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ON SURFACE THEORY IN 3-DIMENSIONAL ALMOST
CONTACT METRIC MANIFOLD

İSMAIL GÖK,ÇETIN CAMCI AND H. HILMI HACISALİHOĞLU

A�������. In this paper, we study surface theory in 3-dimensional almost
contact metric manifolds by using cross product defined by Camcı [6] . Camcı
also studied the theory of curves using the new cross product on this manifolds.
In this study, we have defined unit normal vector field of any surface in R3 (−3)
and then, we investigate shape operator matrix of the surface. Morever, we
calculate the formulas of Gaussian and mean curvatures of a surface in R3 (−3) .

1. I���	
����	�

In contact geometry, a lot of studies have been published about curves such as
legendre curves and finite type curves ([1, 2, 3, 4, 5]). Particularly, the Legendre
curves are very important in the studies of contact manifolds where a diffeomor-
phism is a contact transformation if and only if any Legendre curves in a domain
of it go to Legendre curves. Morever, in a 3-dimensional Sasakian manifold, the
Legendre curves are studied by Baikoussis and Blair who gave the Frenet 3-frame
in this space ([3]). Then, Camci has studied the curves theory in contact geometry
for any curves ([4]).
But, few studies have been published the surface theory in contact geometry

since Camci defined a new cross product in 3-dimensional almost contact metric
manifold and studied the theory of curves using this new cross product in this
manifold ([6]). And then, Gök has studied the surface theory in 3-dimensional
almost contact metric manifold by using cross product defined by Camci ([8]).
In this paper, we study surface theory in 3-dimensional almost contact metric

manifold by using cross product defined by Camci ([6]) and we define unit normal
vector of any surface in R3(−3) and then, we investigate shape operator matrix of
the surface. Morever, we calculate the formulas of Gaussian and mean curvature
using the new cross product in this manifold.
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2. P�
��������
�

Let M be a (2n+ 1) dimensional differentiable manifold which has a 1-form η,
such that

η ∧ (dη)n �= 0
on M . In this case, M is called contact manifold and η is called a contact 1-form.
There exists a unique ξ, called characteristic vector field of η, satisfying η (ξ) = 1
and dη (ξ,X) = 0 for all X ∈ χ(M). D is said to be contact distribution defined by

D = {x ∈ χ(M) : η(X) = 0} .
(ϕ, ξ, η) is called an almost contact structure on M2n+1 where ϕ, ξ, η are type
(1, 1) , (0, 1) and (1, 0) tensor field, respectively, satisfying the equations

ϕ2 (X) = −X + η(X)ξ , ϕ(ξ) = 0 , η(ξ) = 1 and η ◦ ϕ = 0
where the endomorphism ϕ has rank 2n.
(ϕ, ξ, η, g) is called an almost contact metric structure on M2n+1 where g is a

Riemannian metric, satisfying

g (ϕ (X) , ϕ (Y )) = g (X,Y )− η(X)η(Y ),
g (X,ϕ (Y )) = dη(X,Y ),

η(X) = g(X, ξ)

for all X,Y ∈ χ(M).
Let M be a (2n+ 1)-dimensional manifold which is called Sasaki manifold if it

is endowed with a normal contact metric structure (ϕ, ξ, η, g). We know that an
almost contact metric structure on M is sasakian structure if and only if

(∇Xϕ) (Y ) = g(X,Y )ξ − η(Y )X
for all X,Y ∈ χ(M), where ∇ is the Riemannian connection of g.
Let (x, y, z) be the standart coordinates on R3. Let consider the 1-form

η =
1

2
(dz − ydx)

on R3 and ξ = 2 ∂∂z on R
3, then we can easily see that ξ is a characteristic vector

field.
If the Riemannian metric is defined by

g =
1

4
(dx2 + dy2) + η ⊗ η

and the endomorphism of ϕ is defined by the matrix

ϕ =

⎡⎣ 0 1 0
−1 0 0
0 y 0

⎤⎦ ,
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then we know that (ϕ, ξ, η, g) is a Sasakian structure and the sectional curvature ϕ
of this space is equal to −3. So, it is defined by R3(−3). It is well known that

