A Sequence of Kantorovich-Type Operators on Mobile Intervals

Mirella Cappelletti Montano and Vita Leonessa*

ABSTRACT. In this paper, we introduce and study a new sequence of positive linear operators, acting on both spaces of continuous functions as well as spaces of integrable functions on $[0, 1]$. We state some qualitative properties of this sequence and we prove that it is an approximation process both in $C([0, 1])$ and in $L^p([0, 1])$, also providing some estimates of the rate of convergence. Moreover, we determine an asymptotic formula and, as an application, we prove that certain iterates of the operators converge, both in $C([0, 1])$ and, in some cases, in $L^p([0, 1])$, to a limit semigroup. Finally, we show that our operators, under suitable hypotheses, perform better than other existing ones in the literature.

Keywords: Kantorovich-type operators, Positive approximation processes, Rate of convergence, Asymptotic formula, Generalized convexity.

2010 Mathematics Subject Classification: 41A36, 41A25, 47D06.

1. INTRODUCTION

In [13], the author proposed a modification of the classical Bernstein operators B_n on $[0, 1]$ that, instead of fixing constants and the function x, fixes the constants and x^2, obtaining, in such a way, an order of approximation at least as good as the order of approximation of the operators B_n in the interval $[0, 1/3]$. More precisely, those operators are defined by setting, for every continuous function on $[0, 1]$, $	ilde{B}_n(f) = B_n(f) \circ r_n$, where, for every $x \in [0, 1]$,

$$r_n(x) = \begin{cases} x^2 & \text{if } n = 1, \\ \frac{1}{2(n-1)} + \sqrt{\frac{nx^2}{n-1} + \frac{1}{4(n-1)^2}} & \text{if } n \geq 2. \end{cases}$$

Subsequently, other modifications of the classical Bernstein operators, as well as of many other well-known operators, that fix suitable functions were introduced (see [2] and the references quoted therein). Here we limit ourselves to mention that, for example, in [9], the authors considered a family of sequences of operators $(B_{n, \alpha})_{n \geq 1}, \alpha \geq 0$, that preserve the constants and the function $x^2 + \alpha x$. A further extension was presented in [12]; in that paper, Gonska, Raşa and Pituţ considered the operators $V_{\tau}^n(f) = B_n(f) \circ \tau_n$ ($f \in C([0, 1])$), where $\tau_n = (B_n(\tau))^{-1} \circ \tau$ and τ is a strictly increasing function on $[0, 1]$ such that $\tau(0) = 0$ and $\tau(1) = 1$. In particular, the operators V_{τ}^n preserve the constants and the function τ.

In [10], instead, the authors introduced a modification of Bernstein operators fixing constants and a strictly increasing function τ in the following way: considering a strictly increasing function τ which is infinitely many times continuously differentiable on $[0, 1]$ and such that $\tau(0) = 0$...
and \(\tau(1) = 1 \), they introduced the operators

\[
B_n^\tau(f) = B_n(f \circ \tau^{-1}) \circ \tau \quad (n \geq 1, f \in C([0, 1])).
\]

The authors studied shape preserving and approximation properties of the operators \(B_n^\tau \), and compared them, under suitable assumptions, with the \(B_n \)'s and the \(V_n^\tau u \)'s. General sequences of positive linear operators fixing \(\tau \) and \(\tau^2 \) have been recently studied in \([1]\).

In this paper, motivated by works \([7], [4] \) and \([5]\), we present a Kantorovich-type modification of the operators \(B_n^\tau \). In particular, among other things, the authors introduced a sequence of positive linear operators \((C_n^\tau)_{n \geq 1}\) that generalize the classical Kantorovich operators on \([0, 1]\) and present the advantage to reconstruct any integrable function on \([0, 1]\) by means of its mean value on a finite numbers of subintervals of \([0, 1]\) that do not need to be a partition of \([0, 1]\).

Accordingly, in this work, for any integrable function \(f \) on \([0, 1]\) we shall study the operators

\[
C_n^\tau(f) = C_n(f \circ \tau^{-1}) \circ \tau \quad (n \geq 1),
\]

where \(\tau \) is a strictly increasing function that is infinitely many times continuously differentiable on \([0, 1]\) and such that \(\tau(0) = 0 \) and \(\tau(1) = 1 \).

The paper is organized as follows; after giving some preliminaries, we discuss some qualitative properties of the operators \(C_n^\tau \); in particular, we prove that they preserve some generalized convexity. We also prove that the sequence \((C_n^\tau)_{n \geq 1}\) is an approximation process for spaces of continuous as well as integrable functions and we evaluate the rate of convergence in both cases by means of suitable moduli of smoothness. As a byproduct, we obtain a simultaneous approximation result for the operators \(B_n^\tau \).

By using some results of \([5]\), we prove that the operators \(C_n^\tau \) satisfy an asymptotic formula with respect to a second order elliptic differential operator and, as an application, that suitable iterates of the \(C_n^\tau \)'s can be employed in order to constructively approximate strongly continuous semigroups in the function spaces considered in the paper.

Finally, as a further consequence of the above mentioned asymptotic formula, we compare the sequence \((C_n^\tau)_{n \geq 1}\) and the sequence \((C_n)_{n \geq 1}\), showing that, under suitable conditions, the former perform better.

2. Preliminaries

From now on, we denote by \(C([0, 1]) \) the space of all real-valued continuous functions on the interval \([0, 1]\). As usual, \(C([0, 1]) \) will be equipped with the uniform norm \(\| \cdot \|_\infty \).

