p, p)π1 − g(q, q)π2 − g(p, q)π3

−ψ1(S′)− ψ2(S′′)} (x, y, z, w).
(2.9)

In (2.9), we substitute Pz and Pw for z and w, respectively. We add the obtained
equality to (2.9). Then, taking into account (1.1), (1.2), (1.3), (2.3), (2.4), (2.5),
(2.8) and the properties of the curvature-like tensors ψ1(S′) and ψ2(S′′), we get
(2.7). �
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In Section 3, Section 4 and Section 5, we find some Riemannian P -tensors de-
termined by K on a manifold (M,P, g) ∈ W3 ∪ W6 with a closed 1-form θ. We
establish that the found tensors coincide with the corresponding tensors deter-
mined by the curvature tensor R′ of a natural connection ∇′. In Section 6, we find
a curvature-like tensor determined by R on such a manifold and establish that this
tensor coincides with the corresponding tensor determined by the curvature tensor
R′ of the special natural connection D investigated in [5], in the case when D has
a parallel torsion.

3. An arbitrary natural connection on a manifold (M,P, g) ∈ W3 ∪W6

with a closed 1-form θ

In [13], it is defined a Bochner tensor B(L) for an arbitrary Riemannian P -tensor
L on a W1-manifold (M,P, g) (dimM ≥ 6) as follows:

B(L) = L− 1

2(n− 2)

{
(ψ1 + ψ2)(ρ(L))

− 1

2(n− 1)
[τ(L)(π1 + π2) + τ∗(L)π3]

}
.

(3.1)

Let us remark that B(L) is also a Riemannian P -tensor.

Theorem 3.1. Let the manifold (M,P, g) ∈ W3 ∪ W6 (dimM ≥ 6) be with a
closed 1-form θ. If R′ is the curvature tensor of a natural connection ∇′, then
B(R′) = B(K).

Proof. Relation (2.7) implies the following equality for the Ricci tensors ρ(K) and
ρ′ of K and R′, respectively:

(3.2) ρ(K) = ρ′ − trS g − trS̃ g̃ − 2(n− 2)S,

where S̃(y, z) = S(y, Pz). Then we get the following equalities for the scalar
curvatures:

(3.3) trS =
τ ′ − τ(K)

4(n− 1)
, trS̃ =

τ ′∗ − τ∗(K)

4(n− 1)
.

Equalities (3.2) and (3.3) imply

S =
1

2(n− 2)

{
ρ′ − ρ(K)− (τ ′ − τ(K))g + (τ ′∗ − τ∗(K))g̃

4(n− 1)

}
.(3.4)

From (1.1), (1.2), (1.3) and (3.4), we have

(ψ1 + ψ2)(S) =

=
1

2(n− 2)

{
(ψ1 + ψ2)(ρ′)− (ψ1 + ψ2)(ρ(K))

− (τ ′ − τ(K))(π1 + π2) + (τ ′∗ − τ∗(K))π3

2(n− 1)

}
.

(3.5)

Using (3.5), (2.7) and the definition (3.1) of the Bochner tensor, we obtain B(K) =
B(R′). �
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4. The canonical connection on a manifold (M,P, g) ∈ W3 ∪W6 with a
closed 1-form θ

The canonical connection on a Riemannian almost product manifold is a natural
connection introduced in [10] as an analogue of the Hermitian connection on al-
most Hermitian manifold. A connection of such a type on almost contact B-metric
manifolds is considered in [7], [8].

We define the tensor A(L) for an arbitrary Riemannian P -tensor L by the equal-
ity

(4.1) A(L) = L− τ(L)(π1 + π2 − επ3)

4n(n− 1)
.

Obviously, A(L) is also a Riemannian P -tensor.

Theorem 4.1. Let the manifold (M,P, g) ∈ W3 ∪W6 be with a closed 1-form θ.
If R′ is the curvature tensor of the canonical connection, then A(R′) = A(K).

