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ON LORENTZIAN TRANS-SASAKTIAN MANIFOLDS

U.C. DE AND KRISHNENDU DE

ABSTRACT. The object of the present paper is to study the Trans-Sasakian
structure on a manifold with Lorentzian metric. Several interesting results are
obtained on the manifold. Also conformally flat Lorentzian Trans-Sasakian
manifolds have been studied. Next, in three- dimensional Lorentzian Trans-
Sasakian manifolds, explicit formulae for Ricci operator, Ricci tensor and
curvature tensor are obtained. Also it is proved that a three-dimensional
Lorentzian Trans-Sasakian manifold of type («, 8) is locally ¢- symmetric if
and only if the scalar curvature r is constant provided a and ( are constants.
Finally, we give some examples of three-dimensional Lorentzian Trans-Sasakian
manifold.

1. INTRODUCTION

Let M be an odd dimensional manifold with Riemannian metric g. It is well
known that an almost contact metric structure (¢, &,n) (with respect to g) can be
defined on M by a tensor field ¢ of type (1,1), a vector field £ and a 1- form 7.
If M has a Sasakian structure (Kenmotsu structure), then M is called a Sasakian
manifold (Kenmotsu manifold). Sasakian manifolds and Kenmotsu manifolds have
been studied by several authors.

In the classification of Gray and Hervella [8] of almost Hermitian manifolds there
appears a class, Wy, of Hermitian manifolds which are closely related to locally
conformally Kaehler manifolds. An almost contact metric structure (¢,&,n,g) on
M is Trans-Sasakian [17] if (M x R,J,G) belongs to the class Wy, where J is the
almost complex structure on M xR defined by

d d

J(X, f o) = (0X = f&,n(X) ),

for all vector fields X on M, f is a smooth function on M xR and G is the product
metric on M xR. This may be expressed by the condition [2]

(Vx@)Y = ag(X,Y)§ = n(Y)X) + B(g(6X,Y)§ = n(Y)¢X) (1.1)
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for smooth functions @ and 8 on M. Hence we say that the Trans-Sasakian structure
is of type (a,8). In particular, it is normal and it generalizes both a-Sasakian and
B-Kenmotsu structures. From the formula (1.1) one easily obtains

Vx& = —a(eX) + B(X —n(X)E). (1.2)

(Vxn)Y = —ag(¢X,Y) + Bg(¢X, ¢Y). (1.3)
In 1981, Janssens and Vanhecke introduced the notion of a- Sasakian and -
Kenmotsu manifolds where o and [ are non zero real numbers. It is known that
[6] Trans-Sasakian structures of type (0,0) , (0,8) and («,0) are cosymplectic ([1],
[2]), B - Kenmotsu ([6]) and a- Sasakian ([6]) respectively. The local structure of
Trans-Sasakian manifolds of dimension n > 5 has been completely characterized
by Marrero [10]. He proved that a Trans-Sasakian manifold of dimension n > 5
is either cosymplectic or a-Sasakian or § -Kenmotsu manifold. Trans-Sasakian
manifolds have been studied by several authors ([3], [4], [5],[11], [18]).
Let (z,v, 2) be cartesian co-ordinates in R3, then (¢, &, 7, g) given by

£=2 0= di—yds,

0z
0 -1 0 e+y: 0 —y
o | L 00 B 0 e 0
“lo —y o] 97 —y 0 1

is a Trans-Sasakian structure of type (3, 3) in R® [2]. In general, in a three-
dimensional K-contact manifold with structure tensors (¢, &, 7, g) for a non-constant
function f, if we define § = fg+ (1 — f)n ® n; then (4,&,n, g) is a Trans-Sasakian

structure of type (%, 3&(Inf)) [10].