For every \(i \geq 1 \), the symbol \(e_i \) stands for the functions \(e_i(x) := x^i \) for all \(x \in [0, 1] \); moreover \(1 \) will indicate the constant function on \([0, 1]\) of constant value 1. If \(X \subset \mathbb{R} \), we denote by \(1_X \) the characteristic function of \(X \), defined by setting, for every \(x \in \mathbb{R} \),

\[
1_X(x) := \begin{cases} 1 & \text{if } x \in X; \\ 0 & \text{if } x \notin X. \end{cases}
\]

Moreover, for every \(k \in \mathbb{N} \), we denote by \(C^k([0, 1]) \) the space consisting of all real-valued functions which are continuously differentiable up to order \(k \) on \([0, 1]\). In particular, if \(f \in C^k([0, 1]) \), for every \(i = 0, \ldots, k \), \(D^i(f) \) is the derivative of order \(i \) of \(f \). For simplicity, if \(i = 1, 2 \), we might also use the usual symbols \(f' \) and \(f'' \). Further, \(C^\infty([0, 1]) \) is the space of all real-valued functions which are infinitely many times continuously differentiable on \([0, 1]\).

Finally, for every \(p \in [1, +\infty) \), we denote by \(L^p([0, 1]) \) the space of all (the equivalence classes of) Borel measurable real-valued functions on \([0, 1]\) whose \(p \)th power is integrable with respect
to the Borel-Lebesgue measure λ_1 on $[0, 1]$. The space $L^p([0, 1])$ is endowed with the norm

$$\|f\|_p := \left(\int_0^1 |f(x)|^p \, dx \right)^{1/p} \quad (f \in L^p([0, 1])).$$

In what follows we recall the definition of certain operators acting on the space $L^1([0, 1])$ which represent a generalization of the classical Kantorovich operators on $[0, 1]$. They were studied in [7, Examples 1.2, 1] and subsequently extended to the multidimensional setting in [4, 5].

Let $(a_n)_{n \geq 1}$ and $(b_n)_{n \geq 1}$ be two sequences of real numbers such that, for every $n \geq 1$, $0 \leq a_n < b_n \leq 1$. Then, consider the positive linear operator $C_n : L^1([0, 1]) \to C([0, 1])$ defined by setting, for any $f \in L^1([0, 1])$, $n \geq 1$ and $x \in [0, 1]$,

$$C_n(f)(x) = \sum_{k=0}^{n} \left(\frac{n+1}{b_n - a_n} \int_{\frac{k+b_n}{n+1}}^{\frac{k+a_n}{n+1}} f(t) \, dt \right) \binom{n}{k} x^k (1-x)^{n-k}. \quad (2.1)$$

Since $C_n(1) = 1$, the restriction to $C([0, 1])$ of each C_n is continuous and we have $\|C_n\| = 1$ for any $n \geq 1$, where $\| \cdot \|$ denotes the usual operator norm on $C([0, 1])$.

We notice that if, in particular, $a_n = 0$ and $b_n = 1$ for any $n \geq 1$, the operators C_n turn into the classical Kantorovich operators on $[0, 1]$.

For every $n \geq 1$,

$$C_n(e_1) = \frac{n}{n+1} e_1 + \frac{a_n + b_n}{2(n+1)} 1, \quad (2.2)$$

$$C_n(e_2) = \frac{1}{(n+1)^2} \left(n^2 e_2 + ne_1 (1-e_1) + n(a_n + b_n)e_1 + \frac{b_n^2 + a_n b_n + a_n^2}{3} 1 \right). \quad (2.3)$$

We also point out that (see [7, Formula (4.2)]), the operators C_n are closely related to the classical Bernstein operators on $[0, 1]$.

In fact, if one denotes by B_n the n-th Bernstein operator on $C([0, 1])$, for every $f \in L^1([0, 1])$, considering the function

$$F_n(f)(x) := \frac{n+1}{b_n - a_n} \int_{\frac{a_n + b_n}{n+1}}^{\frac{n+b_n}{n+1}} f(t) \, dt = \int_0^1 f \left(\frac{(b_n-a_n)t + a_n + nx}{n+1} \right) \, dt \quad (x \in [0, 1], n \geq 1)$$

(2.4)

it turns out that

$$C_n(f) = B_n(F_n(f)) \quad (2.5)$$

$(f \in L^1([0, 1]), n \geq 1)$.

As quoted in the Introduction, in [10] the authors introduced a modification of Bernstein operators that fixes suitable functions.

More precisely, consider a function $\tau \in C^\infty([0, 1])$ such that $\tau(0) = 0$, $\tau(1) = 1$ and $\tau'(x) > 0$ for every $x \in [0, 1]$.

The operators introduced in [10] are defined by

$$B^\tau_n(f) := B_n(f \circ \tau^{-1}) \circ \tau \quad (n \geq 1, f \in C([0, 1])). \quad (2.6)$$

Namely, for every $f \in C([0, 1]), n \geq 1$ and $x \in [0, 1]$,

$$B^\tau_n(f)(x) := \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1-\tau(x))^{n-k} (f \circ \tau^{-1}) \left(\frac{k}{n} \right). \quad (2.7)$$
After the above preliminaries, we pass to introduce a new sequence of positive linear operators acting on integrable functions on \([0, 1]\), which is a combination of (2.1) and (2.6). More precisely, for any \(f \in L^1([0, 1])\) and \(n \geq 1\), we set
\[
C^n_\tau(f) := C_n(f \circ \tau^{-1}) \circ \tau;
\]
hence, for every \(f \in L^1([0, 1]), n \geq 1\), and \(x \in [0, 1]\),
\[
C^n_\tau(f)(x) = \sum_{k=0}^{n} \left(\frac{n+1}{b_n - a_n} \int_{\frac{k+a_n}{n+1}}^{\frac{k+b_n}{n+1}} (f \circ \tau^{-1})(t) \, dt \right) \left(\frac{n}{k} \right) \tau(x)^k(1 - \tau(x))^{n-k},
\]
where we have used the fact that, thanks to the change of variable theorem, \(f \circ \tau^{-1} \in L^1([0, 1])\) provided \(f \in L^1([0, 1])\).

Note that, if \(\tau = e_1\), the operators \(C^n_\tau\) turn into the operators \(C_n\) defined by (2.1), and hence in the classical Kantorovich operators whenever \(a_n = 0\) and \(b_n = 1\) for every \(n \geq 1\).

The operators \(C^n_\tau\) can be viewed as integral modification of Kantorovich-type of the operators \(B^n_\tau\) with mobile intervals.

