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THE QUENCHING BEHAVIOR OF A PARABOLIC SYSTEM

BURHAN SELCUK

Abstract. In this paper, we study the quenching behavior of solution of a
parabolic system. We prove finite-time quenching for the solution. Further,
we show that quenching occurs on the boundary under certain conditions.
Furthermore, we show that the time derivative blows up at quenching time.
Finally, we get a quenching criterion by using a comparison lemma and we
also get a quenching rate.

1. Introduction

In this paper, we study the problem for the following parabolic system:

ut = uxx + (1− v)
−p
, 0 < x < 1, 0 < t < T, (1)

vt = vxx + (1− u)
−q
, 0 < x < 1, 0 < t < T, (2)

with boundary conditions

ux (0, t) = 0 = ux (1, t) , 0 < t < T, (3)

vx (0, t) = 0 = vx (1, t) , 0 < t < T, (4)

and initial conditions

u (x, 0) = u0(x) < 1, v (x, 0) = v0(x) < 1, 0 ≤ x ≤ 1, (5)

where p, q are positive constants, and u0(x), v0 (x) are positive smooth functions
satisfying the compatibility conditions

u′0 (0) = v′0 (0) = u′0 (1) = v′0 (1) = 0.
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Throughout this paper, we also assume that the initial functions (u0, v0) satisfies
the inequalities

uxx(x, 0) + (1− v(x, 0))
−p

> 0, (6)

vxx(x, 0) + (1− u(x, 0))
−q

> 0, (7)

ux(x, 0) ≥ 0, (8)

vx(x, 0) ≥ 0. (9)

Our main purpose is to examine the quenching behavior of the solutions of problem
(1) − (5). The solution of the problem (1) − (5) is said to quench if there exists a
finite time T such that

lim
t→T−

max{u(x, t), v(x, t) : 0 ≤ x ≤ 1} → 1−.

From now on, we denote the quenching time of the problem (1)− (5) with T .

Since 1975, quenching problems with various boundary conditions have been
studied extensively (cf. the surveys by Chan [1, 2], Kirk and Roberts [13] and
by the authors of [3], [4], [5], [6], [7], [8],[11], [12], [15], [18]). There are many papers
about the quenching phenomenon for the solutions of nonlinear parabolic systems
([10], [14], [16], [19], [20]). In [9], Fu and Guo studied the blow-up phenomenon for
the solution of a nonlinear parabolic system. In [19], Zheng and Wang considered
the following problem

ut = ∆u− v−p, vt = ∆v − u−q, (x, t) ∈ Ω× (0, T ),

u = v = 1, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈
_
Ω,

where p, q > 0,Ω ∈ RN is a bounded domain with smooth boundary, and the
initial data satisfy u0, v0 ∈ C2(Ω)∩C1(

_
Ω), u0, v0 = 1 on ∂Ω, 0 < u0, v0 ≤ 1. They

obtained the suffi cient conditions for global existence and finite time quenching of
solutions, and then determined the blow-up time-derivatives and the quenching set.
Further, they obtained a simultaneous and non-simultaneous quenching criterion.
In [16], de Pablo et al. considered the following problem

ut = uxx − v−p, vt = vxx − u−q, (x, t) ∈ (0, 1)× (0, T ),

ux(0, t) = vx(0, t) = ux(1, t) = vx(1, t) = 0, t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ [0, 1]

where p, q > 0 and u0, v0 are positive, smooth and satisfy the compatibility condi-
tions u′0, v

′
0 ≥ 0, u′′0 − v

−p
0 , v′′0 − u

−q
0 < 0. They showed that x = 0 is the unique

quenching point and (ut, vt) blows up at quenching time. In [20], Zhou et al.
considered same problem. They show that the system exhibits simultaneous and
non-simultaneous quenching. In addition, they gave a natural condition for this
problem beyond quenching time T for the case of non-simultaneous quenching.
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In above examples, the authors considered quenching problems with singular
absorption terms −v−p,−u−q. Here, we would like to study a quenching problem
due to a singular reaction terms (1− v)

−p
, (1− u)

−q. This paper is organized as
follows. In Section 2, we first show that quenching occurs in finite time under the
conditions (6)− (7). Then, we show that the only quenching point is x = 1 under
the condition (8)− (9). Finally, we show that (ut, vt) blows up at quenching time.
In Section 3, we give a quenching criterion by using a comparison lemma and we
also get a quenching rate.

