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MACWILLIAMS IDENTITIES OVER SOME SPECIAL POSETS*

SEDA AKBIYIK AND İRFAN SİAP

Abstract. In this paper we introduce a level weight enumerator for linear
binary codes whose index set is a forest. This weight enumerator gives most of
the weight enumerators as a special case by specializing its variables. We prove
a MacWilliams identity for this weight enumerator over this special family
of posets which also generalizes the previous results in literature. Further,
both the code and its dual are considered over this family of posets using
the definition of this weight enumerator which was not possible before. We
conclude by an illustrative example and some remarks.

1. Introduction

Coding theory has found a well recognised place in the digital era that we are
in. It has found applications in transmitting and restoring the digital messages.
Encoding and decoding these messages in an effi cient way depends on the structure
of the codes. To accomplish this goal codes are defined as linear structures i.e.
vector subspaces and endowed with a particular metric that serves as measuring the
distances between the vectors in order to detect and correct errors. Linear codes first
and mainly are considered with the Hamming metric [4]. Later, codes over different
metrics due to their applications and purposes are considered. The problem of
determining the minimum distance d of codes, i.e. error correcting capacity of codes,
was generalized by Neiderreiter [7, 8]. A metric which is called poset (partially
ordered set) metric on codes is first considered by Brualdi et. al. [6]. This metric
is a very important generalization of the metrics and especially it generalizes the
well known and most important metrics such as the Hamming and Rosenbloom-
Tsfasmann (RT) [5] metrics. Due to this generalization studying codes over this
metric has attracted the researchers. However, since it is a generalization the
problems are diffi cult to solve with respect to this metric. One of the main problems
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is to establish a MacWilliams identity with respect to this metric. This identity
enables us to explicitly determine the weight enumerator of its dual algebraically
by applying a specific change of variables to the weight enumerator of the original
code. The importance becomes more evident when the dimension of the code is too
large and hence the dimension of its dual can be very small if the length of the code
has a reasonable size which is the case in general. The problem of establishing a
MacWilliams identity with respect to a poset metric has been a challenging problem
at first. The first attempts of establishing such identities have failed when the
researchers considered the same metric for both the code and its dual which has
been the case with all previous metrics. In order to overcome this diffi culty on
poset metrics, the dual of the code is considered over the dual poset and hence
a different but a similar metric for the dual space is introduced [2]. Even with
this modification it has also shown that not all posets are suitable for obtaining
a MacWilliams identity. Some more work on posets and MacWilliams identity is
done in [6, 8, 10]. It is proven that the family of hierarchical posets which is a very
small family of posets is the only one suitable for this purpose [2]. The authors have
introduced a new and more detailed weight enumerator called P-complete weight
enumerator to overcome this problem very recently [1]. Therein it is shown that
if such a weight enumerator is defined then MacWilliams identity can be obtained
and further the dual code is considered over the same metric. The work in [1] is
done over a special family of posets, so called discrete chain poset, and this family is
different from hierarchical posets. Here, the authors introduce a new level complete
weight enumerator which is defined over posets that are represented by forests and
the previous results are obtained as a corollary.
The main advantage of defining level complete weight enumerator for codes over

posets is that not only we obtain the MacWilliams identity over a considerably
large family of posets but further we use the same metric for both the code and its
dual which is a new contribution to the literature.
In order to prove the MacWilliams Identity for codes over forests, in the following

section we present the basics for binary codes and graph theory that is needed to
define the posets presented by the forests. In the next section, we present the
definition of level complete weight enumerator over posets represented by forests
and present some well known auxiliary lemmas that play an important role in the
proof of the main theorem. Next we present a moderate example that illustrates
the main theorem. We finalize the paper by some concluding remarks.

