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ON THE BOUNDEDNESS OF THE MAXIMAL OPERATOR AND
RIESZ POTENTIAL IN THE MODIFIED MORREY SPACES

CANAY AYKOL AND M. ESRA YILDIRIM

Abstract. In this paper we prove the boundedness of the maximal operator
M and give the necessary and suffi cient conditions for the boundedness of
Riesz potential operator Iα in the modified Morrey spaces by using Guliyev
method

1. Introduction

Morrey spaces Lp,λ were introduced by Morrey in 1938 in connection with certain
problems in elliptic partial differential equations and calculus of variations ([19]).
Later, Morrey spaces found important applications to Navier Stokes ([18], [25]) and
Schrödinger ([21, 22]) equations, elliptic problems with discontinuous coeffi cients
([5, 8]) and potential theory ([1, 2]). An exposition of the Morrey spaces can be
found in the book [17]. Morrey spaces were widely studied during last decades,
including the study of classical operators of harmonic analysis such as maximal,
singular and potential operators ([1, 3, 4, 6, 7]). Modified Morrey spaces and the
boundedness conditions of maximal operators and Riesz potential studied by some
authors (see, for example [12, 13, 14, 15, 16]).
In [9] Guliyev considered the generalized Morrey spaces Mp,ϕ with a general

function ϕ(x, r) defining the Morrey-type norm. He found the conditions on the
pair (ϕ1, ϕ2) without any assumption on monotonicity of ϕ1, ϕ2 which ensures the
boundedness of the maximal operator in generalized Morrey spaces. He also proved
the Spanne and Sobolev-Adams type theorems for the Riesz potential operator Iα.
In the present work, we prove the boundedness of the maximal operator M and

Riesz potential operator Iα in modified Morrey spaces by using Guliyev methods
given in [9].
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2. Definitions and Preliminary Tools

Let f ∈ L1loc(Rn). As usual we define the Hardy-Littlewood maximal function
of f , Mf , setting

Mf(x) := sup
t>0
|B(x, t)|−1

∫
B(x,t)

|f(y)|dy,

where B(x, t) denotes the open ball centered at x of radius t for x ∈ Rn and t > 0.
|B(x, t)| = ωnt

n and ωn denotes the volume of the unit ball in Rn.
For 0 ≤ α < n, we define the fractional maximal function

Mαf(x) := sup
t>0
|B(x, t)|αn−1

∫
B(x,t)

|f(y)|dy.

In the case α = 0, we get M0f = Mf . The fractional maximal function Mαf is
closely related to the Riesz potential operator

Iαf(x) :=

∫
Rn

f(y)dy

|x− y|n−α , 0 < α < n,

such that

Mαf(x) ≤ ω
α
n−1
n (Iα|f |)(x). (2.1)

The operatorsMα and Iα play important role in real and harmonic analysis (see,
for example [1, 20, 23, 24]).

Definition 2.1. Let 1 ≤ p < ∞, 0 ≤ λ ≤ n, [t]1 = min{1, t}. We define the
Morrey space Lp,λ(Rn), and the modified Morrey space L̃p,λ(Rn) as the set of
locally integrable functions f with the finite norms

‖f‖Lp,λ := sup
x∈Rn,t>0

t−
λ
p ‖f‖Lp(B(x,t)), (2.2)

‖f‖L̃p,λ := sup
x∈Rn,t>0

[t]
−λp
1 ‖f‖Lp(B(x,t)), (2.3)

respectively.

Note that

L̃p,0(Rn) = Lp,0(Rn) = Lp(Rn),

L̃p,λ(Rn) ↪→ Lp,λ(Rn) ∩ Lp(Rn)

and
max{‖f‖Lp,λ , ‖f‖Lp} ≤ ‖f‖L̃p,λ

and if λ < 0 or λ > n, then Lp,λ(Rn) = L̃p,λ = Θ, where Θ is the set of all functions
equivalent to 0 on Rn.
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Definition 2.2. [3, 4, 10, 11] Let 1 ≤ p < ∞ , 0 ≤ λ ≤ n. We define the weak
Morrey space WLp,λ(Rn), and the modified weak Morrey space WL̃p,λ(Rn) as the
set of all locally integrable functions f with finite norms

‖f‖WLp,λ := sup
x∈Rn,t>0

t−
λ
p ‖f‖WLp(B(x,t)),

‖f‖WL̃p,λ
:= sup

x∈Rn,t>0
[t]
−λp
1 ‖f‖WLp(B(x,t)),

respectively.

