THE EIGENVECTORS OF A COMBINATORIAL MATRIX

ILKER AKKUS

Abstract

In this paper, we derive the eigenvectors of a combinatorial matrix whose eigenvalues studied by Kilic and Stanica. We follow the method of Cooper and Melham since they considered the special case of this matrix.

1. Introduction

In [7], Peele and Stănică studied $n \times n$ matrices with the (i, j) entry the binomial coefficient $\binom{i-1}{j-1}$, respectively, $\binom{i-1}{n-j}$ and derived many interesting results on powers of these matrices. In [8], one of them found that the same is true for a much larger class of what he called netted matrices, namely matrices with entries satisfying a certain type of recurrence among the entries of all 2×2 cells.

Let R_{n} be the matrix whose (i, j) entries are $a_{i, j}=\binom{i-1}{n-j}$, which satisfy

$$
\begin{equation*}
a_{i, j-1}=a_{i-1, j-1}+a_{i-1, j} \tag{1.1}
\end{equation*}
$$

The previous recurrence can be extended for $i \geq 0, j \geq 0$, using the boundary conditions $a_{1, n}=1, a_{1, j}=0, j \neq n$. Remark the following consequences of the boundary conditions and recurrence (1.1): $a_{i, j}=0$ for $i+j \leq n$, and $a_{i, n+1}=$ $0,1 \leq i \leq n$.

The matrix R_{n} was firstly studied by Carlitz [2] who gave explicit forms for the eigenvalues of R_{n}. Let $f_{n+1}(x)=\operatorname{det}\left(x I-R_{n}\right)$ be the characteristic polynomial of R_{n}. Thus

$$
f_{n}(x)=\sum_{r=0}^{n+1}(-1)^{r(r+1) / 2}\binom{n}{r}_{F} x^{n-r}
$$

where $\binom{n}{r}_{F}$ denote the Fibonomial coefficient, defined (for $n \geq r>0$) by

$$
\binom{n}{r}_{F}=\frac{F_{1} F_{2} \ldots F_{n}}{\left(F_{1} F_{2} \ldots F_{r}\right)\left(F_{1} F_{2} \ldots F_{n-r}\right)}
$$

[^0]with $\binom{n}{n}_{F}=\binom{n}{0}_{F}=1$. Carlitz showed that
$$
f_{n}(x)=\prod_{j=0}^{n-1}\left(x-\phi^{j} \bar{\phi}^{n-j}\right)
$$
where $\phi, \bar{\phi}=(1 \pm \sqrt{5}) / 2$. Thus the eigenvalues of R_{n} are $\phi^{n}, \phi^{n-1} \bar{\phi}, \ldots, \phi \bar{\phi}^{n-1}, \bar{\phi}^{n}$.
In [7] it was proved that the entries of the power R_{n}^{e} satisfy the recurrence
\[

$$
\begin{equation*}
F_{e-1} a_{i, j}^{(e)}=F_{e} a_{i-1, j}^{(e)}+F_{e+1} a_{i-1, j-1}^{(e)}-F_{e} a_{i, j-1}^{(e)}, \tag{1.2}
\end{equation*}
$$

\]

where F_{e} is the Fibonacci sequence. Closed forms for all entries of R_{n}^{e} were not found, but several results concerning the generating functions of rows and columns were obtained (see [7, 8]). Further, the generating function for the (i, j)-th entry of the e-th power of a generalization of R_{n}, namely

$$
Q_{n}(a, b)=\left(a^{i+j-n-1} b^{n-j}\binom{i-1}{n-j}\right)_{1 \leq i, j \leq n}
$$

is

$$
B_{n}^{(e)}(x, y)=\frac{\left(U_{e-1}+U_{e} y\right)\left(b U_{e-1}+y U_{e}\right)^{n-1}}{U_{e-1}+U_{e} y-x\left(U_{e}+U_{e+1} y\right)}
$$