3. Shape Preserving Properties of the \(C^n_\tau\)'s

This section is devoted to show some qualitative properties of the operators \(C^n_\tau\). To this end, we first remark that, taking (2.4), (2.5) and (2.8) into account, the following formula holds true:
\[
C^n_\tau(f) = B_n(F_n(f \circ \tau^{-1})) \circ \tau
\]
\((f \in L^1([0, 1]), n \geq 1)\).

Hence, one can recover some properties of the operators \(C^n_\tau\) by means of the relevant ones held by the \(B_n\)'s.

First off, as \(F_n(f)\) is increasing whenever \(f\) is (continuous and) increasing, the \(B_n\)'s map (continuous) increasing functions into increasing functions (see, e.g., [3, Remark p. 461]), and \(\tau\) is increasing, we have that the operators \(C^n_\tau\) map (continuous) increasing functions into increasing functions.

The \(C^n_\tau\)'s preserve also a particular form of convexity.

We recall (see [17]) that a function \(f \in C([0, 1])\) is said to be convex with respect to \(\tau\) if, for every \(0 \leq x_0 < x_1 < x_2 \leq 1\), one has
\[
\begin{vmatrix}
1 & 1 & 1 \\
\tau(x_0) & \tau(x_1) & \tau(x_2) \\
\tau(x_0) & \tau(x_1) & \tau(x_2)
\end{vmatrix} \geq 0.
\]

In particular, it can be proven that a function \(f\) is convex with respect to \(\tau\) if and only if \(f \circ \tau^{-1}\) is convex.

In [7, Proof of Th. 4.3]) it has been shown that the operators \(C_n\) map (continuous) convex functions into (continuous) convex functions; hence, thanks to (2.8), the operators \(C^n_\tau\) map (continuous) convex functions with respect to \(\tau\) into (continuous) convex functions with respect to \(\tau\).

Moreover, we investigate the monotonicity of the sequence \((C^n_\tau)_{n \geq 1}\) on convex functions with respect to \(\tau\).

Proposition 3.1. If \(f \in C([0, 1])\) is convex with respect to \(\tau\) and increasing (resp., decreasing), then, for every \(n \geq 1\),
\[
f \leq C^n_\tau(f) \quad \text{on} \quad [0, \tau^{-1}\left(\frac{a_n + b_n}{2}\right)],
\]
We point out that the operators k and f are the same happens for the B where B.

By using the fundamental theorem of calculus, f function f is convex and increasing, so that

$$f \leq C_n^\tau(f) \quad \text{on} \quad \left[\tau^{-1}\left(\frac{a_n + b_n}{2}\right), 1\right].$$

Moreover, if $(a_n)_{n \geq 1}$ and $(b_n)_{n \geq 1}$ are constant sequences and $f \in C([0, 1])$ is convex with respect to τ, then

$$C_{n+1}^\tau(f) \leq \frac{n+1}{n+2}C_n^\tau(f) + \frac{1}{n+2}B_{n+1}^\tau(f),$$

B_n^τ being defined by (2.7).

Proof. In [7, Proposition 4.5] it has been proven that, if g is convex and increasing, then $g \leq C_n(g)$ on $[0, \frac{a_n + b_n}{2}]$. Hence because f is convex with respect to τ and increasing, $f \circ \tau^{-1}$ is convex and increasing, so that

$$f \circ \tau^{-1} \leq C_n(f \circ \tau^{-1}) \quad \text{on} \quad \left[0, \frac{a_n + b_n}{2}\right],$$

and from this we get (3.10). Reasoning in the same way, one can establish (3.11).

Moreover, fix $f \in C([0, 1])$ convex function with respect to τ. In [7, Theorem 4.4] it was established that, if $g \in C([0, 1])$ is convex, then, for all $n \geq 1$, $C_{n+1}(g) \leq \frac{n+1}{n+2}C_n(g) + \frac{1}{n+2}B_{n+1}(g)$, so that, by applying this result to $f \circ \tau^{-1}$, we get (3.12).

Besides the convexity with respect to τ, the operators C_n^τ preserve another type of convexity. More precisely, given $\varphi \in C^\infty([0, 1])$ such that $\varphi'(x) \neq 0$ for all $x \in [0, 1]$ and $\varphi(0) = 0$, and $k \in \mathbb{N}$, a function $f \in C^k([0, 1])$ is said to be φ-convex of order k if, for every $x \in [0, 1]$,

$$D^{(k)}(f)(x) := D^{(k)}(f \circ \varphi^{-1})(\varphi(x)) \geq 0.$$

For more details about φ-convex functions of order k see [14].

Since in our case $\tau : [0, 1] \to [0, 1]$ is a bijection and a positive function, it is easy to show that a function $f \in C^k([0, 1])$ is τ-convex of order k if and only if

$$D^{(k)}_\tau(f) := D^{(k)}(f \circ \tau^{-1}) \geq 0.$$

In other words, f is τ-convex of order k iff $f \circ \tau^{-1}$ is k-convex. Here we recall that a function $g \in C^k([0, 1])$ is said to be k-convex if $D^{(k)}(g) \geq 0$.

By using the fundamental theorem of calculus, F_n maps k-convex functions into k-convex functions and the same happens for the B_i’s (see, for example, [6, Prop. A.2.5]). Then, thanks to (3.9) we have that the C^τ_n’s map τ-convex functions of order k into τ-convex functions of order k.

We point out that the operators C^τ_n do not preserve the convexity. In order to construct an example, we use the following alternative representation for the operators C^τ_n: for every $n \geq 1$ and $f \in L^1([0, 1])$,

$$C^\tau_n(f) = B^\tau_n(G^\tau_n(f \circ \tau^{-1})),$$

where

$$G^\tau_n(f)(x) := \frac{n+1}{b_n - a_n} \int_{a_n}^{b_n} f(t) \, dt.$$

Then, choosing $a_n = 0$, $b_n = 1$ for all $n \geq 1$, $\tau = (e_1 + e_2)/2$ and $f = e_1$,

$$C^\tau_n(e_1) = \frac{n}{n+1}B^\tau_n(e_1) + \frac{1}{2(n+1)}.$$
Recalling that in this case $B_n^*(e_1)$ is not convex for lower n (see [10]), we get that the same happens for $C_n^*(e_1)$.