2. Quenching on the boundary and blow-up of (ut, vt)

In this section, we will investigate quenching set of the problem (1) − (5). Later,
we will prove that (ut, vt) blows up at quenching time.

Remark 1. If (u0, v0) satisfies (6) − (9), then we get ux, vx > 0 and ut, vt > 0 in
(0, 1) × (0, T ) by the maximum principle. Thus we get u(1, t) = max

0≤x≤1
u(x, t) and

v(1, t) = max
0≤x≤1

v(x, t).

Theorem 1. If (u0, v0) satisfies (6) − (7), then there exist a finite time T , such
that the solution (u, v) of the problem (1)− (5) quenches at time T .
Proof. Assume that (u0, v0) satisfies (6)− (7). Then there exist

w1 =

∫ 1

0

(1− v (x, 0))
−p
dx > 0,

w2 =

∫ 1

0

(1− u (x, 0))
−q
dx > 0.

Introduce a mass function;m1 (t) =

∫ 1

0

(1− u (x, t)) dx andm2 (t) =

∫ 1

0

(1− v (x, t)) dx,

0 < t < T . Then

m′1 (t) = −
∫ 1

0

(1− v (x, t))
−p
dx ≤ −w1,

m′2 (t) = −
∫ 1

0

(1− u (x, t))
−q
dx ≤ −w2,

by Remark 1. Thus, m1 (t) ≤ m1(0)−w1t and m2 (t) ≤ m2(0)−w2t; which means
that m1 (T0) = 0 or m2 (T0) = 0 for some T0 = min(m1(0)

w1
, m2(0)

w2
), (0 < T ≤ T0).

Thus, (u, v) quenches in finite time. �

Theorem 2. If (u0, v0) satisfies (8)− (9), then x = 1 is the only quenching point.
Proof. Define

J(x, t) = ux − ε (1− x) in [1− η, 1]× [τ , T ),
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where η ∈ (0, 1), τ ∈ (0, T ) and ε is a positive constant to be specified later. Then,

Jt − Jxx = p(1− v)−p−1vx > 0 in (1− η, 1)× (τ , T ),

since vx(x, t) > 0 in (0, 1] × (0, T ). Thus, J(x, t) cannot attain a negative interior
minimum by the maximum principle. Further, if ε is small enough, J(x, τ) > 0 since
ux(x, t) > 0 in (0, 1]× (0, T ). Furthermore, if ε is small enough,

J(1− η, t) = ux(1− η, t)− εη > 0,

J(1, t) = 0,

for t ∈ (τ , T ). By the maximum principle, we obtain that J(x, t) ≥ 0, i.e. ux ≥
ε (1− x) for (x, t) ∈ [1− η, 1]× [τ , T ). Integrating last inequality with respect to x
from x to 1, we have

u(x, t) ≤ u(1, t)− ε(1− x)2

2
≤ 1− ε(1− x)2

2
,

for x ∈ [1− η, 1]. So u does not quench in [0, 1). Similarly, we observe that v does
not quench in [0, 1). The theorem is proved. �

Theorem 3. (ut, vt) blows up at the quenching point x = 1.
Proof. Define

J1(x, t) = ut − ε (1− v)
−p in [0, 1]× [τ , T ),

J2(x, t) = vt − ε (1− u)
−q in [0, 1]× [τ , T ),

where τ ∈ (0, T ) and ε is a positive constant to be specified later. Then, J1(x, t) and
J2(x, t) satisfy

(J1)t − (J1)xx − p(1− v)−p−1J2 = εp(p+ 1)(1− v)−p−2v2x > 0

and
(J2)t − (J2)xx − q(1− u)−q−1J1 = εq(q + 1)(1− u)−q−2u2x > 0.

