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ABSTRACT 
 

Simultaneous Localization and Mapping (SLAM) problem is a very popular research area in robotic applications. EKF-SLAM 

and FastSLAM are widely used algorithms for SLAM problem. The greatest advantage of FastSLAM over EKF-SLAM is that it 

reduces the quadratic complexity of EKF-SLAM. On the other hand, increasing number of estimated landmarks naturally slows 

down the operation of FastSLAM. In this paper, we propose a new method called as Intelligent Data Association-SLAM (IDA-

SLAM) which reduces this slowing down problem. In data association step also known as likelihood estimation, IDA-SLAM skips 

comparing a new landmark with all of the pre-calculated landmarks. Instead of this, it compares the newly found one with only 

nearby landmarks that was found previously. The simulation results indicate that the proposed algorithm significantly speeds up 

the operation of SLAM without a loss of state estimation accuracy. Real world experiments which have been performed in two 

different scenarios verify the simulation results. A runtime reduction of 43% and 52% is observed respectively for each of the test 

environments. 
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1. INTRODUCTION 
 

Autonomous robots must overcome various problems such as path planning, obstacle avoidance, 

human-robot interaction, localization and mapping [1]. Determining the pose while exploring the 

surrounding without any foreknowledge of the environment and the position is one of the most important 

tasks for autonomous robots. The SLAM problem also known as concurrent mapping and localization 

(CML) is a very complicated task because of uncertain sensor readings, slippage of robot legs or wheels 

and unpredictable environments. In order to cope with these poor conditions, numerous work on SLAM 

have been done [2].  

 

Many researchers have been interested in SLAM algorithms during last few decades. In 1986, Smith 

and Cheeseman [3] proposed the basics of the SLAM and they significantly improved their idea after 

two years [4]. The term simultaneous map building and localization was firstly introduced by Leonard 

and Durrant-Whyte [5]. Their approach uses Extended Kalman Filter (EKF) for the solution of the 

SLAM problem. After these studies, at the beginning of millennium, an improved version of [5] called 

as EKF-SLAM [6] was presented. This new EKF-SLAM method estimates the robot pose and feature 

locations probabilistically [7]. During two main steps, prediction and correction, EKF-SLAM updates 

the robot pose and the map. This map consists of a mean vector and a covariance matrix in which all 

landmarks are correlated with each other. When a new landmark is detected, the covariance matrix 

grows exponentially and this leads to complexity of 𝑂(𝑀2), where 𝑀 refers to number of landmarks. 

Some researchers have been dealt with the scaling problem, however their solutions are effective up to 

only a few hundred landmarks [8-10]. Another attempt to decrease computational complexity of EKF-

SLAM by classifying the landmarks as corners is made by Kim and Park [11]. They identify corners as 

inward or outward. When a new landmark is detected, it is identified and compared only with ones 
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which have same identity. By doing so, the number of landmarks that should be scanned decreases. In 

the environments such as buildings which consist of numerous corners, their method also slows down. 

EKF-SLAM is still implemented at various SLAM studies as it is seen in [12] and [13]. Therefore, 

improving runtime efficiency of EKF-SLAM is very important. 
 

In order to decrease the computational complexity and huge memory requirements in EKF-SLAM 

algorithms, Rao-Blackwellized particle filter (RBPF) [14] based approaches known as FastSLAM were 

proposed. This novel technique which was firstly represented by Montemerlo is composed of both 

particle filter and EKF [15]. The particle filter part is used for estimating the robot pose while the EKF 

calculates the estimation of landmarks’ poses and error ellipses. The main idea of FastSLAM is storing 

the information of robot pose in a particle vector and also landmarks’ means and covariances attached 

to this vector. In this vector, the landmarks are not associated with each other. It means that when a new 

landmark is detected, FastSLAM adds a mean and covariance element to the particle vector. Considering 

this process for all particles in the algorithm, complexity of FastSLAM is bounded by 𝑂(𝑁𝑀), where 

𝑁 and 𝑀 refers to number of particles and landmarks respectively. Even the computational cost and 

memory requirement in FastSLAM is much lower than EKF-SLAM, the overgrowth of particle set size 

and number of landmarks are the fundamental disadvantages for its efficiency. 
 