Now we pass to show that each C_n^* preserves the class of Hölder continuous functions. Given $M > 0$ and $0 \leq \alpha \leq 1$, we shall write $f \in \text{Lip}_M\alpha$ if

$$|f(x) - f(y)| \leq M|x - y|^\alpha \quad \text{for every } 0 \leq x, y \leq 1.$$

In particular, if $\alpha = 1$, we get the space of all Lipschitz functions of Lipschitz constant M.

First observe that, from hypotheses on τ, both τ and τ^{-1} are Lipschitz functions. Precisely, $\tau \in \text{Lip}_L 1$ with $L := \|\tau'|_\infty$ and $\tau^{-1} \in \text{Lip}_{N_1} 1$ with $N := (\min_{[0,1]} \tau')^{-1}$. Therefore, by recalling that $C_n(\text{Lip}_M 1) \subset \text{Lip}_{CM} 1$ with $C := \max\{1, |f(0)| + |f(1)|\}$ (see [7, Th. 4.1 and Example n. 1]), from (2.8) it follows that

$$(3.13) \quad C_n^*(\text{Lip}_M 1) \subset \text{Lip}_{CMN} 1 \quad \text{for every } n \geq 1.$$

On account of [3, Cor. 6.1.20], since $\|C_n^*\| = 1$ and property (3.13) holds, for every $n \geq 1$, $f \in C([0,1])$, $\delta > 0$, $M > 0$ and $0 < \alpha \leq 1$,

$$\omega(C_n^*(f), \delta) \leq (1 + C)\omega(f, \delta) \quad \text{and} \quad C_n^*(\text{Lip}_M\alpha) \subset \text{Lip}_{(CLN)^\alpha M} \alpha.$$

Finally, for every $k \in \mathbb{N}$, denote by $P_{\tau,k}$ the linear subspace generated by the set $\{\tau^i : i = 0, \ldots, k\}$. $P_{\tau,k}$ is said to be the space of the τ-polynomials of degree k. Since both the B_n^*’s and the F_n’s map polynomials of degree k into polynomials of degree k, taking (3.9) into account, we have that

$$C_n^*(P_{\tau,k}) \subset P_{\tau,k} \quad (k \in \mathbb{N}, n \geq 1).$$

4. Approximation Properties of the C_n^*’s

In this section, we prove that $(C_n^*)_{n \geq 1}$ is a positive approximation process both in $C([0,1])$ and in $L^p([0,1])$, $1 \leq p < +\infty$, and we provide some estimates of the rate of convergence, by means of suitable moduli of smoothness. As a byproduct of the uniform convergence, we obtain a property of the operators B_n^* introduced in [10], which seems to be new.

We begin by stating the following result.

Theorem 4.1. For every $f \in C([0,1])$, we have that

$$(4.14) \quad \lim_{n \to \infty} C_n^*(f) = f$$

uniformly on $[0,1]$.

Proof. From (2.2) and (2.3) it easily follows that

$$(4.15) \quad C_n^*(\tau) = \frac{n}{n+1} \tau + \frac{a_n + b_n}{2(n+1)} 1,$$

$$(4.16) \quad C_n^*(\tau^2) = \frac{1}{(n+1)^2} \left(n^2 \tau^2 + n\tau (1 - \tau) + n(a_n + b_n)\tau + \frac{b_n^2 + a_nb_n + a_n^2}{3} 1 \right);$$

since $C_n^*(1) = 1$ and $\{1, \tau, \tau^2\}$ is an extended Tchebychev system on $[0,1]$, (4.14) comes directly by an application of Korovkin Theorem (see [3, Example 5, p. 246]).

In order to get a quantitative version of the above uniform convergence, we use a result due to Paltanea (see [15]) which involves the usual modulus of continuity of the first and second order, denoted, respectively, by $\omega(f, \delta)$ and $\omega_2(f, \delta)$. To this end, we need some further preliminaries. For $x \in [0,1]$, we denote by $e_{\tau,x}^i$ the function

$$e_{\tau,x}^i(t) = (\tau(t) - \tau(x))^i \quad (i = 0, 1, 2, \ldots).$$
When \(\tau = e_1 \) we shall simply write \(\psi_x^i(t) = (t-x)^i \).
In particular, for any \(n \geq 1 \) and \(x \in [0, 1] \) (see (4.15) and (4.16)),

\[
C_n^\tau(e_n^x, 2)(x) = \frac{1 - n}{(n+1)^2} \tau^2(x) + \frac{n - a_n - b_n}{(n+1)^2} \tau(x) + \frac{b_n^2 + a_nb_n + a_n^2}{3(n+1)^2}. \tag{4.17}
\]

Moreover, we recall the following result (see \([11, \text{Formula (8)}]\)): there exists a constant \(K > 0 \) such that

\[
K \psi^2_x(t) \leq \tau'(x) e^x_{\tau, 2}(t) \quad \text{for every } x, t \in [0, 1]. \tag{4.18}
\]

Obviously, \(K = 1 \) if \(\tau = e_1 \).

Proposition 4.2. Consider \(n \geq 1, f \in C([0, 1]), 0 \leq x \leq 1, \) and \(\delta > 0. \) Then

\[
|C_n^\tau(f)(x) - f(x)| \leq \omega(f, \delta_n^\tau(x)) + \frac{3}{2} \omega_2(f, \delta_n^\tau(x)), \tag{4.19}
\]

where

\[
\delta_n^\tau(x) = \frac{\sqrt{n+1}}{n+1}\sqrt{(n-1)\tau(x)(1-\tau(x)) + (1-a_n-b_n)\tau(x) + \frac{b_n^2 + a_nb_n + a_n^2}{3}}.
\]

Moreover,

\[
\|C_n^\tau(f) - f\|_\infty \leq \omega \left(f, \frac{\|\tau'\|^{1/2}_{\infty}}{\sqrt{K}\sqrt{n+1}} \right) + \frac{3}{2} \omega_2 \left(f, \frac{\|\tau'\|^{1/2}_{\infty}}{\sqrt{K}\sqrt{n+1}} \right). \tag{4.20}
\]