Regarding this generalization, in [3], the authors gave the characteristic polynomial of $Q_{n}(a, b)$ and the trace of k th power of $Q_{n}(a, b$,$) , that is, \operatorname{tr}\left(Q_{n}^{k}(a, b)\right)$, by using the method of Carlitz [2]:

$$
\begin{equation*}
\operatorname{tr}\left(Q_{n}^{k}(a, b)\right)=\frac{U_{k n}}{U_{k}} \tag{1.3}
\end{equation*}
$$

where $\binom{n}{i}_{U}$ stands for the generalized Fibonomial coefficient, defined by

$$
\binom{n}{r}_{U}=\frac{U_{1} U_{2} \ldots U_{n}}{\left(U_{1} U_{2} \ldots U_{r}\right)\left(U_{1} U_{2} \ldots U_{n-r}\right)}
$$

for $n \geq i>0$, where $\binom{n}{n}_{U}=\binom{n}{0}_{U}=1$.
In [7], the authors proposed a conjecture on the eigenvalues of matrix R_{n}, which was proven independently in [1] and the unpublished manuscript [9]. Also, in [6], they found the eigenvectors of R_{n}.

In $[7,8]$, it was shown that the inverse of R_{n} is the matrix

$$
R_{n}^{-1}=\left((-1)^{n+i+j+1}\binom{n-i}{j-1}\right)_{1 \leq i, j \leq n}
$$

and, in general, the inverse of $Q_{n}(a, b)$ is

$$
\begin{equation*}
Q_{n}^{-1}(a, b)=\left((-1)^{n+i+j+1} a^{n+1-i-j} b^{i-n}\binom{n-i}{j-1}\right)_{1 \leq i, j \leq n} \tag{1.4}
\end{equation*}
$$

Let $\phi=\frac{1+\sqrt{5}}{2}, \bar{\phi}=\frac{1-\sqrt{5}}{2}$ be the golden section and its conjugate. The eigenvalues R_{n} are $\phi^{n}, \phi^{n-1} \bar{\phi}, \ldots, \phi \bar{\phi}^{n-1}, \bar{\phi}^{n}$.

Let the sequences $\left\{u_{n}\right\},\left\{v_{n}\right\}$ be defined by

$$
\begin{aligned}
u_{n} & =a u_{n-1}+b u_{n-2} \\
v_{n} & =a v_{n-1}+b v_{n-2},
\end{aligned}
$$

for $n>1$, where $u_{0}=0, u_{1}=1$, and $v_{0}=2, v_{1}=a$, respectively. Let α, β be the roots of the associated equation $x^{2}-a x-b=0$. The next lemma can be found in [4].

Lemma 1.1. For $k \geq 1$ and $n>1$,

$$
\begin{align*}
& u_{k n}=v_{k} u_{k(n-1)}+(-1)^{k+1} b^{k} u_{k(n-2)} \tag{1.5}\\
& v_{k n}=v_{k} v_{k(n-1)}+(-1)^{k+1} b^{k} v_{k(n-2)} .
\end{align*}
$$

In [5], using the sequence v_{k}, they defined the $n \times n$ matrix $H_{n}\left(v_{k}, b^{k}\right)$ as follows:

$$
H_{n}\left(v_{k}, b^{k}\right)=\left(v_{k}^{i+j-n-1}\left(-(-b)^{k}\right)^{n-j}\binom{i-1}{n-j}\right)_{1 \leq i, j \leq n}
$$

As in equation (1.4), they also found the inverse of the matrix H_{n}, namely

$$
H_{n}^{-1}\left(v_{k}, b^{k}\right)=\left((-1)^{j+1}(-b)^{-k(n-i)} v^{n+1-i-j}\binom{n-i}{j-1}\right)_{i, j}
$$

It is well known that for $n \geq-1$,

$$
\begin{equation*}
u_{n+1}=\sum_{r}\binom{r}{n-r} a^{2 r-n} b^{n-r} \tag{1.6}
\end{equation*}
$$

Thus the authors [5] generalized this identity as well as they gave the following results:

Lemma 1.2. For $k>0$ and $n \geq-1$,

$$
\frac{u_{k(n+1)}}{u_{k}}=\sum_{r}\binom{r}{n-r} v_{k}^{2 r-n}\left(-(-b)^{k}\right)^{n-r}
$$

Lemma 1.3. For all $m>0$,

$$
\operatorname{tr}\left(H_{n}^{m}\left(v_{k}, b^{k}\right)\right)=\frac{u_{k n m}}{u_{k}} .
$$

Theorem 1.4. The eigenvalues of $H_{n}\left(v_{k}, b^{k}\right)$ are

$$
\alpha^{k n}, \alpha^{k(n-1)} \beta^{k}, \ldots, \alpha^{k} \beta^{k(n-1)}, \beta^{k n}
$$

2. The eigenvectors of $H_{n}\left(v_{k}, b^{k}\right)$

In [6], the authors considered the matrix $Q_{n}(a, b)$ and gave its eigenvectors. In this section, we consider the generalization of matrix $Q_{n}(a, b)$ namely $H_{n}\left(v_{k}, b^{k}\right)$ and then determine its eigenvectors by using the method given in [6].

Let $0 \leq p \leq n-1$ be a fixed integer,

$$
f(x)=\left(x-\alpha^{k}\right)^{p}\left(x-\beta^{k}\right)^{n-1-p}=\sum_{r=0}^{n-1} s_{r} x^{r},
$$

and

$$
\mathbf{s}=\left(s_{0}, s_{1}, \ldots, s_{n-1}\right)^{T}
$$

Theorem 2.1. For $m \geq 0$
$f^{(m)}(x)=m!\frac{f(x)}{\left(x-\alpha^{k}\right)^{m}\left(x-\beta^{k}\right)^{m}} \sum_{j=0}^{m}\binom{p}{m-j}\binom{n-1-p}{j}\left(x-\alpha^{k}\right)^{j}\left(x-\beta^{k}\right)^{m-j}$.
Proof. It can be proved with the use of Leibniz's formula for the m-th derivative of a product of two functions. We recall the Leibniz's formula: For $m \geq 0$

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}} g(x) h(x)=\sum_{j=0}^{m}\binom{m}{j} g^{(m-j)}(x) h^{(j)}(x) \tag{2.1}
\end{equation*}
$$

We use the notation $x^{\underline{n}}$ to denote the falling factorial, and hence

$$
\begin{aligned}
f^{(m)}(x) & =\sum_{j=0}^{m}\binom{m}{j} p^{\frac{m-j}{}}\left(x-\alpha^{k}\right)^{p-m+j}(n-1-p)^{\underline{j}}\left(x-\beta^{k}\right)^{n-1-p-j} \\
& =m!\frac{f(x)}{\left(x-\alpha^{k}\right)^{m}\left(x-\beta^{k}\right)^{m}} \sum_{j=0}^{m}\binom{p}{m-j}\binom{n-1-p}{j}\left(x-\alpha^{k}\right)^{j}\left(x-\beta^{k}\right)^{m-j}
\end{aligned}
$$

as claimed.
Lemma 2.2. Suppose that $0 \leq m \leq n-1$ be a fixed integer. Then,

$$
s_{n-1-m}=\sum_{j=0}^{m}(-1)^{m}\binom{p}{m-j}\binom{n-1-p}{j} \alpha^{k(m-j)} \beta^{k j}
$$

and

$$
\left(H_{n}\left(v_{k}, b^{k}\right) \mathbf{s}\right)_{n-1-m}=\sum_{r=m}^{n-1}(-1)^{m}(-b)^{k m}\binom{r}{m} v_{k}^{r-m} s_{r}
$$

Proof. The proof of the first equation can be followed from computing the coefficient of x^{n-1-m} of $f(x)$ by multiplying $\left(x-\alpha^{k}\right)^{p}$ times $\left(x-\beta^{k}\right)^{n-1-p}$. The second proof can be seen by computing the product of $H_{n}\left(v_{k}, b^{k}\right)$ and \mathbf{s}.