Let M be a differentiable manifold. When M has a Lorentzian metric g, that
is, a symmetric non degenerate (0,2) tensor field of index 1, then M is called a
Lorentzian manifold. Since the Lorentzian metric is of index 1, Lorentzian man-
ifold M has not only spacelike vector fields but also timelike and lightlike vector
fields. This difference with the Riemannian case give interesting properties on the
Lorentzian manifold. A differentiable manifold M has a Lorentzian metric if and
only if M has a 1- dimensional distribution. Hence odd dimensional manifold is
able to have a Lorentzian metric.

Therefore, it is very natural and interesting idea to define both a Trans-Sasakian
structure and a Lorentzian metric on an odd dimensional manifold.

The paper is organized as follows. In Section 1, we give a brief account of
Lorentzian Trans-Sasakian manifolds. After preliminaries, some basic results are
given. In Section 4, we study conformally flat Lorentzian Trans-Sasakian manifolds.
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In the next section, explicit formulae for Ricci operator, Ricci tensor and curva-
ture tensor are obtained for three-dimensional Trans-Sasakian manifolds. Also it is
proved that a three-dimensional Lorentzian Trans-Sasakian manifold of type (a, )
is locally ¢- symmetric if and only if the scalar curvature r is constant provided
«a and ( are constants. Finally we construct some examples of three-dimensional
Lorentzian Trans-Sasakian manifolds.

2. LORENTZIAN TRANS-SASAKIAN MANIFOLDS

A differentiable manifold M of dimension (2n + 1) is called a Lorentzian Trans-
Sasakian manifold if it admits a (1, 1) tensor field ¢, a contravariant vector field &,
a covariant vector field  and the Lorentzian metric g which satisfy

n(§) = -1, (2.1)

¢’ =I+n®¢, (22)

9(¢X,0Y) = g(X,Y) + n(X)n(Y), (2.3)

9(X, &) = n(X), ¢§ = 0,n(¢X) = 0, (2.4)

(Vx )Y = a(g(X,Y)§ —n(Y)X) + B(g(¢X, Y)E —n(Y)9X), (2.5)

for all X,Y e T(M).
Also a Lorentzian Trans-Sasakian manifold M satisfies

Vx§ = —a(¢X) - BX +n(X)E), (2.6)

(Vxn)Y = ag(¢X,Y) + Bg(¢X, ¢Y), (2.7)

where V denotes the operator of covariant differentation with respect to the
Lorentzian metric g .

If @« = 0 and SBeR, the set of real numbers, then the manifold reduces to a
Lorentzian 5-Kenmotsu manifold studied by Funda Yaliniz, Yildiz, and Turan [20].
If =0 and acR, then the manifold reduces to a Lorentzian a- Sasakian manifold
studied by Yildiz, Turan and Murathan [21]. If « = 0 and § = 1, then the manifold
reduces to a Lorentzian Kenmotsu manifold introduced by Mihai, Oiaga and Rosca
[15]. Furthermore, if § = 0 and o = 1, then the manifold reduces to a Lorentzian
Sasakian manifold studied by Ikawa and Erdogan [15]. Also Lorentzian para contact
manifolds were introduced by Matsumoto [12] and further studied by the authors
([13],[14],[16]). Trans Lorentzian para Sasakian manifolds have been used by Gill
and Dube [7].
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3. SOME BASIC RESULTS

In this section, we prove some Lemmas which are needed in the rest of the
sections.

Lemma 3.1. In a Lorentzian Trans-Sasakian manifold, we have
RX, V)¢ = (®+B)(n(Y)X —n(X)Y)
+2aB8(n(Y)oX —n(X)oY) + (Ya)pX
~(Xa)pY + (YB)o* X — (XB)9"Y, (3.1)
where R is the curvature tensor.
Proof. We have
VxVy§ = Vx(—a(eY) =B +n(Y)S))
= —(Xa)gY —aVx(¢Y) — (XB)o’Y
—BVxY — B(Xn(Y))§ + afn(Y)opX
+870(Y)X + B2n(X)n(Y)E,

where (2.2) and (2.6) have been used. Hence, in view of the above equation and
(2.6), we get