There are lots of approaches aiming to improve the FastSLAM's computational efficiency. Most 

powerful ones among them were developed by tuning the particle set size,  producing effective maps 

and using landmarks wisely. Kim and Chung brought a different viewpoint to FastSLAM by the method 

named Unscented FastSLAM (UFastSLAM) that uses nonlinear relations directly without the need of 

linearization [16]. Their algorithm is more robust and needs less particles than original FastSLAM. 

Another method for the improvement of particle filter efficiency is changing the number of particles 

adaptively during the operation [17, 18]. Basically, this idea is based on increasing the number of 

particles when the uncertainty of posterior distribution is high and decreasing the particles in the contrary 

case. Studies on computational efficiency are also focused on map management. Designing the full map 

as sub-maps is another way of speeding up the SLAM process as Chang [19] and Yokozuka [20] were 

proposed. Additionally, there is an attractive solution for effective map building similar to sub-maps 

method, using hybrid topological/metric mapping [21]. Handling the map as sub-maps or topologically 

local maps instead of a full global map brings less memory requirement and computational cost. 
 

Most of the SLAM algorithms face the data association (DA) problem which takes a big portion of run 

time especially when enormous number of landmarks are found. A novel technique known as CESLAM 

provides the inspiration for us was proposed by Yang et al [22]. When a new landmark candidate is 

detected, it needs to be checked if this is really a new one or one of the previous landmarks. The 

innovation in CESLAM is comparing the new landmark candidate with the landmarks in the range of 

measurement device, (i.e. a laser range finder (LRF)) instead of all the landmarks in full map at DA 

step. However an LRF with 360 degree field of view and too long distance range may detect big number 

of landmarks at any moment. In such a case, the amount of calculations at DA would be high again. 

Moreover, a landmark that is out of the range of LRF but very close to the newly found one is 

automatically eliminated from checking process which might cause problems. 
 

In order to solve the mentioned problems, we develop a new approach called as IDA-SLAM, which 

decides the landmarks to be checked by looking at the landmarks around the newly found one. We take 

into account the landmarks which are inside a circular area around the newly found one. In this way, we 

handle less and more efficient landmarks than CESLAM does. 
 

2. PRELIMINARIES OF FASTSLAM 

 

In order to understand the mechanism of FastSLAM clearly, it is important to know the probabilistic 

basics of SLAM. The robot motion is explained by Markov chain which suggests that the state at time 
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𝑡 can be estimated using the information of the state at time 𝑡 − 1 [2]. By looking at this assumption, 

motion evolution is demonstrated as in equation 1. 

𝑝(𝑠𝑡  | 𝑠𝑡−1, 𝑢𝑡) (1) 

where 𝑠𝑡 and 𝑢𝑡 indicate the current state and current control input respectively. Furthermore, the robot 

gets measurements from its environment during the movement. This procedure can also be shown in 

terms of probabilistic laws as in equation 2. 

𝑝(𝑧𝑡  | 𝑠𝑡 , 𝜃, 𝑛𝑡) (2) 

where 𝑧𝑡, 𝜃 and 𝑛𝑡 refer to current measurement, all landmarks estimated from start to current time 𝑡 

and landmark identity at time 𝑡 respectively. After obtaining the probabilistic functions of motion and 

measurement, it is straightforward to calculate SLAM posterior which is combination of control inputs 

and measurements. Using the superscript 𝑡 to indicate set of variables from start to time 𝑡, SLAM 

posterior is defined as shown in equation 3. 

𝑝(𝑠𝑡 , 𝜃 | 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) (3) 

While most of the SLAM algorithms such as EKF-SLAM use this posterior directly, FastSLAM factors 

the equation as illustrated in equation 4. 

𝑝(𝑠𝑡 , 𝜃| 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) = 𝑝(𝑠𝑡  | 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡) ∏ 𝑝(𝜃𝑛 | 𝑠𝑡 , 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡)

𝑁

𝑛=1

 (4) 

By this means, position of landmarks can be estimated conditionally independent. The most important 

advantage coming from this factorization is that the FastSLAM updates landmarks' mean and covariance 

separately for all particles. This makes computational cost very low comparing to EKF-SLAM. Each 

particle in FastSLAM has the information of robot state and the set of landmarks covariances and means. 