Note that
WLp(Rn) = WLp,0(Rn) = WL̃p,0(Rn),

Lp,λ(Rn) ⊂WLp,λ(Rn) and ‖f‖WLp,λ ≤ ‖f‖Lp,λ

L̃p,λ(Rn) ⊂WL̃p,λ(Rn) and ‖f‖WL̃p,λ
≤ ‖f‖L̃p,λ .

The following lemmas give some embeddings between Morrey spaces which were
proved in [14, 15].

Lemma 2.3. Let 0 ≤ λ < n and 0 ≤ α < n− λ. Then for p = n−λ
α ,

Lp,λ(Rn) ↪→ L1,n−α(Rn), ‖f‖L1,n−α ≤ ω1/p
′

n ‖f‖Lp,λ .

Lemma 2.4. Let 0 ≤ λ < n and 0 ≤ α < n− λ. Then for n−λ
α ≤ p < n

α

L̃p,λ(Rn) ↪→ L1,n−α(Rn), ‖f‖L1,n−α ≤ ω1/p
′

n ‖f‖L̃p,λ .

The following theorems proved by Guliyev in [9] will be our main tools to obtain
the boundedness of maximal operatorM and Riesz potential Iα in modified Morrey
spaces, respectively.

Theorem A. Let 1 ≤ p <∞ and f ∈ Llocp (Rn). Then for p > 1

‖Mf‖Lp(B(x,t)) ≤ Ct
n
p

∫ ∞
t

r−
n
p−1‖f‖Lp(B(x,r))dr, (2.4)

and for p = 1

‖Mf‖WL1(B(x,t)) ≤ Ct
n
p

∫ ∞
t

r−
n
p−1‖f‖L1(B(x,r))dr, (2.5)

where C is a constant independent of f , x ∈ Rn and t > 0.

Theorem B. Let 1 ≤ p <∞, 0 < α < n
p and f ∈ L

loc
p (Rn). Then

|Iαf(x)| ≤ CtαMf(x) + C

∫ ∞
t

rα−
n
p−1‖f‖Lp(B(x,r))dr, (2.6)
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where C is a constant independent of f , x and t.

3. Boundedness of the maximal operator and the Riesz potential in
the modified Morrey spaces

In this section we prove the boundedness of the maximal operator and the Riesz
potential in modified Morrey spaces L̃p,λ. We prove Theorems 3.1 and 2 with the
help of Theorems A and B, respectively.

Theorem 3.1. Let 1 ≤ p <∞, 0 ≤ λ < n and f ∈ L̃p,λ(Rn).
( i) If p > 1, then the maximal operator M is bounded in L̃p,λ(Rn).

( ii)If p = 1, then M is bounded from L̃1,λ(Rn) to WL̃1,λ(Rn).

Proof. (i) Let 1 < p <∞. From the inequality (2.4) we get

‖Mf‖L̃p,λ = sup
x∈Rn,t>0

[t]
−λp
1 ‖Mf‖Lp(B(x,t))

≤ C sup
x∈Rn,t>0

[t]
−λp
1 t

n
p

∫ ∞
t

r−
n
p−1‖f‖Lp(B(x,r))dr

≤ C sup
x∈Rn,t>0

[t]
−λp
1 t

n
p ‖f‖L̃p,λ min{

∫ ∞
t

r−
n
p−1dr,

∫ ∞
t

r
λ−n
p −1dr}

= C sup
x∈Rn,t>0

[t]
−λp
1 t

n
p ‖f‖L̃p,λ min{t−

n
p , t

λ−n
p }

= C sup
x∈Rn,t>0

[t]
−λp
1 t

n
p ‖f‖L̃p,λ [t]