R(X,Y){ = VxVy&—-VyVx{—Vixyi€
= —(Xa)oY + (Ya)pX —a((VxeY) — (VyoX))
—(XB)o*Y + (YB)¢*X — B((Vxn)Y — (Vyn)X)E
+aB(n(Y)eX —n(X)eY) + B2 (n(Y)X —n(X)Y),

which in view of (2.5) and (2.7) gives (3.1). O
Lemma 3.2. For a Lorentzian Trans-Sasakian manifold, we have
N(R(X,Y)Z) = (a® + 5%)(g(X, Z)n(Y) — (Y. Z)n(X). (3:2)
Proof. We have from (3.1),
IR(X,Y)E,2) = (@ +B)m(Y)9(X,Z) —n(X)g(Y, Z))

+20B8(n(Y)g(0X, Z) —n(X)g(¢Y, Z)) + (Ya)g(¢X, Z)
—(Xa)g(eY, 2) + (Y B)9(* X, Z) — (XB)9(67Y, Z),
Now interchanging ¢ and Z in the above equation, we get
—9(R(X,Y)Z,&) = (% +B*)(9(Y, Z2)n(X) = g(X, Z)n(Y))
+2af(n(Y)g(¢X, &) —n(X)g(eY; £)) + (Y)g(¢ X, €)
—(Xa)g(8Y,€) + (YB)g(6° X, €) — (XB)g(4°Y, £).
After simplification, we find,

9(R(X,Y)Z,€) = (a® + %) (9(X, Z)n(Y) — g(Y, Z)n(X)),
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which gives (3.2). O
Lemma 3.3. For a Lorentzian Trans-Sasakian manifold, we have

R(EY)E = (o + B2 = €8)¢°Y + (208 — £a)gY. (3.3)
Proof. Replacing X by £ in (3.1), we get (3.3). O

Lemma 3.4. In a (2n+ 1)- dimensional Lorentzian Trans-Sasakian manifold, we
have

S(X,6) = (2n(a® +5°%) = E8)n(X) + (2n — 1)(XP)
—(pX)a + ¢ (2apn(X) + Xa), (3-4)

Q¢ = (2n(a® + %) — €P)E + (2n — 1)gradf
—¢(grada) + ¥ (2aBE + grada), (3.5)

where S is the Ricci curvature and @ is the Ricci operator given by

2n+1

S(X,Y) =g(QX,Y) and ¢ =Y eg(dei,e;).

i=1
Proof. Let M be an (2n + 1)— dimensional Lorentzian Trans-Sasakian manifold.
Then the Ricci tensor S of the manifold M is defined by

2n+1
S(X,Y)= Z e;g(R(e;, X)Y,e;),
i=1
where €; = g(e;, e;),e; = £1. From (3.1), we have
2n+1 2n+1

S(X,8) = (2 +B)mX) Y gleieglee) — Y nleglei e)g(X, )]
i=1 =1
2n+1 2n+1
+2aB[n(X) Z glei,ei)g(opei, e;) — Z n(ei)g(ei, ei)g(¢X, e;)]
2n+1 - 2n+1 =
— > (ea)gleneg(8X,e) + Y (Xa)g(er, e)g(dei, )
i=1 =1
2n+1 2n+1
- Z (e:iB)g(ei,ei)g(¢° X, e;) + Z (XB)g(ei,ei)g(d’ese;)
= (2n(a® 4+ %) — EB)N(X) + (2n — 1)(XP)
—(¢X)a +¥(2apn(X) + Xa)

and hence from (3.4), we get (3.5). O
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Remark 3.5. If in a (2n + 1)- dimensional Lorentzian Trans-Sasakian manifold of
type (a, 8) we consider ¢(grada) = (2n — 1)gradf3, then

€5 = gl grads) = 5 g(€,o(grada))
= in_ {1(¢(grada)) =0
and
XB = g(X,gradB) = 2n1_ 9(X, ¢(grada))
= S g(0X, (grada)) = 5 (9X)a
and hence (3.4) and (3.5) are reduced to
S(X.€) = 2n(a? + FAIn(X) + ¥(208n(X) + Xa) (3.6)
and
Q¢ = (2n(a? + %) — EB)E + (208¢ + grada), (3.7)
respectively.