Hence, the structure of 𝑚’th particle is shown in equation 5. 

𝑆𝑡
[𝑚]

= 〈𝑠𝑡,[𝑚], 𝜇1,𝑡
[𝑚]

, Σ1,𝑡
[𝑚]

, … , 𝜇𝑁,𝑡
[𝑚]

, Σ𝑁,𝑡
[𝑚]〉 (5) 

where 𝑠𝑡,[𝑚] contains all state information of the 𝑚'th particle through the operation, 𝜇𝑘,𝑡
[𝑚]

 is the mean and 

𝛴𝑘,𝑡
[𝑚]

 is the covariance of 𝑘'th landmark. FastSLAM1.0 defines the new pose of a particle as given in 

equation 6. 

𝑠𝑡
[𝑚]

 ~ 𝑝(𝑠𝑡|𝑠𝑡−1
[𝑚]

, 𝑢𝑡) (6) 

In some situations such as motion uncertainty is too high relative to the measure ment noise, 

FastSLAM1.0 may fail at sampling. For this reason, Montemerlo et al. developed a new version of the 

algorithm called as FastSLAM2.0 which uses both control input and measurement in sampling stage 

[23]. Thus, the new pose of a particle in FastSLAM2.0 is illustrated in equation 7. 

𝑠𝑡
[𝑚]

 ~ 𝑝(𝑠𝑡|𝑠𝑡−1,[𝑚], 𝑢𝑡 , 𝑧𝑡 , 𝑛𝑡) (7) 

Another important procedure of FastSLAM algorithm is importance weight estimation. Based on the 

equations 1 and 4 states of a particle at time 𝑡 is calculated using 𝑝(𝑠𝑡| 𝑧𝑡−1, 𝑢𝑡 , 𝑛𝑡−1) which is referred 

as proposal distribution of particle filtering.This process is done for each particle. The importance weight 

of 𝑚'th particle is estimated by the ratio of the SLAM posterior to proposal distribution as illustrated in 

equation 8. 

𝑤𝑡
[𝑚]

=
𝑝(𝑠𝑡,[𝑚] | 𝑧𝑡 , 𝑢𝑡 , 𝑛𝑡)

𝑝(𝑠𝑡,[𝑚] | 𝑧𝑡−1, 𝑢𝑡 , 𝑛𝑡−1)
 (8) 

As a last step, the particles are resampled with probabilities in proportion to their importance weight 

values. 
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3. DATA ASSOCIATION 

 

Basically, matching the newly found features (landmarks) with previous observations is data 

association. A newly found feature might belong to a new landmark or a previously seen one. This 

decision provides a fundamental information for particle update process. Since DA is a very critical part 

of SLAM, lots of studies could be found on the improvement of DA process [24-26]. 

 

When a new measurement is obtained, it has to be compared with the expected measurements for all 

particles. Using the pose of 𝑚’th particle and 𝑖’th landmark attached to this particle, the expected 

measurement is estimated as given in equation 9. 

�̂�𝑖 = 𝑔(𝜇𝑖,𝑡−1
[𝑚]

, 𝑠𝑡
[𝑚]

) (9) 

Same inputs in equation 9 are also used for the calculation of jacobian matrix which is necessary for 

linearizing as illustrated in equation 10. 

𝐺𝑖 = 𝑔′(𝜇𝑖,𝑡−1
[𝑚]

, 𝑠𝑡
[𝑚]

) (10) 

Obtaining the jacobian, it becomes easy to get the innovation covariance matrix as shown in equation 

11. 

𝑄𝑖 = 𝐺𝑖
𝑇Σ𝑖,𝑡−1

[𝑚]
𝐺𝑖 + 𝑅𝑡 (11) 

where Σ𝑖,𝑡−1
[𝑚]

 indicates the covariance of 𝑖'th landmark attached to 𝑚'th particle and 𝑅𝑡 indicates the 

measurement noise. Finally, the importance weight values can be calculated as given in equation 12. 

𝑤𝑖 = |2𝜋𝑄𝑖|
−

1
2 𝑒𝑥𝑝 {−

1

2
(𝑧𝑡 − �̂�𝑖)

𝑇𝑄𝑖
−1(𝑧𝑡 − �̂�𝑖)} (12) 

After scanning all landmarks of 𝑚'th particle, the maximum likelihood is selected to decide the id of 

landmark. If the likelihood is less than a predetermined threshold value, the measured landmark is 

assigned as a new landmark. 

