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AN ANTI-PERIODIC CAPUTO ¢—-FRACTIONAL BOUNDARY
VALUE PROBLEM WITH A p—LAPLACIAN OPERATOR

BAHAA EL-DIN ABDALLAH AND T. ABDELJAWAD

ABSTRACT. This paper studies the existence of solutions for an anti-periodic
boundary value problem for the g-fractional p-Laplacian equation. The exis-
tence result depends on Leray-Schaefer’s Fixed Point Theorem.

1. INTRODUCTION

To study the Turbulent flow in a porous medium, which is a fundamental me-
chanics problem, Leibenson introduced the p—Laplacian equation as follows:

((bp(x/(t)))l = f(t, ac(t)w'(t)), (1‘1)
where ¢,(s) = |s|P~25,: p > 1. Obviously, ¢, is invertible and its inverse operator
is ¢, r > 1, % + % = 1. Then, many certain boundary value conditions have

been associated to equation (1.1) during the past few decades. Chen and Liu in [1]
considered the following BVP.

“DE, 6, (DG x(t)) = f(t,a(t),: t € [0,1], (1.2)
with boundary conditions
2(0) = —x(1), ©Dg.x(0) = — “Dgea(1),

where 0 < o, < 1,1 <a+f <2and f:[0,1] x R — R is continuous. When
p = 2 we get the composition linear operator CD([;CDS;. Depending on Schaefer’s
fixed point, the authors proved under certain nonlinear growth conditions of the
nonlinearity, the following existence theorem:

Theorem 1.1. [1] Let f:[0,1] x R — R be continuous. Assume that there exist nonnegative
functions a,b € C[0,1] such that

[f(t,w)] < a(t) +b(t)|ulP~t, V¢ €[0,1], u € R. (1.3)
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Then the Anti BVP (1.2) has at least one solution, provided that

37||blss !
2'T(a+ 1)I(B + 1)7—1

<1 (1.4)

The g-fractional calculus basics were initiated about the middle of the previous
century [24, 14, 16, 19, 17, 18, 15, 4, 6, 7, 2, 3, 12]. In the last two decades this
calculus started to attract many authors, when fractional calculus [20, 21, 22, 23,
37] applications started to appear in different branches of science and engineering
and the discrete fractional calculus into nabla and delta started to be developed
extensively [5, 8, 9, 10, 11, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 13]. In this
article we investigate the result stated in Theorem 1.1 in the sense of g-fractional
calculus.

For 0 < g <1, let T, be the time scale

T, ={¢" :n=0,1,..} U {0}
More generally, if « is a nonnegative real number then we define the time scale
a n+a ., —
7 ={q :n=0,1,..} U{0}

We write Tg =1T,.

For a function f : T, — R, the nabla g—derivative of f is given by
f(t) — f(qt)
(1—q)t

The nabla g—integral of f is given by

V., (t) = L teT,— {0} (1.5)
/0 F(5) Vg5 = (1= )t S ' (tq") (1.6)
1=0
and for 0 < a €T,

/atf(s)vqs = /Ot f(s)Vgs — /Oa f(s)Vgs

By the fundamental theorem in g—calculus we have

v, /o F(5)Vs = (1) (L.7)

and if f is continuous at 0, then

/0 Vo f(s)Vqs = £(t) — £(0) (18)

Also the following identity will be helpful

vq/ f(t,s)Vqs:/ Vot $)Vys + f(at, 1) (1.9)
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From the theory of g—calculus and the theory of time scale more generally, the
following product rule is valid

Vqa(f(0)g(t)) = f(at)Vag(t) + (Vo f())g(t) (1.10)
The g—binomial function for n € N is defined by

n—1
(t—s)y = H (t—¢'s) (1.11)
i=0
When « is a non positive integer, the g—binomial fractional function is defined by
0o . §(]i
i=0 t

It has the following properties
o (t—s5)Jt =(t—s)](t—q"s)y
e (a tfas)qﬂ—aﬁ(t )g
e The nabla g—derivative of the g—binomial function with respect to ¢ is

« 1_qa a—
v‘](t_s)q = l—q (t_S)q !

e The nabla g—derivative of the g—binomial function with respect to s is

v a 1_qa a—1
q(t_s)q - lfq (t_qs)q

where o, 5,7 € R.
Moreover, the g—fractional integral of order v £ 0, —1, —2, ... is defined by

I ]

_— t—aqs)g™ Vgs. 1.13
L 9 Ve (113
Let @« > 0. If & ¢ N, then the a—order Caputo (left) g—fractional derivative of a
function f is defined by

qI(()lf(t) =

t
CEFE) 25y IOV = s [ (= a0y V6V (1)
where n = [o] + 1 and [«] denotes the greatest integer less than or equal to a. If
a € N, then ,COf(t) £ Vi f(t).
The following identity is useful to transform Caputo g—fractional difference equa-
tion into

q—fractional integrals.
Assume « > 0 and f is defined in suitable domains. Then

n—1

tfaq
JLC0f(t) = Z NCES) Vi f(a) (1.15)
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and if 0 < a <1 then

S8 1 C2F(1) = () — F(a) (L.16)
The following identity is essential to solve linear g—fractional equations
wo__ Fq (/’L + 1)
T Tyla+p+1)
where o € RT and p € (—1,00).
For more about ¢g—Gamma functions and other g—calculus concepts we refer, for
example. to [14] The following theorem is of importance to be stated in the article.