2. Preliminaries

Let Z2 = {0, 1} denote the set of integers modulo 2, which is well known to be
a finite field with 2 elements, and V = Zn2 . The set V is a Z2-vector space. A
Z2 -vector subspace of V is called a linear code of length n. The inner product of
two vectors v = (v1, . . . , vn) and u = (u1, . . . , un) defined over V is a Z2 -valued
function which is 〈v, u〉 =

∑n
i=1 viui. To each linear code C of length n a linear code
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C⊥ = {v ∈ V |〈v, u〉 = 0, for all u ∈ C} can be associated. The linear code C⊥ is
called the dual of C. The Hamming distance between two vectors v = (v1, . . . , vn)
and u = (u1, . . . , un) is defined by dH(v, u) = |{i|vi 6= ui}. It is well known that
dH is a metric on V. Another important notation for codes is the Hamming weight
of a vector v ∈ V which is wH(v) = |{i|vi 6= 0}|. The minimum Hamming distance
of a linear code C is dmin(C) = dH(C) = min{dH(u, v)|∀u, v ∈ C, u 6= v} . Also the
Hamming weight of a code C is wH(C) = min{wH(u)|∀u ∈ C, u 6= 0}. When the
code is linear which is the case in this article, dH(C) = wH(C). A linear binary
code of length n, dimension k and minimum Hamming distance d is simply denoted
by [n, k, d]. These three parameters play a crucial role for defining a linear code.
Especially the Hamming distance d of a code reveals the quality of the code as
shown in the following theorem.

Theorem 2.1. [4] If C is a linear code of Hamming distance d = 2t+1 or d = 2t+2,
then C can correct up to t errors.

The interested readers for a more detailed treatment of this subject are welcome
to refer to [4, 9, 3].
Let (P,≤) be a partially ordered set of cardinality n. A subset I of P is called an

ideal if x ∈ I and y ≤ x imply that y ∈ I . For a subset A of the poset P , 〈A〉 will
denote the smallest ideal of P containing A. We assume that P = {1, 2, 3 . . . , n}
and the coordinate positions of vectors in Z2n are in one-to-one correspondence
with the elements of P . Let x = (x1, x2 . . . , xn) be a vector in Z2n . The P−
weight of x is defined as the cardinality wP (x) = |〈supp(x)〉| of the smallest ideal of
P containing the support of x, where supp(x) = {i ∈ P : xi 6= 0}. The P− (poset)
distance of the elements x, y ∈ Z2n is defined as dP (x, y) = wP (x− y).
If P is an antichain in which no two elements are comparable, then the P−

weight and the P− distances reduce to the Hamming weight and the Hamming
distance, respectively. If P consists of a single chain, then P− weight and P−
distance are Rosenbloom Tsfasmann (RT) weight and RT distance. It is known
that the P− distance dP (., .) is a metric on Z2n. The metric dP (., .) on Z2n is
called a poset-metric. If Z2n is endowed with a poset-metric, then a subset C of
Z2n is called a poset-code. If the poset-metric corresponds to a poset P , then C is
called a P− code.
Next, we present some basic definitions from graph theory that will be needed

in the next section.

Definition 2.2. A graph G = (T,E) is defined by a finite nonempty set T which
is called the set of vertices and a finite set E which is called the set of edges which
is a subset of V × V. In general a graph is represented by a diagram consisting of
points (vertices) joined by lines (edges).

If (a, b) ∈ E, then we say that an edge between the vertices a and b exits. If
we employ a direction from a to b, then the graph is called a directed otherwise
undirected. In the case of the directed graphs, geometrically when drawing them,
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along the edges an arrow that points the direction is used. In this paper all graphs
are assumed to be undirected.

Definition 2.3. If all vertices in a graph are connected to each other by at least
one edge, then the graph is called a connected graph. Otherwise it is called non-
connected.

Some families of graphs induce posets by defining a natural relation between the
vertices. An important family of connected graphs is the hierarchical poset (Figure
1). A graph that consists of disjoint union of chains (Figure 2) induces a poset
called a discrete chain poset which is an example for a non connected graph.