 

4. PROPOSED METHOD 

 

In this paper, we develop an improved technique called as IDA-SLAM in order to decrease the run time 

without loss of the state estimation performance of FastSLAM. In another method CESLAM, the 

calculation of maximum likelihood of the landmarks are restricted to only ones in range of sensor. The 

drawbacks of CESLAM are illustrated in coming parts of the paper. By using another strategy than 

CESLAM, we are interested in decreasing the computational cost of DA process which takes a huge 

amount of time in case of the number of mapped landmarks are high. Because, the conventional 

FastSLAM compares all the landmarks with newly detected one which means that the equations in DA 

step must be performed tons of times. 

 

Idea behind IDA-SLAM algorithm is comparing the landmarks in a circular area whose center is 

determined by current measurement. As it is seen in Figure 1, when the robot detects a landmark, it 

creates a circular area with a predefined radius. We call this circular area checking circle along this 

paper. 
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Figure 1. Illustration of proposed method 

 

If a landmark from the map is out of the checking circle, we dont use it for matching with newly detected 

landmark. Otherwise, we put the new measurement into the DA process. There is only one checking 

circle for EKF-SLAM and its variants while particle filter based SLAM algorithms include numerous 

checking circles for each of the particles. In order to estimate the radius of the checking circle, the most 

uncertain measurement is considered for safety. Because, a newly detected landmarks likelihood 

depends on the uncertainty of the compared one. Suppose that there is a landmark with  fixed distance 

to the compared landmark. If the uncertainty of the compared landmark is high, the maximum likelihood 

of the other landmark is high. As the uncertainty of compared landmark decreases, the maximum 

likelihood also decreases. In order to avoid skipping a necessary landmark in likelihood estimation, we 

determine the checking circle's radius according to the greatest uncertainty. Because, the uncertainty 

and the threshold value for likelihood estimation depend on the quality of the measurement device. 

Deciding the radius of checking circle can be done practically from experiments. The minimum value 

of the radius should be same as the size of the distance between two landmarks that the sensor can 

distinguish each other. The overall procedure of proposed method is described as follows: 

 

IDA-SLAM is very similar to FastSLAM1.0. As a first step before taking measurement, the proposal 

distribution is obtained by using actual control 𝑢𝑡 and previous state 𝑠𝑡−1 for all particles as stated above. 

After the estimation of proposal distribution for 𝑚 = 1 … 𝑀, the current measurement is applied to 𝑠𝑡
[𝑚]

 

regarding this particles pose and direction. For each particle the estimated measurements are called 

relative measurement. Figure 2 illustrates how the center of the checking circle is estimated by relative 

measurement, where the big gray triangle is ground truth of the robots state and smaller triangles are 

particles. In Figure 2'a, the real measurement is taken by gray triangle (ground truth) and the robot 

detects a star which symbolizes a landmark. Relative measurement is estimated for the third particle and 

the circle is determined with radius 𝑑. In this situation, there are three suitable landmarks to put into the 

DA process among eight landmarks in the range of measurement of the first particle. In Figure 2'b, real 

measurement with the angle 𝜙 and distance 𝑟 is adapted to one of the particles.  
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Figure 2. Estimating center of checking circle 
 

Center of the checking circle in 𝑥 − 𝑦 plane is obtained by a simple geometric relation as shown in 

equations 13 and 14. 

𝑐𝑥 = 𝑠𝑡,𝑥
[𝑚]

+ 𝑟 𝑐𝑜𝑠(𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

+ 𝜙) (13) 

𝑐𝑦 = 𝑠𝑡,𝑦
[𝑚]

+ 𝑟 𝑠𝑖𝑛(𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

+ 𝜙) (14) 

where 𝑐𝑥 is 𝑥 coordinate, 𝑐𝑦 is 𝑦 coordinate of the checking circles center and 𝑠𝑡,𝑡ℎ𝑒𝑡𝑎
[𝑚]

 is heading angle 

of the particle. After calculating the center for 𝑚 'th particle, all landmarks of this particle are scanned 

if they are in the checking circle or not. For 𝑛 = 1 … 𝑁, the distance 𝑙𝑛 between 𝑙'th landmark and the 

center of circlecan be calculated as illustrated in equation 15. 