λ
p

1 t
−np

= C‖f‖L̃p,λ ,

which implies that M is bounded in L̃p,λ(Rn).
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(ii) Let p = 1. From the inequality (2.5) we get

‖Mf‖WL̃1,λ
= sup
x∈Rn,t>0

[t]−λ1 ‖Mf‖WL1(B(x,t))

≤ C sup
x∈Rn,t>0

[t]−λ1 tn
∫ ∞
t

r−n−1‖f‖L1(B(x,r))dr

≤ C sup
x∈Rn,t>0

[t]−λ1 tn‖f‖L̃1,λ min{
∫ ∞
t

r−n−1dr,

∫ ∞
t

rλ−n−1dr}

= C sup
x∈Rn,t>0

[t]−λ1 tn‖f‖L̃1,λ min{t−n, tλ−n}

= C sup
x∈Rn,t>0

[t]−λ1 tn‖f‖L̃1,λ [t]−λ1 tn

= C‖f‖L̃1,λ ,

which implies that M is bounded from L̃1,λ(Rn) to WL̃1,λ(Rn). �

In the following we give the necessary and suffi cient conditions for the bounded-
ness of the Riesz potential in modified Morrey spaces.

Theorem 3.2. Let 0 < α < n, 0 ≤ λ < n− α and 1 ≤ p < n−λ
α .

( i) If 1 < p < n−λ
α , then condition α

n ≤
1
p −

1
q ≤

α
n−λ is necessary and suffi cient

for the boundedness of the operator Iα from L̃p,λ(Rn) to L̃q,λ(Rn).

( ii) If p = 1 < n−λ
α , then condition α

n ≤ 1− 1
q ≤

α
n−λ is necessary and suffi cient

for the boundedness of the operator Iα from L̃1,λ(Rn) to WL̃q,λ(Rn).

Proof. (i) Suffi ciency. Let 1 < p < n−λ
α , αn ≤

1
p −

1
q ≤

α
n−λ and f ∈ L̃p,λ(Rn).

From the inequality (2.6) we get
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‖Iαf‖L̃q,λ

= sup
x∈Rn,t>0

[t]
−λq
1 ‖Iαf‖Lq(B(x,t))

= sup
x∈Rn,t>0

(
[t]−λ1

∫
B(x,t)

|Iαf(y)|qdy
) 1
q

≤ C sup
x∈Rn,t>0

[t]
−λq
1

(∫
B(x,t)

(
rαMf(y) +

∫ ∞
r

τα−
n
p−1‖f‖Lp(B(x,τ))dτ

)q
dy

)1/q

≤ C sup
x∈Rn,t>0

[t]
−λq
1

(∫
B(x,t)

(
rαMf(y) + ‖f‖L̃p,λ min{

∫ ∞
r

τα−
n
p−1dτ,

∫ ∞
r

τα+
λ−n
p −1dτ}

)q
dy

)1/q

= C sup
x∈Rn,t>0

[t]
−λq
1

(∫
B(x,t)

(
rαMf(y) + ‖f‖L̃p,λ min{rα−

n
p , rα+

λ−n
p }
)q
dy

)1/q
.

Minimizing with respect to r, with

r =

[
‖f‖L̃p,λ
Mf(y)

] p
n−λ

and r =

[
‖f‖L̃p,λ
Mf(y)

] p
n

we have

‖Iαf‖L̃q,λ

≤ C sup
x∈Rn,t>0

[t]
−λq
1

∫
B(x,t)

min{
(
Mf(y)

‖f‖L̃p,λ

)1− pα
n−λ

,

(
Mf(y)

‖f‖L̃p,λ

)1− pαn
}‖f‖L̃p,λ

q

dy

1/q

≤ C‖f‖1−
p
q

L̃p,λ
sup

x∈Rn,t>0
[t]
−λq
1 ‖Mf‖

p
q

Lp(B(x,t))
.

Hence by Theorem 3.1(i) we have

‖Iαf‖L̃q,λ ≤ C‖f‖
1− pq
L̃p,λ
‖f‖

p
q

L̃p,λ

= C‖f‖L̃p,λ ,

which implies that Iα is bounded from L̃p,λ(Rn) to L̃q,λ(Rn).