ψ =

{
e = e1 = 2

∂

∂y
, ϕ (e) = e2 = 2

(
∂

∂x
+ y

∂

∂z

)
, ξ = e3 = 2

∂

∂z

}
(2.1)

is an orthonormal basis with respect to g in R3(−3). Let X = x1e+ x2ϕ(e) + x3ξ
and Y = y1e+ y2ϕ(e) + y3ξ be vector fields in R3(−3), then we can easily see that
(R3(−3), ϕ, ξ, η, g) is a 3-dimensional almost contact metric manifold and ϕ and η
satisfying the equations

ϕ(X) = −x2e+ x1ϕ(e),
ϕ(Y ) = −y2e+ y1ϕ(e),
η(X) = x3.

In a 3-dimensional almost contact metric manifold, Camci stated the following
definition and theorem.

Definition 2.1. LetM3 = (M,ϕ, ξ, η, g) be a 3-dimensional almost contact metric
manifold. The cross product ∧ : χ(M)× χ(M) −→ χ(M) is defined by

X ∧ Y = −g(X,ϕ(Y ))ξ − η(Y )ϕ(X) + η(X)ϕ(Y ) (2.2)

where X, Y ∈ χ(M) ([6]).
Theorem 2.2. Let M3 = (M,ϕ, ξ, η, g) be a 3-dimensional almost contact metric
manifold. Then, for all X, Y, Z ∈ χ(M) the cross product satisfying the following
properties:

i) The cross product is bilinear and antisymmetric.
ii) X ∧ Y is perpendicular both of X and Y.
iii)

Y ∧ ϕ(X) = g(X,Y )ξ − η(Y )X, (2.3)

ϕ(X) = ξ ∧X. (2.4)

iv) Define a mixed product by

(X,Y, Z) = g(X ∧ Y,Z)
= − [g(X,ϕ(Y ))η(Z) + g(Y, ϕ(Z))η(X) + g(Z,ϕ(X))η(Y )] (2.5)

and
(X,Y, Z) = (Y,Z,X) = (Z,X, Y ).

v)⎧⎨⎩
g(X,ϕ(Y ))Z + g(Y, ϕ(Z))X + g(Z,ϕ(X))Y = −det(X,Y, Z)ξ,

(X ∧ Y ) ∧ Z = g(X,Z)Y − g(Y,Z)X,
(X ∧ Y ) ∧ Z + (Y ∧ Z) ∧X + (Z ∧X) ∧ Y = 0.

(2.6)
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vi) {
g(X ∧ Y,Z ∧W ) = g(X,Z)g(Y,W )− g(Y,Z)g(X,W ),

g(X ∧ Y,X ∧ Y ) = ‖X ∧ Y ‖2 = g(X,X)g(Y, Y )− g2(X,Y ), (2.7)

for the proofs of the above equalities (see [6, 8]).

3. S���
 	�
���	� ������ 	� � ������
 �� 3-
��
���	��� ���	��
�	����� �
���� �����	�


In this section, we first recall the definition of a shape operator in general mean
and then we investigate shape operator matrix of a surface, the formulas of Gaussian
and mean curvatures in the 3-dimensional almost contact metric manifold using its
unit normal vector field.

Definition 3.1. Let M be a surface in En. The linear map S : χ(M) → χ(M)
defined by

S(X) := DXN , X ∈ χ(M),
is called the shape operator on M , where D is the Riemannian connection in En

and N is the unit normal vector field of the surface M.

Proposition 1. Let U denote an open set in the plane R2. The open set U will
typically be an open disk or open rectangle. Let

X : U −→ R3(−3)
: (u, v) �−→ X(u, v) = (f1(u, v), f2(u, v), f3(u, v))

be a parameterization at a point P ∈ M of a surface M in (R3(−3), ϕ, ξ, η, g).
Tangent vectors for the u and v−parameter curves are given by differentiating of
the fi(u, v). According to the basis {e, ϕ(e), ξ} of (R3(−3), ϕ, ξ, η, g), we can write

Xu =
1

2
f2,ue+

1

2
f1,uϕ(e) +

1

2
(f3,u − f2f1,u)ξ, (3.1)