Theorem 2.3.

$$
\begin{equation*}
H_{n}\left(v_{k}, b^{k}\right) \mathbf{s}=\left(\alpha^{k}\right)^{n-1-p} \beta^{k p} \mathbf{s} . \tag{2.2}
\end{equation*}
$$

Proof. Consider

$$
\begin{aligned}
\left(H_{n}\left(v_{k}, b^{k}\right) \mathbf{s}\right)_{n-1-m} & =\sum_{r=m}^{n-1}(-1)^{m}(-b)^{k m}\binom{r}{m} v_{k}^{r-m} s_{r} \\
= & \frac{(-1)^{m}(-b)^{k m}}{m!} \sum_{r=m}^{n-1} s_{r} r^{\underline{m}} v_{k}^{r-m} \\
= & \frac{(-1)^{m}(-b)^{k m}}{m!} f^{(m)}\left(v_{k}\right) \\
= & \frac{(-1)^{m}(-b)^{k m}}{m!} \frac{\left(v_{k}-\alpha^{k}\right)^{p}\left(v_{k}-\beta^{k}\right)^{n-1-p}}{\left(v_{k}-\alpha^{k}\right)^{m}\left(v_{k}-\beta^{k}\right)^{m}} \times \\
= & m!\sum_{j=0}^{m}\binom{p}{m-j}\binom{n-1-p}{j}\left(v_{k}-\alpha^{k}\right)^{j}\left(v_{k}-\beta^{k}\right)^{m-j} \\
& \sum_{j=0}^{m}\binom{p}{m-j}\binom{n-1-p}{j} \beta^{k j} \alpha^{k(m-j)} \\
= & \alpha^{k(n-1-p)} \beta^{k p} \sum_{j=0}^{m}(-1)^{m}\binom{p}{m-j}\binom{n-1-p}{j} \alpha^{k(m-j)} \beta^{k j} \\
= & \alpha^{k(n-1-p)} \beta^{k p} s_{n-1-m} .
\end{aligned}
$$

Thus the proof is complete.
ÖZET: Bu çalışmada, Kilic ve Stanica tarafından özdeğerleri verilen bir kombinatoryal matrisin özvektörleri, Cooper ve Melham'ın metodu takip edilerek elde edilmiştir.

References

[1] D. Callan and H. Prodinger, An involutory matrix of eigenvectors, Fibonacci Quart. 41(2) (2003), 105-107.
[2] L. Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients, Fibonacci Quart. 3 (1965), 81-89.
[3] C. Cooper and R. Kennedy, Proof of a result by Jarden by generalizing a proof by Carlitz, Fibonacci Quart. 33(4) (1995), 304-310.
[4] E. Kilic and P. Stănică, Factorizations of binary polynomial recurrences by matrix methods, to be appear in Rocky Mountain J. Math.
[5] E. Kilic, G.N. Stănică, P. Stănică, Spectral properties of some combinatorial matrices, 13th International Conference on Fibonacci Numbers and Their Applications, 2008.
[6] R.S. Melham and C. Cooper, The eigenvectors of a certain matrix of binomial coefficients, Fibonacci Quart. 38 (2000), 123-126.
[7] R. Peele and P. Stănică, Matrix powers of column-justified Pascal triangles and Fibonacci sequences, Fibonacci Quart. 40 (2002), 146-152.
[8] P. Stănică, Netted matrices, Int. J. Math. Math. Sci. 39 (2003), 2507-2518.
[9] P. Stănică and R. Peele, Spectral properties of a binomial matrix, unpublished manuscript, http://arxiv.org/abs/math/0011111, 2000.
Current address: Ilker Akkus :Ankara University, Faculty of Sciences, Dept. of Mathematics,
Ankara, TURKEY
E-mail address: iakkus@science.ankara.edu.tr
URL: http://communications.science.ankara.edu.tr

[^0]: Received by the editors Feb. 15, 2011, Accepted: March 24, 2011.
 2000 Mathematics Subject Classification. 11B39, 15A15, 15A18.
 Key words and phrases. Fibonomial coefficients, binomial coefficients, eigenvector, Pascal matrix.