Necessity. Let 1 < p < n−λ
α , f ∈ L̃p,λ(Rn). Suppose that Iα is bounded from

L̃p,λ(Rn) to L̃q,λ(Rn). Let us define fs(x) := f(sx), [s]1,+ = max{1, s}. Then



ON THE BOUNDEDNESS OF THE MAXIMAL OPERATOR AND RIESZ POTENTIAL 7

‖fs‖L̃p,λ = sup
x∈Rn,t>0

[t]
−λp
1 ‖fs‖Lp(B(x,t))

= sup
x∈Rn,t>0

(
[t]−λ1

∫
B(x,t)

|fs(y)|pdy
)1/p

= s−
n
p sup
x∈Rn,t>0

(
[t]−λ1

∫
B(x,st)

|f(y)|pdy
)1/p

= s−
n
p sup
t>0

(
[st]1
[t]1

)λ
p

sup
x∈Rn,t>0

(
[st]−λ1

∫
B(x,st)

|f(y)|pdy
)1/p

= s−
n
p [s]

λ
p

1,+‖f‖L̃p,λ , (3.1)

and

Iαfs(x) = s−αIαf(sx),

‖Iαfs‖L̃q,λ = s−α sup
x∈Rn,t>0

(
[t]−λ1

∫
B(x,t)

|Iαf(sy)|qdy
)1/q

= s−α−
n
q sup
t>0

(
[st]1
[t]1

)λ
q

sup
x∈Rn,t>0

(
[st]−λ1

∫
B(sx,st)

|Iαf(y)|qdy
)1/q

= s−α−
n
q [s]

λ
q

1,+‖Iαf‖L̃q,λ .

By the boundedness of Iα from L̃p,λ(Rn) to L̃q,λ(Rn) we get

‖Iαf‖L̃q,λ = sα+
n
q [s]
−λq
1,+‖Iαfs‖L̃q,λ

≤ sα+
n
q [s]
−λq
1,+‖fs‖L̃p,λ

≤ Csα+
n
q−

n
p [s]

λ
p−

λ
q

1,+ ‖f‖L̃p,λ .

If 1p <
1
q + α

n , then in the case t→ 0 we have ‖Iαf‖L̃q,λ = 0 for all f ∈ L̃p,λ(Rn).

If 1
p > 1

q + α
n−λ , then in the case t → ∞ we have ‖Iαf‖L̃q,λ = 0 for all f ∈

L̃p,λ(Rn).
Therefore we obtain α

n ≤
1
p −

1
q ≤

α
n−λ .



8 CANAY AYKOL AND M. ESRA YILDIRIM

(ii) Suffi ciency. Let p = 1 and α
n ≤ 1− 1

q ≤
α

n−λ . From the inequality (2.6) we
have

|Iαf(x)| ≤ CtαMf(x) + C

∫ ∞
t

rα−n−1‖f‖L1(B(x,r))dr

≤ CtαMf(x) + C‖f‖L̃1,λ min{tα−n, tλ+α−n}.

Minimizing with respect to t, with

t =

[
‖f‖L̃1,λ
Mf(x)

] 1
n−λ

and t =

[
‖f‖L̃1,λ
Mf(x)

] 1
n

we have

|Iαf(x)| ≤ C min


(
Mf(x)

‖f‖L̃1,λ

)1− α
n−λ

,

(
Mf(x)

‖f‖L̃1,λ

)1−αn ‖f‖L̃1,λ .
Therefore we get

|Iαf(x)| ≤ C(Mf(x))1/q‖f‖1−1/q
L̃1,λ

. (3.2)

Using the inequality (3.2) and from Theorem 3.1(ii) we get

‖Iαf‖qWL̃q,λ
= sup
x∈Rn,t>0

[t]−λ1 ‖Iαf‖
q
WLq(B(x,t))