Thus, J1(x, t) and J2(x, t) cannot attain a negative interior minimum by the maxi-
mum principle for weakly coupled parabolic systems (cf. Theorem 15 of Chapter 3
in [17]). Further, if ε is small enough, J1(x, τ) > 0 and J2(x, τ) > 0. Furthermore,

(J1)x (0, t) = 0, (J1)x (1, t) = 0,

(J2)x (0, t) = 0, (J2)x (1, t) = 0,

for t ∈ (τ , T ). By the maximum principle, we obtain that J1(x, t) ≥ 0, i.e.

ut ≥ ε (1− v)
−p

for (x, t) ∈ [0, 1]× [τ , T ) and J2(x, t) ≥ 0, i.e.

vt ≥ ε (1− u)
−q

for (x, t) ∈ [0, 1]× [τ , T ). The theorem is proved. �
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3. A quenching criterion and a quenching rate

In this section, we will obtain a quenching criterion and a quenching rate. First,
we give a comparison lemma.

Lemma 1. a) If u0(x) ≥ v0(x) for x ∈ [0, 1] and p ≥ q, then u(x, t) ≥ v(x, t) in
[0, 1]× (0, T ),
b) If v0(x) ≥ u0(x) for x ∈ [0, 1] and q ≥ p, then v(x, t) ≥ u(x, t) in [0, 1]× (0, T ).
Proof. a) Define M(x, t) = u− v in [0, 1]× [0, T ). Then, M(x, t) satisfies

Mt −Mxx = (1− v)−p − (1− u)−q

= (1− v)−p − (1− u)−p + (1− u)−p − (1− u)−q

≥ −p(1− β)−p−1M

where β(x, t) lies between u(x, t) and v(x, t). Thus,M(x, t) cannot attain a negative
interior minimum by the maximum principle. Further,M(x, 0) ≥ 0 since u0 ≥ v0 for
x ∈ (0, 1). Furthermore,

Mx(0, t) = 0 = Mx(1, t)

for t ∈ (0, T ). By the maximum principle, we obtain that M(x, t) ≥ 0 in [0, 1] ×
(0, T ), i.e. u(x, t) ≥ v(x, t) in [0, 1]× (0, T ).
b) Similarly, we get v(x, t) ≥ u(x, t) in [0, 1] × (0, T ) since v0(x) ≥ u0(x) for x ∈
[0, 1] and for q ≥ p. �

Corollary 1. From statement of the problem (1)− (5), we show that

if lim
t→T−

v(1, t) = 1, then lim
t→T−

ut(1, t) =∞,

if lim
t→T−

u(1, t) = 1, then lim
t→T−

vt(1, t) =∞.

Then, from Theorem 3 and Lemma 1, we get
a) if v0(x) ≥ u0(x) for x ∈ [0, 1] and q ≥ p, then ut blows up at the quenching
point x = 1. Further, we get

ut(1, t) ≥ ε (1− v(1, t))
−p ≥ ε (1− u(1, t))

−p
.

So, integrating for t from t to T we get

u(1, t) ≤ 1− C1(T − t)1/(p+1)

where C1 = (ε(p+ 1))1/(p+1).
b) if u0(x) ≥ v0(x) for x ∈ [0, 1] and p ≥ q, then vt blows up at the quenching
point x = 1. Further, we get

vt(1, t) ≥ ε (1− u(1, t))
−q ≥ ε (1− v(1, t))

−q
.

So, integrating for t from t to T we get

v(1, t) ≤ 1− C2(T − t)1/(q+1)

where C2 = (ε(q + 1))1/(q+1).
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