Proof. Let \(n \geq 1, f \in C([0, 1]), 0 \leq x \leq 1 \) and \(\delta > 0. \) Paltanea’s estimate ([15, Theorem 2.2.1]; see, also, [6, Theorem 1.6.2]) runs as follows:

\[
|C_n^\tau(f)(x) - f(x)| \leq |f(x)||C_n^\tau(1)(x) - 1| + \frac{\delta^{-1}|C_n^\tau(\psi_x^2)(x)|\omega(f, \delta) + \left(C_n^\tau(1)(x) + (2\delta^2)^{-1}C_n^\tau(\psi_x^2)(x) \right)\omega_2(f, \delta)}{1 + (2\delta^2)^{-1}C_n^\tau(\psi_x^2)(x)} \omega_2(f, \delta).
\]

Cauchy-Schwarz inequality yields

\[
|C_n^\tau(\psi_x)| \leq \sqrt{C_n^\tau(\psi_x^2)},
\]

so that

\[
|C_n^\tau(f)(x) - f(x)| \leq \frac{\delta^{-1}}{\sqrt{n+1}} C_n^\tau(\psi_x^2)(x)\omega(f, \delta) + (1 + (2\delta^2)^{-1}C_n^\tau(\psi_x^2)(x))\omega_2(f, \delta).
\]

From (4.18), (4.17) and the positivity of \(C_n^\tau \)'s, we have

\[
KC_n^\tau(\psi_x^2)(x) \leq \tau'(x) C_n^\tau(e_n^x, 2) \leq \frac{\tau'(x)}{(n+1)^2} \left\{ (n-1)\tau(x)(1-\tau(x)) + (1-a_n-b_n)\tau(x) + \frac{b_n^2 + a_nb_n + a_n^2}{3} \right\}.
\]

Therefore,

\[
C_n^\tau(\psi_x^2) \leq \frac{\tau'(x)}{K(n+1)^2} \left\{ (n-1)\tau(x)(1-\tau(x)) + (1-a_n-b_n)\tau(x) + \frac{b_n^2 + a_nb_n + a_n^2}{3} \right\}
\]

and, for \(\delta = \delta_n^\tau(x) \), we get (4.19). Estimate (4.20) follows by noting that

\[
\delta_n^\tau(x) \leq \frac{\|\tau'\|_{\infty}^{1/2}}{\sqrt{K}\sqrt{n+1}}
\]

since \(0 \leq \tau(x) \leq 1 \). \(\square \)
As a byproduct of Theorem 4.1, we present a simultaneous approximation result for the operators B_n^τ given by (2.7). As far as we know, this property is new.

Theorem 4.2. Suppose that $a_n = 0$ and $b_n = 1$ for every $n \geq 1$. Then, for every $f \in C^1([0, 1])$,
\begin{equation}
(4.22) \quad B_{n+1}^\tau(f)' = \tau' C_n^\tau(f' / \tau').
\end{equation}
Moreover,
\begin{equation}
(4.23) \quad \lim_{n \to \infty} B_n^\tau(f)' = f' \text{ uniformly on } [0, 1].
\end{equation}

Proof. Let $x \in [0, 1]$, $f \in C^1([0, 1])$, and $n \geq 1$. From (2.7) it follows that
\[
B_{n+1}^\tau(f)'(x) = \tau'(x) \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1 - \tau(x))^{n-k} \times (n + 1) \left((f \circ \tau^{-1}) \left(\frac{k + 1}{n + 1} \right) - (f \circ \tau^{-1}) \left(\frac{k}{n + 1} \right) \right) \\
= \tau'(x) \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1 - \tau(x))^{n-k} \left(n + 1 \right) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} (f \circ \tau^{-1})'(t) \, dt \\
= \tau'(x) C_n^\tau \left(\frac{f'}{\tau'} \right)(x),
\]
and this completes the proof of (4.22). Formula (4.23) immediately follows from (4.22) and Theorem 4.1, because τ' is bounded. \hfill \Box

Now we prove that the sequence $(C_n^\tau)_{n \geq 1}$ is a positive approximation process also in $L^p([0, 1])$ for any $p \in [1, +\infty[.

Theorem 4.3. Assume that
\[
\sup_{n \geq 1} \frac{1}{b_n - a_n} = M \in \mathbb{R}.
\]
Then, for every $p \in [1, +\infty[$ and $f \in L^p([0, 1]),$
\begin{equation}
(4.24) \quad \lim_{n \to \infty} C_n^\tau(f) = f \text{ in } L^p([0, 1]).
\end{equation}

Proof. By Theorem 4.1, for every $f \in C([0, 1])$, \(\lim_{n \to \infty} C_n(f) = f \) in L^p-norm, as well. Since $C([0, 1])$ is dense in $L^p([0, 1])$, in order to prove the statement it is sufficient to show, thanks to Banach-Steinhaus theorem, that the sequence of operators $C_n^\tau : L^p([0, 1]) \to L^p([0, 1]) \quad (n \geq 1)$ is equicontinuous, i.e.,
\[
\sup_{n \geq 1} \| C_n^\tau \|_{L^p, L^p} < +\infty.
\]
To this end, for every $n \geq 1$, $f \in L^p([0, 1])$ and $x \in [0, 1]$, we preliminary notice that, since the function $|t|^p (t \in \mathbb{R})$ is convex,
\[
|C_n^\tau(f)(x)|^p \leq \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1 - \tau(x))^{n-k} \left[\frac{(n + 1)}{(b_n - a_n)} \int_{\frac{k+a_n}{n+1}}^{\frac{k+b_n}{n+1}} (f \circ \tau^{-1}) (t) \, dt \right]^p.
\]
By applying Jensen’s inequality (see, e.g., [8, Theorem 3.9]) to the probability measure

\[\frac{n+1}{b_n-a_n} 1_{\left[\frac{k+a_n}{n+\tau}, \frac{k+b_n}{n+\tau}\right]} \lambda_1 \] on \([0, 1]\), we get