𝑙𝑛 = √(𝑐𝑥 − 𝜇n,x
[𝑚]

)2 + (𝑐𝑦 − 𝜇n,y
[𝑚]

)2 (15) 

If 𝑙𝑛 is greater than the radius of center 𝑑, the landmark is skipped. and the newly measured landmark 

is assigned as a new one for the 𝑚'th particle. Otherwise, it is evaluated in the standard DA process. 

After all landmarks are checked if they are in the checking circle and the DA process is implemented 

for ones in the checking circle, the most probably landmark is assigned to measured landmark. If non of 

the landmarks are in the checking circle, the measured landmark is assumed as a new one. When this 

procedure is performed for all particles in order, the remaining part of the algorithm is same as the 

FastSLAM1.0. If the measured landmark is a new landmark, it is attached to the 𝑚’th particle with its 

covariance and mean; if it is a known landmark, the mean and covariance values are updated. Finally, 

all the weighted particles processed in DA step are resampled in proportion to their weights. The 

complete mechanism of proposed method can clearly be understood from the algorithm illustrated in 

Table 1. 
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Table 1. IDA-SLAM 

1. for all particles 

2. sample new pose 

3. get measurement 

4. for all estimated landmarks 

5. estimate (𝑐𝑥, 𝑐𝑦) 

6. estimate 𝑙𝑛 

7. if 𝑙𝑛 < 𝑑 

estimate maximum likelihood (𝑝𝑛) 

8. else 𝑝𝑛 = 0 

9. end 

10. end 

11. if 𝑝𝑛 > threshold 

update landmark 

12. else 

assign as a new landmark 

13. end 

14. estimate importance weight 

15. end 

16. resample 

 

Even the strategy seems similar in CESLAM, the CESLAM may miss some important landmarks to be 

checked or relatively unimportant landmarks could be checked unnecessarily. Figure 3 shows such kind 

of scenario. As it is seen in Figure 3, the robot has a new landmark measurement that was also found 

previously (landmark-1). When the measurement is adapted to the particle (small triangle), CESLAM 

ignores the previously found landmark-1 for checking process since it is just out of the measurement 

range. This is one of the drawbacks of CESLAM approach and effects the accuracy of the method badly. 

Another problem of CESLAM is it checks landmark-3 which is far away from the measurement and not 

very necessary. On the other hand IDA-SLAM draws a checking circle around the landmark candidate 

which prevents these problems. As it is seen in Figure 3, the particle takes into account both of the 

landmark-1 and landmark-2 but not landmark-3 for checking process. 

 

 
 

Figure 3. Comparison of CESLAM and IDA-SLAM for a specific scenario 
 

 

5. SIMULATION AND EXPERIMENTAL RESULTS 
 

After the development and coding process, the proposed method is tested both in simulation and real 

experimental tests. The runtime values, robot trajectory and landmarks pose estimations are all evaluated 
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during these tests. We compare IDA-SLAM with FastSLAM1.0 and CESLAM in order to understand 

the effect of checking circle clearly. The simulations are carried out using a differential drive robot 

platform Turtlebot with a Kinect sensor shown in Figure 4. Kinect is an RGB-D Sensor and provides a 

point cloud data which is widely used in computer vision applications [27].  
 

 
 

Figure 4. Turtlebot 2 Robotic Test Platform 
 

In order to create realistic simulation environments, Gazebo simulator [28] is used under Robot 

Operating System (ROS). Additionally, Open Source Computer Vision (OpenCV) library [29] provides 

us visualizing the landmarks and the robot trajectory. In Gazebo simulator, two different environments 

are created using cube shaped objects as shown in Figures 5 and 6. The first environment has 16 objects 

where the Turtlebot detects 16 landmarks while operating; while the second one has 20 objects where 

the Turtlebot detects 23 landmarks. The reason for the selection of cubic objects is that they can be 

easily distinguished by Kinect as landmarks by using our landmark detection technique. We use the 

curvature function based method in [30] which makes it easy to identify the geometric shapes using two-

dimensional laser data. Generally; corners, walls and circular objects can be recognised by means of this 

technique. Turtlebot moves with 500 particles in both of the environments and follows a square route 

whose side length is 8 meters. The robot goes around this square route two times at each operation. All 

numerical results indicate the average values obtained from 30 independent runs. 