FIGURE 1. A poset

FIGURE 2. A discrete chain poset.

Definition 2.4. In a graph G a sequence of k connected edges is called a walk of
length k. If starting and the final vertex are the same, then the walk is called a
closed walk. In a walk if every edge is different, then the walk is a trace. Also, if
all vertices are different too, then the trace is called a road. In a closed walk if all
edges are different, then the walk is called a closed trace. Also, if all vertices are
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different too, then it is called a cycle. A connected graph, without a cycle is called
a tree. An example of a tree is given in Figure 3.

FIGURE 3. A tree

Definition 2.5. A forest is a disjoint union of trees (Figure 4). The levels on the
forests are defined as the number of edges (distance) from the root (upside down-
preferred for convenience here). So, in each tree we have level one vertices that are
one edge of distance from the roots and level two ones that are two edges apart
from the roots, and so on.

In Figure 4, the level one vertices are {1, 2, 3}. The level two vertices are {4, 5, 6, 7}.
The level three vertices are {8, 9}.

FIGURE 4. A forest

3. Level Weight Enumerator and The MacWilliams Identity

In this section we define the level weight enumerator and prove a MacWilliams
identity. First we define necessary notations and terms and present some auxiliary
statements.

Definition 3.1. [2, 5, 10] Let C be a linear P-code of length n.The poset weight
enumerator of C is defined by WC,P (x) =

∑
u∈C x

wP (u) =
∑n

i=0Ai,Px
i, where

Ai,P = |{u ∈ C | wP (u) = i}|.
Example 3.2. [2] Let P = {1, 2, 3} be a poset with order relation 1 < 2 <
3. Consider the binary linear P- codes C1 = {000, 001} and C2 = {000, 111}.
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Then the poset weight enumerator of C1 and C2 is given by WC1,P (x) = 1 +
x3 = WC2,P (x). The dual codes of C are C1 = {000, 100, 010, 110} and C2 =
{000, 110, 101, 011}, respectively. The P- weight enumerators of the dual codes are
given by WC1⊥,P (x) = 1 + x+ 2x

2 and WC2⊥,P (x) = 1 + x
2 + 2x3 .

Definition 3.3. Let P be a poset which has n vertices, s levels, and C be a binary
linear code defined on the poset P . Such a code is referred to as a P− code. Then
the level complete weight enumerator of C is defined as

WC,P (z1, z2 . . . , zs) =
∑
u∈C

s∏
i=1

z
wH(ui)
i

where ui denotes the index part of the codeword which is in the i th level of the
code.

Example 3.4. Consider the poset codes C1 and C2 in Example 3.2 with the same
poset P. According to the Definition 3.3 the P- level weight enumerator of these
codes are given by WC1,P (z1, z2, z3) = 1 + z3 and WC2,P (z1, z2, z3) = 1 + z1z2z3.
The level weight enumerators of the dual codes are given by WC1⊥,P (z1, z2, z3) =
1 + z1 + z2 + z1z2, and WC2⊥,P (z1, z2, z3) = 1 + z1z2 + z1z3 + z2z3.

Definition 3.5. Let F be a forest which has k trees, n vertices and s levels, and
C be a binary linear code defined on the forest F . Such a code is referred to as a
P− code. Then the level complete weight enumerator of C is defined as

WC,F (z
(1)
1 . . . , z(1)s . . . , z

(k)
1 . . . , z(k)s ) =

∑
u∈C

k∏
j=1

s∏
i=1

(zji )
wH(u

(j)
i )

where z(j)i denotes the index part of the codeword which is in the j th level of the
i th tree.
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FIGURE 5. The forest F

Example 3.6. Let C = {00000, 10110, 01011, 11101} be a P−code on forest F
shown in Figure 5 which has two 1-leveled trees and a 2-leveled tree. Then the level
complete weight polynomial of C on forest F is

WC,F (z
(1)
1 , z

(1)
2 , z

(1)
3 , z

(2)
3 ) = 1 + z

(1)
1 z

(1)
3 z

(2)
3 + z

(1)
2 (z

(2)
3 )2 + z

(1)
1 z

(1)
2 z

(1)
3 z

(2)
3 .