4. CONFORMALLY FLAT LORENTZIAN TRANS-SASAKIAN MANIFOLDS

In this section we consider conformally flat Lorentzian Trans-Sasakian manifold
M+ (¢,€,m,9) (n > 1). The conformal curvature tensor C is given by

C(X,Y)Z = R(X,Y)Z-— ﬁ[S(Y, Z)X — S(X,2)Y +g(Y, Z2)QX

r

—9(X, Z)QY] + @n)en—1)

where 7 is the scalar curvature of M.

For conformally flat manifold, we have C(X,Y)Z = 0 for n > 1 and hence from
(4.1) we have

ROCY,ZW) = 5 [S(Y, 2)g(X, W) = S(X, 2)g(¥, W)

+g(Yv Z)S(Xv W) —g(X, Z)S(Y, W)]
Y7 Z)g(X7 W) - g(X7 Z)g(Y, W)}v (4‘2)

“Een—1

where g(R(X,Y)Z,U) = R(X,Y, Z,U). Setting W = ¢ in (4.2) we get
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WRXY)Z) = L[SV Z2)n(X) - S(X, Z)n(Y)
(Y, 2)5(X.6) — g(X, 2)S(V,€)

_W[Q(K Zm(X) - g(X,Z)n(Y)].  (4.3)

Replacing Y by £ in (4.3) and using (3.2) and (3.6), we get

S(X,2) = [(@+8)(1 ~dn) + 3~ + (6o — 208)ulg(X, 2)
H(0? + 87)(1 = 6n) + 5 — daBvln(X)n(Z)

—(Z)(Xa) +n(X)(Za)l. (4.4)
This leads to the following:

Theorem 4.1. A conformally flat Lorentzian Trans Sasakian manifold M?"+1
(¢,€,m,9) (n > 1) is an n— Einstein manifold provided ) = trace¢ = o and
d(grada) = (2n — 1)gradp.

Corollary 1. A conformally flat Lorentzian 3— Kenmotsu manifold M>"*t (¢,&, 7, g)
(n > 1) is an n— Einstein manifold.

5. THREE- DIMENSIONAL LORENTZIAN TRANS- SASAKIAN MANIFOLDS

Since the conformal curvature tensor vanishes in a three-dimensional Riemannian
manifold, therefore we get

RX,Y)Z = g(Y,2)QX —g(X,Z)QY +S(Y,2)X — S(X,2)Y
5oV, 2)X — (X, 2)Y), (5.1)

where @ is the Ricci operator, that is, g(QX,Y) = S(X,Y) and r is the scalar
curvature of the manifold.

From Lemma 2.4, in a three- dimensional Lorentzian Trans-Sasakian manifold
we have

S(X,6) = (2(a®+5%) = Bm(X) + (XP)
—(pX)a + 9 (2apn(X) + Xa), (5.2)

Q¢ = (2(® + %) —€B)E + gradp
—p(grada) + ¥(2a8E 4+ grada). (5.3)
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Now, in the following theorem, we obtain an expression for Ricci operator in a
three-dimensional Lorentzian Trans-Sasakian manifold.

Theorem 5.1. In a three- dimensional Lorentzian Trans Sasakian manifold, the
Ricci operator is given by

QX = (5488 (o7 +5) +1(¢a - 208))X

+(5 +€B = 3 + %) — daBY)n(X)¢
—n(X)(gradf — ¢(grada) +(grada)) — (X8 = (6X)a +v(Xa))¢
+(2a8 — €a)pX. (5.4)

Proof. For a three- dimensional Lorentzian Trans Sasakian manifold, from (5.1)
and (5.2), we have

R(X,Y)E = n(Y)QX —n(X)QY
(5 +€8 = 2(a® + 57) — 2a8y)[Xn(Y) - Yn(X)]
+HYB = (#Y)a+ (Ya)9)X — (XB — ($X)a + (Xa))Y.(5.5)

In view of (3.1) and (5.5), we obtain

208(n(Y)6X —n(X)8Y) + (Ya)oX — (Xa)oY + (YA)$*X — (XB)¢”Y
= Y)QX —n(X)QY — (5 +€8— (o + B*) - 2a8u)
(V)X = n(X)Y]+ (VB — (6¥)a + (Ya)) X
~(XB — (#X)a + (Xa)p)Y.