Proof. In [5], it is shown the canonical connection on a W1-manifold is determined
by λ = 0 and µ = − 1

4n . Then, (2.2) implies p = εΩ
4n , q = − Ω

4n and therefore

(4.2) g(p, p) = g(q, q) = −εg(p, q) =
θ(Ω)

16n2
.

From (2.8) and (4.2) it is follows S = θ(Ω)
32n2 (g−εg̃). Then, because of (1.3), we have

(ψ1 + ψ2)(S) = θ(Ω)
16n2 (π1 + π2 − επ3). Thus, (2.7) takes the form

(4.3) K = R′ − θ(Ω)(π1 + π2 − επ3)

16n2
.

By virtue of (4.3), we obtain the following equalities

ρ(K) = ρ′ − (n− 1)θ(Ω)(g − εg̃)

8n2
,

θ(Ω) =
4n(τ ′ − τ(K))

n− 1
= −4nε(τ ′∗ − τ∗(K))

n− 1
.

(4.4)

Bearing in mind (4.3) and (4.4), by suitable calculations we get

R′ − τ ′(π1 + π2 − επ3)

4n(n− 1)
= K − τ(K)(π1 + π2 − επ3)

4n(n− 1)
.

Then, according to (4.1), we have A(R′) = A(K). �

In [12], a 2-plane α = (x, y) in TcM is called a totally real 2-plane if α is
orthogonal to Pα. Its sectional curvatures with respect to R′

ν′ =
R′(x, y, y, x)

π1(x, y, y, x)
, ν′∗ =

R′(x, y, y, Px)

π1(x, y, y, x)

are called totally real sectional curvatures with respect to R′.

Theorem 4.2. A manifold (M,P, g) ∈ W3 ∪W6 with a closed 1-form θ has point-
wise constant totally real sectional curvatures

ν′ =
τ ′

4n(n− 1)
, ν′∗ = − ετ ′

4n(n− 1)

with respect to the curvature tensor R′ of the canonical connection if and only if
A(R′) = 0 (or equivalently A(K) = 0).
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Proof. According to (4.1), the condition for annulment of A(R′) is the condition

R′ =
τ ′(π1 + π2 − επ3)

4n(n− 1)
.

Then, bearing in mind [12], we establish the truthfulness of the statement. �

5. An natural connection with parallel torsion on a manifold
(M,P, g) ∈ W3 ∪W6 with a closed 1-form θ

We define the tensor C(L) for an arbitrary Riemannian P -tensor L by the equal-
ity

(5.1) C(L) = L− τ(L)(π1 + π2) + τ∗(L)π3

4n(n− 1)
.

Obviously, C(L) is also a Riemannian P -tensor.

Theorem 5.1. Let the manifold (M,P, g) ∈ W3 ∪W6 be with a closed 1-form θ.
If R′ is the curvature tensor of a natural connection with a parallel torsion, then
C(R′) = C(K).

Proof. In [5], it is proved that a natural connection ∇′ on a W1-manifold has a
parallel torsion if and only if the 1-form θ is also parallel, i.e. ∇′θ = 0. Then, (2.8)
implies

S =
g(p, p) + g(q, q)

4
g +

g(p, q)

2
g̃.

Then, because of (1.3), we have

(ψ1 + ψ2)(S) =
g(p, p) + g(q, q)

2
(π1 + π2) + g(p, q)π3.

Thus, (2.7) takes the form

(5.2) K = R′ − g(p, p) + g(q, q)

2
(π1 + π2) + g(p, q)π3.

By virtue of (5.2), we obtain

ρ(K) = ρ′ − (n− 1)[g(p, p) + g(q, q)]g − 2(n− 1)g(p, q)g̃),

which implies

τ(K) = τ ′ − 2n(n− 1)[g(p, p) + g(q, q)],

τ∗(K) = τ ′∗ − 4n(n− 1)g(p, q).
(5.3)

Bearing in mind (5.2) and (5.3), by suitable calculations we get

R′ − τ ′(π1 + π2) + τ ′∗π3

4n(n− 1)
= K − τ(K)(π1 + π2) + τ∗(K)π3

4n(n− 1)
.