To prove the main theorem, we present the following auxiliary lemmas whose
proofs can be found in [4].

Lemma 3.7. [4] Let C be a binary linear code of length n and χu(v) = (−1)〈u,v〉
for every u, v ∈ C. For a fixed v, if v /∈ C⊥, then∑

u∈C
χu(v) = 0

and if v ∈ C⊥, then ∑
u∈C

χu(v) = |C|.

Lemma 3.8. [4] Let C be a binary linear code of length n and
f : Zn2 −→ C[z1, z2 . . . , zs] be a function. Then,∑

v∈C⊥

f(v) =
1

|C|
∑
u∈C

f̃(u),

where
f̃(u) =

∑
v∈Zn2

(−1)〈u,v〉f(v)

for all u ∈ Zn2 .
Theorem 3.9. If C is a P− code on a forest F composed by k trees, n vertices
and s levels and C⊥ is the dual code of C, then

WC⊥,F (z
(1)
1 . . . , z(1)s . . . , z

(k)
1 . . . , z(k)s )

=
1

|C|

k∏
j=1

s∏
i=1

(1 + zi)
n
(j)
i WC,F

(
1− z(1)1
1 + z

(1)
1

. . . ,
1− z(1)s
1 + z

(1)
s

. . . ,
1− z(k)1

1 + z
(k)
1

. . . ,
1− z(k)s

1 + z
(k)
s

)
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where the length of each part of u ∈ C in i th tree and level j is denoted by n(j)i .

Proof. In order to apply Lemma 3.8 we first define a function f that represents the
terms in the level weight enumerator such that

f(v) =(z
(1)
1 )wH(v

(1)
1 )(z

(1)
2 )wH(v

(1)
2 ) · · · (z(1)s )wH(v

(1)
s ) · · · (z(k)1 )wH(v

(k)
1 )(z

(k)
2 )wH(v

(k)
2 )

· · · (z(k)s )wH(v
(k)
s )

=

k∏
j=1

s∏
i=1

(z
(j)
i )wH(v

(j)
i ).

Then by Lemma 3.8,

f̃(u) =
∑
v∈Zn2

(−1)〈u,v〉f(v)

=
∑
v∈Zn2

(−1)〈u,v〉
k∏
j=1

s∏
i=1

(z
(j)
i )wH(v

(j)
i )

=
∑

v
(1)
1 ∈Zn

(1)
1

2

...
∑

v
(k)
s ∈Zn

(k)
s

2

(−1)
∑k

i=1

∑ni
j=1 u

(j)
i v

(j)
i

k∏
j=1

s∏
i=1

(z
(j)
i )wH(v

(j)
i )

=
∑

v
(1)
1 ∈Zn

(1)
1

2

...
∑

v
(k)
s ∈Zn

(k)
s

2

k∏
j=1

s∏
i=1

(−1)
∑k

i=1

∑ni
j=1 u

(j)
i v

(j)
i (z

(j)
i )wH(v

(j)
i )

=

k∏
j=1

s∏
i=1

(
∑

v
(j)
i ∈Z

n
(j)
i

2

(−1)
∑k

i=1

∑ni
j=1 u

(j)
i v

(j)
i (z

(j)
i )wH(v

(j)
i ))

=

k∏
j=1

s∏
i=1

(1 + z
(j)
i )n

(j)
i .

(
1− z(j)i
1 + z

(j)
i

)wH(u(j)i )

Again by using Lemma 3.8, we find that

∑
u∈C⊥

f(u) =
1

|C|
∑
u∈C

f̃(u) =
1

|C|

k∏
j=1

s∏
i=1

(1 + z
(j)
i )n

(j)
i

(
1− z(j)i
1 + z

(j)
i

)wH(u(j)i )

.