Xv =
1

2
f2,ve+

1

2
f1,vϕ(e) +

1

2
(f3,v − f2f1,v)ξ. (3.2)

where fi,u and fi,v (1 ≤ i ≤ 3) mean that the first derivatives of fi(u, v) according
to the u and v−parameters .
Proof. Tangent vector of the u−parameter curve on a surface M : X(u, v) in
(R3(−3), ϕ, ξ, η, g) is

Xu = f1,u
∂

∂x
+ f2,u

∂

∂y
+ f3,u

∂

∂z
,

from the equation (2.1) we have

Xu =
1

2
f2,ue+

1

2
f1,uϕ(e) +

1

2
(f3,u − f2f1,u)ξ
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and similarly

Xv =
1

2
f2,ve+

1

2
f1,vϕ(e) +

1

2
(f3,v − f2f1,v)ξ,

which complete the proof. �

Theorem 3.2. Let U denote an open set in the plane R2 and

X : U −→ R3(−3)
: (u, v) �−→ X(u, v) = (f1(u, v), f2(u, v), f3(u, v))

be a parameterization at a point. P ∈M of a surface M in (R3(−3), ϕ, ξ, η, g). The
unit normal vector field of M in (R3(−3), ϕ, ξ, η, g) is

N =
1

4
√
EG− F 2 [f1,u(f3,v − f2f1,v)− f1,v(f3,u − f2f1,u)] e

+
1

4
√
EG− F 2 [f2,v(f3,u − f2f1,u)− f2,u(f3,v − f2f1,v)]ϕ(e)

+
1

4
√
EG− F 2 (f1,vf2,u − f1,uf2,v)ξ (3.3)

where

E =
1

4
f22,u +

1

4
f21,u +

1

4
(f3,u − f2f1,u)2, (3.4)

G =
1

4
f22,v +

1

4
f21,v +

1

4
(f3,v − f2f1,v)2, (3.5)

F =
1

4
f2,uf2,v +

1

4
f1,uf1,v +

1

4
(f3,u − f2f1,u)(f3,v − f2f1,v). (3.6)

Proof. From the Definition (2.1), we know

Xu ∧Xv = −g(Xu, ϕ(Xv))ξ − η(Xv)ϕ(Xu) + η(Xu)ϕ(Xv).
By using the Proposition (1) and following equations

ϕ(Xu) = −1
2
f1,ue+

1

2
f2,uϕ(e) , ϕ( Xv) = −1

2
f1,ve+

1

2
f2,vϕ(e), (3.7)

η(Xu) =
1

2
(f3,u − f2f1,u) , η(Xv) =

1

2
(f3,v − f2f1,v) (3.8)

we have

Xu ∧Xv =
1

4
[f1,u(f3,v − f2f1,v)− f1,v(f3,u − f2f1,u)] e

+
1

4
[f2,v(f3,u − f2f1,u)− f2,u(f3,v − f2f1,v)]ϕ(e)

+
1

4
(f1,vf2,u − f1,uf2,v)ξ. (3.9)

Then, via the Theorem (2.2) the norm of Xu ∧Xv is given by
‖Xu ∧Xv‖ =

(
g(Xu, Xu)g(Xv, Xv)− g2(Xu, Xv)

) 1
2
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where g(Xu, Xu) = E, g(Xu, Xv) = F and g(Xv, Xv) = G.

Since N =
Xu ∧Xv
‖Xu ∧Xv‖ , we have

N =
1

4
√
EG− F 2

⎛⎝ [f1,u(f3,v − f2f1,v)− f1,v(f3,u − f2f1,u)] e
+ [f2,v(f3,u − f2f1,u)− f2,u(f3,v − f2f1,v)]ϕ(e)

+(f1,vf2,u − f1,uf2,v)ξ

⎞⎠ ,
which completes the proof. �

Remark 3.3. Let M : X(u, v) be a surface in (R3(−3), ϕ, ξ, η, g). We know that all
u and v− parameter curves are lines of curvature if and only if F = 0 and m = 0.
So, we consider that they are not lines of curvature. Because, it can easily convert
to preceding case.