 

 
 

Figure 5. Simulation environment-1 created in Gazebo 
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Figure 6. Simulation environment-2 created in Gazebo 

 

Figures 7 and 8 show the simulation results of IDA-SLAM tested in two different environments, where 

yellow points are estimated position of landmarks and ellipses represent the uncertainty of estimated 

landmarks. Additionally, black lines are estimated paths of the robot.  

 

 
 

Figure 7. Simulation result of IDA-SLAM with 16 landmarks 
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Figure 8. Simulation result of IDA-SLAM with 23 landmarks 
 

Table 2 indicates the average error values of estimated landmarks for each three SLAM algorithms 

implemented in two different simulation environments. The landmark error values (𝑒𝑙𝑎𝑛𝑑) are calculated 

regarding the differences between the ground truth and estimated locations of landmarks as it shown in 

equation 16, where 𝜇𝑟𝑒
𝑖  is real pose of 𝑖'th landmark and 𝜇𝑟𝑒

𝑖  is estimated pose of 𝑖'th landmark. As it is 

expected, there are no distinct differences between FastSLAM1.0, CESLAM and IDA-SLAM in terms 

of error values.  

 

 
Table 2. Average landmark pose errors of various SLAM algorithms 

 

 Landmark Error (Environment 1) Landmark Error (Environment 2) 

SLAM 

Algorithms 
Mean (m) 

Standart 

Deviation 

Maximum 

Value (m) 
Mean (m) 

Standard 

Deviation 

Maximum 

Value (m) 

FastSLAM1.0 0.068 0.01 0.096 0.098 0.006 0.128 

CESLAM 0.070 0.044 0.082 0.095 0.004 0.103 

IDA-SLAM 0.068 0.045 0.079 0.094 0.005 0.104 

 

Similar to the landmark estimation, the performance of path estimation of each algorithms are also 

similar as it is illustrated in Table 3.  

 
 

Table 3. Average path errors of various SLAM algorithms 

 
 Path Error - Simulation Env.1 Path Error - Simulation Env. 2 

SLAM 

Algorithms 
Mean (m) 

Standart 

Deviation 

Maximum 

Value (m) 
Mean (m) 

Standard 

Deviation 

Maximum 

Value (m) 

FastSLAM1.0 9.64 3.25 18.65 10.79 4.57 18.63 

CESLAM 9.73 2.70 17.76 10.56 2.71 15.98 

IDA-SLAM 9.12 3.31 17.09 9.71 3.10 15.56 
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Path errors are calculated by accumulating the pose errors of particles at each time step from beginning 

to end of an individual run. Mathematical illustration of the path error estimation (𝑒𝑝𝑎𝑡ℎ) is shown in 

equation 17, where 𝑠𝑟𝑒
𝑡  is real pose of robot and 𝑠𝑒𝑠𝑡

𝑡  is estimated pose of robot. 

𝑒𝑙𝑎𝑛𝑑 = ∑ √(𝜇𝑟𝑒,𝑥
𝑖 − 𝜇𝑒𝑠𝑡,𝑥

𝑖 )2 + (𝜇𝑟𝑒,𝑦
𝑖 − 𝜇𝑒𝑠𝑡,𝑦

𝑖 )2

𝑁

𝑖=1

 (16) 

𝑒𝑝𝑎𝑡ℎ = ∑ √(𝑠𝑟𝑒,𝑥
𝑡 − 𝑠𝑒𝑠𝑡,𝑥

𝑡 )2 + (𝑠𝑟𝑒,𝑦
𝑡 − 𝑠𝑒𝑠𝑡,𝑦

𝑡 )2

𝑇

𝑡=0

 (17) 

Finally, Table 4 compares the runtime efficiencies of each method which is the main focus of this paper. 

Since the standard FastSLAM method checks all the landmarks when a new measurement is obtained, 

it is more awkward than CESLAM and IDA-SLAM. This result can be seen from Table 4 that CESLAM 

and IDA-SLAM operate more than 2 times faster than FastSLAM.  