\[
|C_n^\tau(f)(x)|^p \leq \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1 - \tau(x))^{n-k} \frac{(n+1)}{(b_n-a_n)} \int_{\left[\frac{k+a_n}{n+\tau}, \frac{k+b_n}{n+\tau}\right]} |(f \circ \tau^{-1})(t)|^p \, dt
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1 - \tau(x))^{n-k} \frac{(n+1)}{(b_n-a_n)} \int_{\tau^{-1}(\frac{k+a_n}{n+\tau})}^{\tau^{-1}(\frac{k+b_n}{n+\tau})} |f(y)|^p \, dy
\]

\[
\leq \|\tau'|_{\infty} \| (n+1) \sum_{k=0}^{n} \binom{n}{k} \tau(x)^k (1 - \tau(x))^{n-k} \int_{\tau^{-1}(\frac{k+a_n}{n+\tau})}^{\tau^{-1}(\frac{k+b_n}{n+\tau})} |f(y)|^p \, dy.
\]

We point out that

\[
\int_{0}^{1} \tau(x)^k (1 - \tau(x))^{n-k} \, dx = \int_{0}^{1} t^k(1-t)^{n-k} \frac{\tau'(1-\tau(t))}{\tau'(1-t)} \, dt \leq \frac{1}{\min_{y \in [0,1]} \tau'(y)} \frac{1}{\binom{n}{k}(n+1)}.
\]

Hence, by integrating with respect to \(x\), we obtain

\[
\|C_n^\tau(f)\|_p \leq MN \|f\|_p,
\]

where

\[
N := \frac{\|\tau'|_{\infty}}{\min_{y \in [0,1]} \tau'(y)};
\]

hence \(\|C_n^\tau\|_{L^p,L^p} \leq (MN)^{1/p} < +\infty. \)

An estimate of the convergence in (4.24) can be obtained by using a result due to Swetits and Wood [16, Theorem 1] which involves the second-order integral modulus of smoothness defined, for \(f \in L^p([0,1]), 1 \leq p < +\infty\), as

\[
\omega_{2,p}(f,\delta) := \sup_{0 < t \leq \delta} \|f(\cdot + t) - 2f(\cdot) + f(\cdot - t)\|_p \quad (\delta > 0).
\]

We define

\[
\beta_{n,p,\tau} := \frac{1}{(n+1)\sqrt{K}} \times \left\| \sqrt{\tau'} \left\{ (n-1)\tau(1-\tau) + (1-a_n-b_n)\tau + \frac{b_n^2 + a_nb_n + a_n^2}{3} \right\} \right\|_{p}^{1/2}
\]

and

\[
\gamma_{n,p,\tau} := \frac{1}{(n+1)^{2p/(2p+1)}K^{p/(2p+1)}}
\]

\[
\times \left\| \tau' \left\{ (n-1)\tau(1-\tau) + (1-a_n-b_n)\tau + \frac{b_n^2 + a_nb_n + a_n^2}{3} \right\} \right\|_{p}^{(2p+1)},
\]

where \(K\) is the strictly positive constant in (4.18). Then we can state the following result.

Proposition 4.3. Under the hypotheses of Theorem 4.3, for every \(p \in [1, +\infty]\) there exists \(C_p > 0\) such that, for every \(f \in L^p([0,1])\) and for \(n\) sufficiently large,

\[
\|C_n^\tau(f) - f\|_p \leq C_p(\alpha_{n,p,\tau}^2 \|f\|_p + \omega_{2,p}(f,\alpha_{n,p,\tau}))
\]

where \(\alpha_{n,p,\tau} = \max\{\beta_{n,p,\tau}, \gamma_{n,p,\tau}\} \).
Proof. First we introduce the following auxiliary functions:

\[F^\tau_n(x) := C^\tau_n(x_\tau)(x), \quad G^\tau_n(x) := C^\tau_n(x_\tau^2)(x), \quad x \in [0, 1], n \geq 1. \]

Hence, the result in [16] applied to the uniformly bounded sequence \((C^\tau_n)_{n \geq 1}\) yields that there exists a constant \(C_p > 0\) such that

\[\|C^\tau_n(f) - f\|_p \leq C_p(\mu_{n,p}^2 \|f\|_p + \omega_{2,p}(f, \mu_{n,p})), \]

where the sequence \(\mu_{n,p} \to 0\) as \(n \to \infty\) and it is defined as follows:

\[
\mu_{n,p} := \max \left\{ \|C^\tau_n(1) - 1\|_p^{1/2}, \|F^\tau_n\|_p^{1/2}, \|G^\tau_n\|_p^{p/(2p+1)} \right\}
\]

By Cauchy-Schwarz inequality we have

\[|F^\tau_n|^p \leq (\sqrt{G^\tau_n})^p, \]

so

\[\mu_{n,p} \leq \max \left\{ \|\sqrt{G^\tau_n}\|_p^{1/2}, \|C^\tau_n\|_p^{p/(2p+1)} \right\}. \]

From (4.21) it follows that \(\|\sqrt{G^\tau_n}\|_p^{1/2} \leq \beta_{n,p,\tau}\) and \(\|G^\tau_n\|_p^{p/(2p+1)} \leq \gamma_{n,p,\tau}\) (see (4.25) and (4.26)). Moreover,

\[\gamma_{n,p,\tau} \leq \frac{\|\tau\|^p/(2p+1)}{(n+1)^{2p/(2p+1)}K^{p/(2p+1)}(n+1)^{p/(2p+1)}} = \frac{\|\tau\|^p/(2p+1)}{(n+1)^{p/(2p+1)}K^{p/(2p+1)}} \to 0 \quad \text{as} \quad n \to \infty. \]

Similarly,

\[\beta_{n,p,\tau} \leq \frac{\|\sqrt{\tau}\|_\infty^{1/2}}{(n+1)^{1/4} \sqrt{K}}(n+1)^{1/4} = \frac{\|\sqrt{\tau}\|_\infty^{1/2}}{(n+1)^{3/4} \sqrt{K}} \to 0 \quad \text{as} \quad n \to \infty. \]