Definition 3.4. Let X = x1e + x2ϕ(e) + x3ξ and Y = y1e + y2ϕ(e) + y3ξ be
a differentiable vector fields in an open set U ⊂ M of a regular surface M in
(R3(−3), ϕ, ξ, η, g). By using the Christoffel symbols on M in (R3(−3), ϕ, ξ, η, g),
we have

∇eϕ(e) = ξ = −∇ϕ(e)e,
∇ξe = −ϕ(e) = ∇eξ,

∇ξϕ(e) = e = ∇ϕ(e)ξ,
∇ee = ∇ϕ(e)ϕ(e) = ∇ξξ = 0,

then the covariant derivative for M in (R3(−3), ϕ, ξ, η, g) is defined by
∇XY = X [y1] e+X [y2]ϕ(e) +X [y3] ξ

−η(Y )ϕ(X)− η(X)ϕ(Y )− dη(X,Y )ξ, (3.10)

(see [4, 8]) .

Proposition 2. Let M : X(u, v) be a surface in (R3(−3), ϕ, ξ, η, g). The second
order-derivatives Xuu, Xuv and Xvv are, respectively,

Xuu =
1

2
[f2,uu + f1,u(f3,u − f2f1,u)] e+ 1

2
[f1,uu − f2,u(f3,u − f2f1,u)]ϕ(e)

+
1

2
[f3,uu − f2,uf1,u − f1,uuf2] ξ, (3.11)

Xuv =
1

2

[
f2,uv +

1

2
f1,v(f3,u − f2f1,u) + 1

2
f1,u(f3,v − f2f1,v)

]
e

+
1

2

[
f1,uv − 1

2
f2,v(f3,u − f2f1,u)− 1

2
f2,u(f3,v − f2f1,v)

]
ϕ(e)

+
1

2

[
f3,uv − 1

2
f2,vf1,u − f1,uvf2 − 1

2
f1,vf2,u

]
ξ, (3.12)
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Xvv =
1

2
[f2,vv + f1,v(f3,v − f2f1,v)] e

+
1

2
[f1,vv − f2,v(f3,v − f2f1,v)]ϕ(e)

+
1

2
[f3,vv − f2,vf1,v − f1,vvf2] ξ. (3.13)

where fi,uu, fi,uv and fi,vv (1 ≤ i ≤ 3) mean that the second derivatives of fi(u, v)
according to the u and v−parameters.
Proof. From the definition of covariant derivative

Xuu = ∇Xu
Xu

=
1

2
f2,uue+

1

2
f1,uuϕ(e) +

1

2
(f3,uu − f2,uf1,u − f1,uuf2)ξ

−η(Xu)ϕ(Xu)− η(Xu)ϕ(Xu)− g(Xu, ϕ(Xu))ξ
=

1

2
f2,uue+

1

2
f1,uuϕ(e) +

1

2
(f3,uu − f2,uf1,u − f1,uuf2)ξ

−2η(Xu)ϕ(Xu)− g(Xu, ϕ(Xu))ξ
=

1

2
[f2,uu + f1,u(f3,u − f2f1,u)] e+ 1

2
[f1,uu − f2,u(f3,u − f2f1,u)]ϕ(e)

+
1

2
[f3,uu − f2,uf1,u − f1,uuf2] ξ

and similarly we can easily see that

Xuv =
1

2

[
f2,uv +

1

2
f1,v(f3,u − f2f1,u) + 1

2
f1,u(f3,v − f2f1,v)

]
e

+
1

2

[
f1,uv − 1

2
f2,v(f3,u − f2f1,u)− 1

2
f2,u(f3,v − f2f1,v)

]
ϕ(e)

+
1

2

[
f3,uv − 1

2
f2,vf1,u − f1,uvf2 − 1

2
f1,vf2,u

]
ξ,

Xvv =
1

2
[f2,vv + f1,v(f3,v − f2f1,v)] e

+
1

2
[f1,vv − f2,v(f3,v − f2f1,v)]ϕ(e)

+
1

2
[f3,vv − f2,vf1,v − f1,vvf2] ξ.