= sup
r>0

rq sup
x∈Rn,t>0

[t]−λ1 |{y ∈ B(x, t) : |Iαf(y)| > r}|

≤ sup
r>0

rq sup
x∈Rn,t>0

[t]−λ1 |{y ∈ B(x, t) : C(Mf(y))1/q‖f‖1−1/q
L̃1,λ

> r}|

= sup
r>0

rq sup
x∈Rn,t>0

[t]−λ1

∣∣∣∣∣∣
y ∈ B(x, t) : Mf(y) >

 r

C‖f‖1−1/q
L̃1,λ

q
∣∣∣∣∣∣

≤ C sup
r>0

rq

‖f‖1−
1
q

L̃1,λ

r


q

‖f‖L̃1,λ

= C‖f‖q
L̃1,λ

,

which implies that Iα is bounded from L̃1,λ(Rn) to WL̃q,λ(Rn).

Necessity. Let Iα is bounded from L̃1,λ to WL̃q(Rn). We have
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‖Iαfs‖WL̃q,λ
= sup
x∈Rn,t>0

[t]
−λq
1 ‖Iαfs‖WL̃q,λ(B(x,t))

= sup
r>0

r sup
x∈Rn,t>0

(
[t]−λ1

∫
{y∈B(x,t):|Iαfs(y)|>r}

dy

)1/q

= sup
r>0

r sup
x∈Rn,t>0

(
[t]−λ1

∫
{y∈B(xs,t):|Iαf(sy)|>rsα}

dy

)1/q

= s−α−
n
q sup
t>0

(
[ts]1
[t]1

)λ
q

sup
r>0

rsα sup
x∈Rn,t>0

(
[ts]−λ1

∫
{y∈B(x,ts):|Iαf(y)|>rsα}

)1/q
= s−α−

n
q [s]

λ
q

1,+‖Iαf‖WL̃q,λ
.

By using the boundedness of Iα from L̃1,λ(Rn) to WL̃q,λ(Rn) we get

‖Iαf‖WL̃q,λ
= sα+

n
q [s]
−λq
1,+‖Iαfs‖WL̃q,λ

≤ Csα+
n
q [s]
−λq
1,+‖fs‖L̃1,λ

= Csα+
n
q−n[s]

λ−λq
1,+ ‖f‖L̃1,λ .

If 1 < 1
q + α

n , then in the case t→ 0 we have ‖Iαf‖WL̃q,λ
= 0 for all f ∈ L̃1,λ(Rn).

If 1 > 1
q + α

n−λ , then in the case t → ∞ we have ‖Iαf‖WL̃q,λ
= 0 for all

f ∈ L̃1,λ(Rn).
Therefore α

n ≤ 1− 1
q ≤

α
n−λ . �

Corollary 1. Let 0 < α < n, 0 ≤ λ < n− α and 1 ≤ p < n−λ
α .

( i) If 1 < p < n−λ
α , then condition α

n ≤
1
p −

1
q ≤

α
n−λ is necessary and suffi cient

for the boundedness of the operator Mα from L̃p,λ(Rn) to L̃q,λ(Rn).

( ii) If p = 1 < n−λ
α , then condition α

n ≤ 1− 1
q ≤

α
n−λ is necessary and suffi cient

for the boundedness of the operator Mα from L̃1,λ(Rn) to WL̃q,λ(Rn).

Proof. Suffi ciency of Corollary 1 is obtained from Theorem 3.2 and inequality (2.1).
Necessity. For the fractional maximal operator Mα the following equality

Mαfs(x) = s−αMαf(sx)

holds.
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(i) Let 1 < p < n−λ
α and Mα be bounded from L̃p,λ(Rn) to L̃q,λ(Rn). Then we

have

‖Mαfs‖L̃q,λ = s−α−
n
q [s]

λ
q

1,+‖Mαf‖L̃q,λ .

By similar methods in Theorem 3.2 we obtain α
n ≤

1
p −

1
q ≤

α
n−λ .

(i) Let Mα be bounded from L̃1,λ(Rn) to WL̃q,λ(Rn).
Then we have

‖Mαfs‖WL̃q,λ
= s−α−

n
q [s]

λ
q

1,+‖Mαf‖WL̃q,λ
.

Therefore we get αn ≤ 1− 1
q ≤

α
n−λ . �
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