Therefore, setting \(\alpha_{n,p,\tau} = \max\{\beta_{n,p,\tau}, \gamma_{n,p,\tau}\}\), we have that \(\alpha_{n,p,\tau} \to 0\) as \(n \to \infty\) and this completes the proof.

\[\square \]

5. Asymptotic formula for the \(C^\tau_n\)'s

In this section we establish an asymptotic formula for the operators \(C^\tau_n\), which, in addition, allows us to derive other properties of them. To this end, from now assume that

\[(5.27) \quad \lim_{n \to \infty} (a_n + b_n) \in \mathbb{R} \]

and consider the differential operator \((V_l, C^2([0, 1]))\) defined by setting

\[V_l(u)(x) := \frac{1}{2}x(1-x)u''(x) + \left(\frac{l}{2} - x \right) u'(x), \]

\((u \in C^2([0, 1]), x \in [0, 1])\).
Theorem 5.4. Assume that (5.27) holds true. Then, for each \(f \in C([0, 1]) \), twice differentiable at a certain \(x \in]0, 1[\),

\[
\lim_{n \to \infty} n(C_n^\tau(f)(x) - f(x)) = \frac{\tau(x)(1 - \tau(x))}{2} D_\tau^2(f)(x) + \left(\frac{l}{2} - \tau(x) \right) D_\tau(f)(x)
\]

(5.28)

Moreover, for every \(u \in C^2([0, 1]) \)

\[
\lim_{n \to \infty} n(C_n^\tau(u) - u) = V_l(u \circ \tau^{-1}) \circ \tau
\]

uniformly in \([0, 1]\).

Proof. In [5, Theorem 3.1] it was proven that

\[
\lim_{n \to \infty} n(C_n(u) - u) = V_l(u),
\]

for every \(u \in C^2([0, 1]) \) uniformly on \([0, 1]\), but it is easy to prove that the same limit relationship holds pointwise for each \(f \in C([0, 1]) \), twice differentiable at a certain \(x \in]0, 1[\). From this, formulas (5.28) and (5.29) easily follow. \(\square \)

5.1. An application to iterates of the operators \(C_n^\tau \). In this subsection we show how iterates of operators \(C_n^\tau \) can be employed in order to approximate constructively certain semigroups of operators. For unexplained terminology concerning Semigroup Theory and its connection with Approximation Theory, we refer, e.g., to [6, Chapter 2].

We begin by recalling that, as shown in [5, Theorem 3.2] the operator \((V_l, C^2([0, 1]))\) is closable and its closure generates a Markov semigroup \((T_l(t))_{t \geq 0}\) on \(C([0, 1]) \) such that, if \(t \geq 0 \) and if \((\rho_n)_{n \geq 1}\) is a sequence of positive integers such that \(\lim_{n \to \infty} \rho_n/n = t \), then

\[
\lim_{n \to \infty} C_n^{\rho_n}(f) = T_l(t)(f) \quad \text{uniformly on } [0, 1]
\]

for every \(f \in C([0, 1]) \), where \(C_n^{\rho_n} \) denotes the iterate of \(C_n \) of order \(\rho_n \).

Moreover (see [5, Theorem 3.4, Remark 3.5,1]), if either \(a_n = 0 \) and \(b_n = 1 \) for every \(n \geq 1 \), or the following properties hold true

\begin{enumerate}
 \item \(0 < b_n - a_n < 1 \) for every \(n \geq 1 \);
 \item there exist \(\lim_{n \to \infty} a_n = 0 \) and \(\lim_{n \to \infty} b_n = 1 \);
 \item \(M_1 := \sup_{n \geq 1} n(1 - (b_n - a_n)) < +\infty \),
\end{enumerate}

for every \(p \geq 1 \), \((T_l(t))_{t \geq 0}\) extends to a positive \(C_0\)-semigroup \((\tilde{T}(t))_{t \geq 0}\) on \(L^p([0, 1]) \) such that, if \((\rho_n)_{n \geq 1}\) is a sequence of positive integers such that \(\lim_{n \to \infty} \rho_n/n = t \), then for every \(f \in L^p([0, 1]) \),

\[
\lim_{n \to \infty} C_n^{\rho_n}(f) = \tilde{T}(t)(f) \quad \text{in } L^p([0, 1]).
\]

We remark that, for every \(f \in C([0, 1]) \) and \(k \geq 1 \),

\[
(C_n^\tau)^k(f) = C_n^k(f \circ \tau^{-1}) \circ \tau.
\]

From this we get the following result.

Theorem 5.5. Under assumption (5.27), for every \(f \in C([0, 1]) \), \(t \geq 0 \) and for every sequence \((\rho_n)_{n \geq 1}\) of positive integers such that \(\lim_{n \to \infty} \rho_n/n = t \),

\[
\lim_{n \to \infty} (C_n^\tau)^{\rho_n}(f) = T_l(t)(f \circ \tau^{-1}) \circ \tau \quad \text{uniformly on } [0, 1].
\]
Moreover, assume that either \(a_n = 0 \) and \(b_n = 1 \) for every \(n \geq 1 \), or the following properties hold true:

(i) \(0 < b_n - a_n < 1 \) for every \(n \geq 1 \);
(ii) there exist \(\lim_{n \to \infty} a_n = 0 \) and \(\lim_{n \to \infty} b_n = 1 \);
(iii) \(M_1 := \sup_{n \geq 1} n(1-(b_n-a_n)) < +\infty \).

Then, if \(t \geq 0 \) and \(\rho_n/n \geq A \) is a sequence of positive integers such that \(\lim_{n \to \infty} \rho_n/n = t \), then for every \(f \in L^p([0,1]) \),

\[
\lim_{n \to \infty} (C_n^\tau)^{\rho_n}(f) = \tilde{T}(t)(f \circ \tau^{-1}) \circ \tau \quad \text{in } L^p([0,1]).
\]

5.2. Comparing the operators \(C_n^\tau \) and \(C_n \). The asymptotic formula (5.28) can be also used to prove that, under suitable conditions, the operators \(C_n^\tau \) perform better than the operators \(C_n \) in approximating certain functions. In fact, arguing as in the proof of [10, Theorem 9], we are able to show the following result.