Putting Y = £ in the above equation, we get (5.4) . O

Corollary 2. In a three- dimensional Lorentzian Trans Sasakian manifold, Ricci
tensor and curvature tensor are given respectively by

SOLY) = (5+E8—(a? +8%) +(¢a - 208))g(X,Y)

+(5 + €8 = 3(a + 8%) — 4aBY)n(X)n(Y)
)Y+ (@Y ) = p(Y )] = (V)X — (6X)ar + (Xa))
+(2a8 — £a)g(¢X,Y). (5.6)
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and
RX.Y)Z = (5+268 - 2(a” + 5) + 20 — 208))g(Y, 2)X — g(X, Z)Y]
+9(Y. 2)[(5 + 8 = (e + B) — dafu)n(X)¢
+0(X)(¢(grada) - ¥(grada) — grad) — (X5 - ($X)a + v(Xa))¢]
+9(X, 2)[(5 + €8 — 3(a + B) — 4aB)n(Y )€
(

+0(Y)(@(grada) = v(grada) — gradf) — (Y B = (Y o+ (Y a)¢]
(5 + 88— 3(a® + 5°) — daBu)n(Y )n(2)

F0(Y)(~28 + (9Z)a — ¥(Za)) = n(Z)(Y B~ (6 Jar + (Y )| X
~1(5 + €8 = 3(a* + 8%) — dapy)n(X)n(2)

0(X)(~ZB + (6Z)a —6(Za)) = n(Z)(XB — (6X)a + (XY
+(208 — €a)lg(6Y. 2)X — g(6X, 2)Y]. (5.7)

Equation (5.6) follows from (5.4). Using (5.4) and (5.6) in (5.1), the curvature
tensor in a three- dimensional Lorentzian Trans-Sasakian manifold is given by (5.7).

6. LOCALLY ¢- SYMMETRIC THREE-DIMENSIONAL LORENTZIAN
TRANS-SASAKIAN MANIFOLDS WITH trace ¢ =1 =0

The notion of locally ¢-symmetry was first introduced by T.Takahashi [19] on a
Sasakian manifold. In this paper we study locally ¢- symmetric three-dimensional
Lorentzian Trans-Sasakian manifolds.

Definition 6.1. A three-dimensional Lorentzian Trans-Sasakian manifold is said
to be locally ¢- symmetric if

P*(VwR)(X,Y)Z =0, (6.1)

where W, XY ,Z are horizontal vector fields, that is W,X,Y,Z are orthogonal to &.
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Let M be a three- dimensional Lorentzian Trans-Sasakian manifold with traceg
=1 = 0. Then its curvature tensor is given by

R(X,Y)Z = (5+268—2(a+B)[g(Y. 2)X — g(X, 2)Y]

+9(Y. 2)[(5 + €8 = 3(a* + B)m(X)¢

+1(X)(é(grada) - gradB) — (XB - ($X)a)¢]

+9(X, 2)[(5 + €6 — 3(a® + B)n(Y )¢

+1(Y)(6(grada) — grads) — (¥ 5 — (6 )a)¢]

(5 + €8 = 3(a? + B2)n(Y n(2)

1Y) (=28 + ($Za)) = n(Z)(Y B — (#Y )a)| X

—[(5 + 88 = 3(> + )X )m(2)

+0(X)(~Z8 + (6Za) = n(Z)(XB = (6X)a)]Y

+(208 — £a)[g(6Y, 2)X — g(6X, Z)Y]. (6:2)