So we obtain

WC⊥,F (z
(1)
1 . . . , z(1)s . . . , z

(k)
1 . . . , z(k)s )

=
1

|C|

k∏
j=1

s∏
i=1

(1 + z
(j)
i )n

(j)
i WC,F

(
1− z(1)1
1 + z

(1)
1

. . . ,
1− z(1)s
1 + z

(1)
s

. . . ,
1− z(k)1

1 + z
(k)
1

. . . ,
1− z(k)s

1 + z
(k)
s

)
.
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�

Example 3.10. Let C be the linear code defined in Example ??. Then, by applying
Theorem 3.9 we can find the level complete weight enumerator of the dual code C⊥

on forest F as follows:

WC,F (z
(1)
1 , z

(1)
2 , z

(1)
3 , z

(2)
3 )

=
1

4
(1 + z

(1)
1 (1 + z

(1)
2 )(1 + z

(1)
3 )(1 + z

(2)
3 )2WC,F

(
1− z(1)1

1 + z
(1)
1

,
1− z(1)2

1 + z
(1)
2

,
1− z(1)3

1 + z
(1)
3

,
1− z(2)3

1 + z
(2)
3

)
= 1 + z

(1)
1 z

(1)
3 + z

(1)
1 z

(1)
2 z

(2)
3 + z

(1)
2 z

(2)
3 + z

(1)
2 z

(1)
3 z

(2)
3 + z

(1)
1 z

(1)
2 z

(1)
3 z

(2)
3 + z

(1)
1 (z

(2)
3 )2

+ z
(1)
3 (z

(2)
3 )2.

3.1. MacWilliams Identity on Trees. Now by taking k = 1 in a forest we obtain
a tree and similarly in (3.5), we obtain the level complete weight enumerator for
trees.

Definition 3.11. Let T be a tree which has n vertices and s levels, and C be
a binary linear poset code defined on a tree T . Then the level complete weight
enumerator of C is defined as

WC,T (z1, z2 . . . , zs) =
∑
u∈C

s∏
i=1

z
wH(ui)
i .

Corollary 1. If C is a P− code on n vertices and s levels of a tree T and C⊥ be
the dual code of C, then

WC⊥,T (z1, z2 . . . , zs) =
1

|C|

s∏
i=1

(1 + zi)
niWC,T

(
1− z1
1 + z1

. . . ,
1− zs
1 + zs

)
where the length of parts of u ∈ C in level i is denoted by ni.

Proof. Simply follows by taking k = 1 in Definition (3.5). �

FIGURE 6. The tree T
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Example 3.12. Let C = {00000, 10110, 01001, 11111} be a P− code on tree T in
figure 6 which has length 5 and 3 levels. Then the P− complete weight polynomial
of C on tree T is

WC,T (z1, z2 . . . , zs) = 1 + z1z2z3 + z2z3 + z1z
2
2z
2
3 .

So by applying Theorem 3.9 we can find the level complete weight enumerator
of C⊥ on the tree T ,

WC⊥,T (z1, z2, z3) =
1

4
(1 + z1)(1 + z2)

2(1 + z3)
2WC,T

(
1− z1
1 + z1

,
1− z2
1 + z2

,
1− z3
1 + z3

)

= 1 + z1z2 + z1z3 + 2z2z3 + z1z
2
2z3 + z1z2z

2
3 + z

2
2z
2
3 .

4. Conclusion

Here we define a level weight enumerator for binary codes whose index set is
over a forest which falls into family of poset codes. This definition enabled us to
establish the MacWilliams Identity for both the code and its dual code over the
same metric. This was shown to be impossible if the weight enumerator is defined
in a different way by researchers in the literature [2]. Poset codes in general are
more diffi cult to study because they generalize many metrics including the most
important ones such as Hamming and Rosenbloom-Tsfasmann. This new approach
is believed that will attract many researchers to study it further.
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