Theorem 5.6. Let \(f \in C^2([0,1]) \) and assume that there exists \(n_0 \in \mathbb{N} \) such that, for every \(n \geq n_0 \) and \(x \in]0,1[\),

\[
f(x) \leq C_n^\tau(f)(x) \leq C_n(f)(x).
\]

Then, for \(x \in]0,1[\),

\[
f''(x) \geq \frac{\tau''(x)}{\tau'(x)} f'(x) + \frac{\tau'(x)(2\tau(x) - l)}{\tau(x)(1 - \tau(x))} f'(x)
\]

\[
\geq \left(1 - \frac{x(1-x)\tau'(x)^2}{\tau(x)(1 - \tau(x))} \right) f''(x) + \frac{\tau'(x)^2(2x - l)}{\tau(x)(1 - \tau(x))} f'(x).
\]

In particular, \(f'' \geq 0 \) in \(]0,1/2[\) (resp., in \(]1/2,1[\)) whenever \(f \) is decreasing in \(]0,1/2[\) (resp., \(f \) is increasing in \(]1/2,1[\)).

Conversely, assume that at a given point \(x_0 \in]0,1[\), (5.30) holds with strict inequalities. Then there exists \(n_0 \in \mathbb{N} \) such that, for every \(n \geq n_0 \),

\[
f(x_0) < C_n^\tau(f)(x_0) < C_n(f)(x_0).
\]

Example 5.1. Take

\[
\tau = \frac{e_2 + \alpha e_1}{1 + \alpha} \quad (\alpha > 0)
\]

and suppose that \(f \in C^2([0,1]) \) is increasing and strictly convex.

Moreover, assume that the sequences \((a_n)_{n \geq 1} \) and \((b_n)_{n \geq 1} \) are such that \(l = \lim_{n \to \infty} (a_n + b_n) = 2 \).

We show that there exist \(x_\alpha \in]0,1[\) and \(n_0 \in \mathbb{N} \) such that, for each \(x \in]x_\alpha,1[\) and \(n \geq n_0 \),

\[
f(x) < C_n^\tau(f)(x) < C_n(f)(x).
\]

On account of Theorem 5.6, it is sufficient to prove that there exists \(x_\alpha \in]0,1[\) such that, for \(x \in]x_\alpha,1[\),

\[
f''(x) > \frac{\tau''(x)}{\tau'(x)} f'(x) + \frac{\tau'(x)(2\tau(x) - 2)}{\tau(x)(1 - \tau(x))} f'(x)
\]

\[
> \left(1 - \frac{x(1-x)\tau'(x)^2}{\tau(x)(1 - \tau(x))} \right) f''(x) + \frac{\tau'(x)^2(2x - 2)}{\tau(x)(1 - \tau(x))} f'(x).
\]

The first inequality in (5.31) is satisfied for \(\alpha > 2f''(1)/M \), where \(M = \min_{[0,1]} f''(x) \). Indeed, for this choice,

\[
f''(x) > \frac{2}{2x + \alpha} f'(x) > \frac{2}{2x + \alpha} f'(x) - 2 \frac{2x + \alpha}{x^2 + \alpha x} f'(x), \quad x \in]0,1[.
\]
The second inequality in (5.31) is obviously fulfilled for those \(x \) for which

\[
\frac{x(1-x)\tau'(x)^2}{\tau(x)(1-\tau(x))} \geq 1
\]

and

\[
\frac{\tau''(x)}{\tau'(x)} > 2\frac{\tau'(x)^2}{\tau(x)(1-\tau(x))}\left(x - 1 - \frac{\tau(x) - 1}{\tau'(x)}\right).
\]

From one hand (5.32) is verified for \(x \in [y_\alpha, 1] \) where

\[
y_\alpha := \frac{1 - 2\alpha + \sqrt{4\alpha^2 + 8\alpha + 1}}{6}
\]

(see [10, Corollary 11, (iii)]). On the other hand (5.33) is equivalent to solve (with respect to \(x \)) the following inequality:

\[
g_\alpha(x) := (x^2 + \alpha x)(1 + x + \alpha) - (2x + \alpha)^2(1 - x) > 0.
\]

By observing that \(g_\alpha(0) < 0, g_\alpha(1) > 0, \) and evaluating the critical points of \(g_\alpha \) and their position within the interval \([0, 1]\) depending on \(\alpha > 0 \), we can conclude that, for every \(\alpha > 0 \), there exists \(z_\alpha \in [0, 1] \) such that \(g_\alpha(z_\alpha) = 0 \) and \(g_\alpha(x) > 0 \) for every \(z_\alpha < x \leq 1 \). By setting \(x_\alpha = \max\{y_\alpha, z_\alpha\} \) (\(\alpha > 2f'(1)/M \)), we get the claim.

We point out that, in the case \(\alpha = 0, \tau = e_2 \) and the corresponding operators \(C_n^\tau \) are a Kantorovich-type modification on mobile intervals of the operators in [10, p. 159]. On the other hand, \(\tau_\infty = \lim_{\alpha \to +\infty} \tau = e_1 \) uniformly w.r.t. \(x \in [0, 1] \), so that \(C_n^{\tau_\infty} = C_n \) for any \(n \geq 1 \).

Aknowledgements.
The authors acknowledge the support of “INdAM GNAMPA Project 2019 - Approssimazione di semigruppi tramite operatori lineari e applicazioni”.
The authors wish also to thank the anonymous referees for their careful reading of the manuscript and their comments and suggestions.

References

UNIVERSITY OF BARI
DEPARTMENT OF MATHEMATICS
VIA E. ORABONA, 4, BARI, ITALY
Email address: mirella.cappellettimontano@uniba.it

UNIVERSITY OF BASILICATA
DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE AND ECONOMICS
VIALE DELL’ATENEO LUCANO 10, POTENZA, ITALY
Email address: vita.leonessa@unibas.it