Differentiating (6.2) we get

dr(W)
2

(VwR)(X,Y)Z = | +2(Vw (£P)) — A(de(W) + dB(W))]

0. 2)X ~ 9% 2)Y] + 9(v. 2P0 + (Vw(ed))
—6(da(W) + dB(W)(X)E + (5 + €8 - 3(a”

A7) ((Vwn)(X)E +n(X)(VwE))
+(Vwn)(X)(é(grada) — gradp) +n(X)(Vw (¢(grade) — gradp))
+(Vw (X8 = (0X)a))E + (X8 — (¢ X)) V]

9%, 2P0 4 (T (68) ~ 6(da(W) + dBW (Y )e

(5 + €8 = 3(e” + ) (Vun) (Y ) +n(Y) (V)
+(Vwn)(Y)(¢(grada) — grads) +n(Y) (Vw (6(grada) — grads))
+(Vi (Y8 = (6Y)a))E + (Y8 — (¢Y )a) Vir€]
Y [(Vw (Y8 = (6Y)a)n(2) + (Y B = (6Y)a)(Vwn)Z
+Vw(ZB = (62)a))n(Y) + (28 — (62)a)(Vwn)Y

dr(W)

—(=5— + (Vw(&B)) — 6(da(W) + dB(W)))n(Y)n(Z)
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(5 +8-3(a*+5%)
(Vwm)Yn(Z) +0(Y)(Vwn)Z)]
+X[(Vw (X8 = (¢X)a))n(Z) + (X8 — (¢ X)) (Vwn) Z
+Vw(ZB = (¢9Z)a))n(X) + (28 ( Z)e)(Vwn) X
() 4 (T (68) — 6(daW) + BV (X)n(2)
(5 +8-3(a* +5%)
(Vwm)Xn(Z) +n(X)(Vwn)Z)]
+2(Vw (af)) = (Vw (£a)))lg(¢Y, Z2) X — g(6X, Z)Y]. (6.3)
Suppose that o and  are constants and X,Y,Z,W are orthogonal to £. Then
using ¢ = 0 and (6.1), we get
dr (W)

O (VwR)(X,Y)Z = (—,

Ng(Y, 2)X - g(X, 2)Y]. (6.4)
Thus we can state the following:

Theorem 6.2. A three-dimensional Lorentzian Trans-Sasakian manifold of type
(o, B) is locally ¢- symmetric if and only if the scalar curvature r is constant pro-
vided o and 3 are constants.

7. EXAMPLES

Example 7.1: We consider the three-dimensional manifold M = {(z,y, 2)eR3, 2 #
0}, where (z,y, ) are standard co-ordinate of R?.
The vector fields

(D) ol 0
or Vo 277

are linearly independent at each point of M.
Let g be the Riemannian metric defined by

€1 =z

gle1,e3) = g(er,ea) = glez, e3) =0,

gler,e1) = glez, e2) = 1,g(es, e3) = —1.
Let 1 be the 1-form defined by n(Z) = g(Z, e3) for any Zex(M).
Let ¢ be the (1, 1) tensor field defined by

p(e1) = —e2, P(e2) = —e1, ¢(ez) = 0.
Then using the linearity of ¢ and g, we have
n(es) = —1,
0°Z = Z +n(Z)es,
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9(¢Z, W) = g(Z, W) +n(Z)n(W),

for any Z, Wex(M).

Then for es = £ , the structure (¢, £,n, g) defines an Lorentzian structure on M.

Let V be the Levi-Civita connection with respect to metric g and R be the
curvature tensor of g. Then we have

1 1
[e1, ea] = yea — 22es ,le1,es] = —;el and [es,e3] = —;62.

Taking e3 = £ and using Koszul formula for the Riemannian metric g, we can

easily calculate

1 1 1
2
Veleg = ——€1 + 762, Veleg = —=Z €3,

z z 2
1 1

2

Velel = —*63,V€2€3 = ——€2 + =z €1,

z z 2

1
2
Ve,e2 = yer — 68 Ve,e1 = 57 es —yea,

1 1
Veses3 =0, Veea = 52261, Ve,€1 = —52262.