Then, according to (5.1), we have C(R′) = C(K). �

Theorem 5.2. A manifold (M,P, g) ∈ W3 ∪W6 with a closed 1-form θ has point-
wise constant totally real sectional curvatures

ν′ =
τ ′

4n(n− 1)
, ν′∗ =

τ ′∗

4n(n− 1)

with respect to the curvature tensor R′ of an arbitrary natural connection with
parallel torsion if and only if C(R′) = 0 (or equivalently C(K) = 0).
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Proof. According to (5.1), the condition for annulment of C(R′) is the condition

R′ =
τ ′(π1 + π2) + τ ′∗π3

4n(n− 1)
.

Then, bearing in mind [12], we establish the truthfulness of the statement. �

6. The natural connection D (λ = µ = 0) with parallel torsion on a
manifold (M,P, g) ∈ W3 ∪W6 with a closed 1-form θ

In [3], it is studied the natural connection D determined by λ = µ = 0 on a
W1-manifold (M,P, g).

Now we consider the case when (M,P, g) ∈ W3 ∪W6 is with a closed 1-form θ
and the connection ∇′ = D has a parallel torsion. Then, from (2.2), (2.3) and (2.4)
we have p = εΩ

2n , q = S′ = S′′ = 0 and therefore (1.7) takes the form

(6.1) R = R′ − θ(Ω)π1

4n2
.

The latter equality implies ρ = ρ′ − (2n−1)θ(Ω)
4n2 g, which gives us

(6.2) τ = τ ′ − (2n− 1)θ(Ω)

2n
, τ∗ = τ ′∗.

We define the tensor E(L) for an arbitrary curvature-like tensor L by the equality

(6.3) E(L) = L− τ(L)π1

2n(2n− 1)
.

Obviously, E(L) is also a curvature-like tensor.

Theorem 6.1. Let the manifold (M,P, g) ∈ W3 ∪ W6 be with a closed 1-form
θ. If R′ is the curvature tensor of the connection D with parallel torsion, then
E(R′) = E(R).

Proof. Equalities (6.1) and (6.2) imply

R− τπ1

2n(2n− 1)
= R′ − τ ′π1

2n(2n− 1)
.

Then, according to (6.3), we have E(R′) = E(R). �

Theorem 6.2. Let the manifold (M,P, g) ∈ W3 ∪ W6 be with a closed 1-form
θ and D be with a parallel torsion. Then D is flat if and only if E(R′) = 0 (or
equivalently E(R) = 0).

Proof. Let E(R′) = 0 be valid, i.e.

(6.4) R′(x, y, z, w) =
τ ′

2n(2n− 1)
π1(x, y, z, w).

In (6.4), we substitute Pz and Pw for z and w, respectively. Taking into account
that R′ is a Riemannian P -tensor and π1(x, y, Pz, Pw) = π2(x, y, z, w), we obtain

(6.5) R′ =
τ ′

2n(2n− 1)
π2.

From (6.4) and (6.5) it is follows τ ′(π1 − π2) = 0 and because of π1 6= π2 we have
τ ′ = 0. Then R′ = 0, according to (6.4), i.e. D is a flat connection.

Vice versa, let D be flat, i.e. R′ = 0. Then τ ′ = 0 and bearing in mind the
definition of E(R′) we obtain E(R′ = 0. �
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Corollary 6.1. Let the manifold (M,P, g) ∈ W3 ∪W6 be with a closed 1-form θ
and D be flat with a parallel torsion. Then (M,P, g) is a space form with a negative
scalar curvature τ .

Proof. If D is flat, then by Theorem 6.2 we have E(R) = 0, i.e.

R =
τ

2n(2n− 1)
π1.

This means that the manifold is a space form. Moreover, τ ′ = 0 for a flat connection
D and therefore τ = − 2n−1

2n θ(Ω), because of (6.2). Thus, since θ(Ω) = g(Ω,Ω) > 0,
we obtain τ < 0. �
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