 
Table 4. Average runtime values of various SLAM algorithms 

 

 Runtimes - Simulation Env.1 Runtimes - Simulation Env. 2 

SLAM 

Algorithms 
Mean (s) 

Standart 

Deviation 

Maximum 

Value (s) 
Mean (s) 

Standard 

Deviation 

Maximum 

Value (s) 

FastSLAM1.0 13.88 1.09 16.24 27.33 1.29 30.93 

CESLAM 4.88 0.33 5.83 8.11 0.54 9.15 

IDA-SLAM 4.73 0.33 5.63 6.16 0.38 7.21 

 

When we compare our algorithm with CESLAM, it seems that IDA-SLAM is more efficient when the 

map becomes complicated. According to the results, IDA-SLAM is 66% and CESLAM is 65% faster 

than FastSLAM1.0 when there are 16 landmarks in the map. Furthermore, IDA-SLAM is 77% and 

CESLAM is 70% faster than FastSLAM1.0 when there are 23 landmarks in the map. Checking circle 

approach of IDA-SLAM makes it more efficient comparing to the other methods.  

 

In Figures 9, 10 and 11, it can be seen the distributions of landmark estimation errors, path errors and 

runtimes for different SLAM methods and environments. 
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Figure 9. Landmark estimation error distributions for environment-1 (left) and environment-2 (right) 

 

 
 

Figure 10. Path error distribution for environment-1 (left) and environment-2 (right) 
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Figure 11. Runtime distribution of IDA-SLAM for environment-1 (left) and environment-2 (right) 

 

As shown in Figure 12, the real environments which are arranged in a laboratory at Istanbul Technical 

University are similar to ones created in Gazebo. The robot moves with 100 particles in both of the 

environments and follows a square route whose side length is 3 meters. The robot goes around this 

square route two times at each operation same as the simulations. 

 

 
 

Figure 12. Real world test environment 

 

In Figure 13, two different maps created by IDA-SLAM in test environment-1 and test environment-2 

are shown. The black line indicates the estimated poses at the operation and yellow dots indicate the 

estimated landmarks' poses. 
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Figure 13. Experimental result of IDA-SLAM in real world environments 

 

Table 5 shows the runtime results and improvement rates of different SLAM algorithms performed in 

test environment-1 and test environment-2. According to the results, IDA-SLAM is 43% and CESLAM 

is 36% faster than FastSLAM1.0 when there are 7 landmarks in the map. Also, IDA-SLAM is 52% and 

CESLAM is 43% faster than FastSLAM1.0 when there are 11 landmarks in the map. It is clearly 

understood from the test results that the proposed method improves the runtime efficiency comparing 

to the other methods. The difference of the improvement rates comes from the structure of the maps. In 

more complicated environments, number of landmarks that the robot detect at a single measurement are 

more than the simpler environments. For this reason, the proposed method becomes more effective in 

such kind of crowded environments.  

 

Table 5. Runtime values of various SLAM algorithms in real experimental tests 

SLAM 

Algorithms 

Test Environment-1 Test Environment-2 

Runtime(sec) Improvement Rate Runtime(sec) Improvement Rate 

FastSLAM1.0 0.81  1.22  

CESLAM 0.52 36% 0.69 43% 

IDA-SLAM 0.46 43% 0.58 52% 

 

 

6. CONCLUSION 

 

This paper proposes the IDA-SLAM algorithm which brings a new solution to the landmark matching 

problem. In DA step, IDA-SLAM doesn't consider the landmarks which are too far from newly 

measured landmark. Creating a virtual circle around the landmark candidate, restricts the area to be 

scanned. By this way, IDA-SLAM avoids calculating likelihood and other matrices for each of the 

landmarks in DA process. Simulation results show that the proposed approach improves the runtime 

efficiency while the performance of state estimation remains almost same. The real experimental tests 

also verify the runtime efficiency of IDA-SLAM.  

 

The new approach brings a new solution to DA process which is common in all SLAM algorithms. For 

this reason, the new solution can be implemented on not only particle based methods, but also EKF 

based SLAM algorithms. In addition to FastSLAM, the proposed method can be performed on EKF-

SLAM and the comparison of the results with conventional techniques can be analyzed as a future work. 
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