From the above it can be easily seen that (¢, &, 7, g) is an Lorentzian Trans-Sasakian
structure on M.ConsequentlyM3(¢, &, 7, g) is an Lorentzian Trans-Sasakian mani-
fold with a= %2’2 #0and = % # 0.

Example 7.2: We consider the three-dimensional manifold M = {(z,y,z2) €
R3, 2 # 0}, where (z,y, ) are standard co-ordinate of R3.
The vector fields
0 0 9]

—, €2 =2z—, €3=2z—
oz’ ? oy’ ° 0z
are linearly independent at each point of M.

Let ¢g be the Riemannian metric defined by

€1 =z

gle1,e3) = gler, €2) = g(ea, e3) = 0,
gler,e1) = glez, e2) = 1,g(es, e3) = —1
that is, the form of the metric becomes
dz? + dy? — dz?
g=—"——.
z
Let ) be the 1-form defined by n(Z) = g(Z, e3) for any Zex(M).
Let ¢ be the (1,1) tensor field defined by

pler) = —ea, Ple2) = —e1, ¢(ez) =0.
Then using the linearity of ¢ and g, we have
n(es) = -1,
0°Z = Z +n(Z)es,
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9(62,0W) = g(Z, W) + n(Z)n(W),
for any Z, W € x(M).
Then for e3 = £ , the structure (¢, £,n, g) defines an Lorentzian structure on M.
Let V be the Levi-Civita connection with respect to metric g. Then we have

[61, 63] = €163 — €361
0 0 0 1o}
= 22 i — 22 i fzﬁ
o 0x0z 020z ox
= —€1.
Similarly
[e1,e2] =0 and [es,es] = —ea.

The Riemannian connection V of the metric g is given by
29(VxY,Z) = Xg(Y,2)+Yg(Z,X) - Zg(X,Y)
- g(X7[YvZ])_g(Y7 [X,Z])+Q(Z7 [va])7 (71)

which known as Koszul’s formula.
Using (7.1) we have

29(Ve,e3,e1) = —2g(e1,e1)
= 2g(—e1,e1). (7.2)
Again by (7.1)
2g(Ve,e3,e2) = 0=2g(—eq,€2) (7.3)
and
29(Ve,e3,€e3) =0 =2g(—e1,e3). (7.4)

From (7.2), (7.3) and (7.4) we obtain
29(V€1637X) - 29(7617X)a
for all Xex(M).

Thus
Ve, €3 = —ey.
Therefore, (7.1) further yields
Ve e3=—e1, Veea =0, Ve = —es,
Ve,3 = —€3, Ve,ea = —e€3, Ve =0,
Vese3 =0, Veea=0, Ve =0. (7.5)

(7.5) tells us that the manifold satisfies (1.3) for « = 0, 8 = 1 and £ = e3. Hence
the manifold is a Lorentzian Trans-Sasakian manifold of type (0,1). It is known
that

R(X,Y)Z =VxVyZ —VyVxZ =V xyZ. (7.6)
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With the help of the above results and using (7.6) it can be easily verified that

R(e1,ez)e3 =0, R(es,e3)es = —e2, R(eq,es)es = —ex,
R(e1,e2)es = —e1, R(ez,ez)ea = —e3, R(er,ez)es =0,
R(e1,ez)er = e2, R(ez,ez)er =0, R(eq,ez)er = —es.

From the expression of the curvature tensor it follows that the manifold is of con-
stant curvature —1. Hence the manifold is locally ¢-symmetric. Also from the
above expressions of the curvature tensor, we obtain

(1]

S(er,e1) = g(R(e1,e2)ea,er) + g(R(er,es)es, er)
= 2.
Similarly, we have
S(ea,ex) = —2,5(es, e3) = 2.
Therefore,
r=.5(e1,e1) + S(ea,ea) — S(es,e3) = —6.

Thus the scalar curvature r is constant. Hence Theorem 6.1 is verified.
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