These complete the proof. �

Theorem 3.5. Let M : X(u, v) be a surface in (R3(−3), ϕ, ξ, η, g). The shape
operator matrix of M in (R3(−3), ϕ, ξ, η, g) is

S =

[ Gl−Fm
EG−F 2

Em−Fl
EG−F 2

Gm−Fn
EG−F 2

En−Fm
EG−F 2

]
(3.14)
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where l = g(N,Xuu), m = g(N,Xuv) and n = g(N,Xvv).

Proof. We need expressions of S(Xu) and S(Xv) in terms of the basis for {Xu, Xv}.
We can write S(Xu) = aXu + bXv and S(Xv) = cXu + dXv. Our aim is to find
a, b, c and d. If we can compute g(S(Xu), Xu) and g(S(Xu), Xv), we find

a =
Gl − Fm
EG− F 2 , b =

Em− Fl
EG− F 2

and similarly if we can compute g(S(Xv), Xu) and g(S(Xv), Xv), we know

c =
Gm− Fn
EG− F 2 , d =

En− Fm
EG− F 2 .

Consequently, since we know that

S(Xu) =
Gl − Fm
EG− F 2Xu +

Em− Fl
EG− F 2Xv

S(Xv) =
Gm− Fn
EG− F 2 Xu +

En− Fm
EG− F 2 Xv

we have

S =

[ Gl−Fm
EG−F 2

Em−Fl
EG−F 2

Gm−Fn
EG−F 2

En−Fm
EG−F 2

]

where the matrix is in terms of the basis for {Xu, Xv}. These complete the proof.
�

Theorem 3.6. Let M : X(u, v) be a surface in (R3(−3), ϕ, ξ, η, g). According to
the shape operator matrix of the surface, the Gaussian curvature of M is

K =
ln−m2

EG− F 2 (3.15)

where l, n, m, E, G and F are defined in the above equalities.
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Proof. From the definition of Gaussian curvatureK for the matrix S =
[ Gl−Fm

EG−F 2
Em−Fl
EG−F 2

Gm−Fn
EG−F 2

En−Fm
EG−F 2

]
,

we may write that

K = detS,

=

(
Gl − Fm
EG− F 2

)(
En− Fm
EG− F 2

)
−

(
Em− Fl
EG− F 2

)(
Gm− Fn
EG− F 2

)
=

EGln− FGmn− EFmn+ F 2m2 − EGm2 + EFmn+GFml − F 2ln
(EG− F 2)2

=
EG

(
ln−m2

)− F 2 (ln−m2
)

(EG− F 2)2

=

(
EG− F 2) (ln−m2

)
(EG− F 2)2

=
ln−m2

EG− F 2
which completes the proof. �

Theorem 3.7. Let M : X(u, v) be a surface in (R3(−3), ϕ, ξ, η, g). According to
the shape operator matrix of the surface, the mean curvature of M is

H =
1

2

(
Gl + En− 2Fm

EG− F 2
)

(3.16)

where l, n, m, E,G and F are defined previously.

Proof. From The definition of mean curvatureH for the matrix S =
[ Gl−Fm

EG−F 2
Em−Fl
EG−F 2

Gm−Fn
EG−F 2

En−Fm
EG−F 2

]
,

we may write that

H =
1

2
trS =

1

2

(
Gl − Fm+ En− Fm

EG− F 2
)

H =
1

2

(
Gl + En− 2Fm

EG− F 2
)
,

which completes the proof. �

ÖZET: Bu makalede, 3-boyutlu hemen hemen kontak manifold-
larda Camcı [6] tarafından tanımlanan dı̧s çarpım yardımıyla yüzeyler
gözönünde bulunduruldu. Camcı, çalı̧smasında tanımladığı bu dı̧s
çarpımı kullanarak bu tip manifoldlarda eğriler teorisini çalı̧stı.
Bu çalı̧smada R3(−3) uzayında herhangi bir yüzeyin birim normal
vektör alanı tanımlandı ve bu yüzeye ait şekil operatörü matrisi
araştırıldı. Dahası, bu yüzeyin Gauss ve ortalama eğriliklerinin
formülleri hesaplandı.
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