I (z — a) (x—a)'t™™ (0<a<z<b) (1.17)

q

Theorem 1.2. Leray-Schaefer’s Fized Point Theorem:
let T' be a continuous and compact mapping of a Banach space X into itself, such that the set

A={z e X :2= ATz, for some0 <\ <1}

is bounded. Then T has a fized point. For more general versions of Theorem 1.2 see [38].

2. AN ANTI-CAPUTO ¢—FRACTIONAL BVP

(Co o, (,Ce(t) = f(t,a(t),: t € Ty (2.1)
with anti-boundary conditions
2(0) = —a(1), (Ce(0) = —,Coa(L), (2.2)

where, 0 < 0,8 <1, 1 <a+p<2and f:T, x R— R is continuous.
C,4[0,1] will denote the Banach space of all continuous real-valued functions
defined on the time scale T, with the supremum norm.

Lemma 2.1. Given h(t) = f(t,x(t)) is continuous on Ty, then the solution of (2.1) and (2.2)
18

2(t) = (1§ b, (ISh(t) + Ah(t)) + Bh(1)

— 1 ! a— 1 ° B—
= Fq(a)/o (t—qs)g L, (m/() (s —q7)] lh(T)VqTJrAh(s)) Vg¢s + Bh(s),
_ 1
where  Ah(t) = m/{) 1- qs)gflh(s)Vqs and
S ' —gs)271 o szﬂ'ﬁfl T)VaT s s
Bht) = g [ a5 (g e Ve + A0 ¥,

vt € [0,1]
Proof. Assume that z(t) satisfies (2.1), then
o1 100, (sC5 (1) = oITh(2)
Now using (1.16) we get
6 (sCE (1) = JITh() + 6,(,C52(0))
Now using ,C§z(0) = —,Cqz(1), we get

6p(uC32(0)) = =3 oI (D)=1 = AR(D)
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Now we have
6p(sCi () = JITh(t) + AR()
which is equivalent to ,C9z(t) = ¢, (,I5h(t) + Ah(t)). Using (2.1), we get
w(t) = 2(0) + (156, (oI5 h(t) + A(t))

Using x(0) = —z(1), we obtain

z(0) = 180, (IO h(t) + AR(t))|s=1 = Bh(t). : O

) ‘q

Now, define the operator F': Cy[0, 1] — C4[0, 1] by

Fa(t) = oI5 :6,(I0, Na(t) + ANz(t)) + BNa(t)

_ 1 ' —gs)o1 1 Ss— V(o a(r T
=y [, ¢ (g [ i e
1

1

(a- qﬂg—lf(m(r))vﬂ) Vs

2rq</a>/o
. 2rq1<a> / (= as)g™er (ﬁ@ / (s —qr)] S (r.2(7) Vi
- 21“;(5) /01 (1 —qT)f‘lf(ﬂw(T))Vqr) V5,

vVt € [0,1] where N : C4[0,1] — C,4[0,1] is the Nemytskii operator defined by
Nx(t) = f(t,x(t)), Vt € [0, 1]. Then the fixed points of the operator F' are solutions
of (2.1) and (2.2). The next theorem is based on Schaefer’s fixed point theorem.

Theorem 2.2. let f: T, x R — R be continuous. Assume that there exist two functions
a,b € C(Ty,R) such that

|f(t,w)] < a(t) +b(t)|ulP~T, vt €Ty, ueR. (2.3)
Then the g-anti BVP (1-2) has at least one solution, provided that

37||bllss !
2Tg(a+ DT (B+ 1)1

<1 (2.4)

Proof. Let us prove first that F' : C,[0,1] — C,[0,1] is completely continuous. Let
2 C C4[0,1] be an open bounded subset. By the continuity of f, we can get that F

is continuous and F(f2) is bounded. Moreover, there exists a constant T' > 0 such
that |qI§+Nx + ANz| < T,Vz € Q, t € [0,1]. Thus, in view of the Arzeld-Ascoli

theorem, we need only to prove that F(Q) C C,[0,1] is equicontinuous.
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For 0 <t; <ty <1,z €, we have

IN

|Fx(ts) — Fa(ty)]
oI55 0.1 Na(t) + AN ()l imty — o154 0, (o Iy No(t) + AN2(t))]e—t,

1
Ly(a)

t1
/ (b — 45)2 6, (47, Nx(s) + ANx(s))V 5
0

1
Iy(a)

ta
/ (ta — qs)gflér(qléil\fx(s) + ANxz(s))Vys

t1
Tr—1 t1 L L ta L
r {0 a1 [ g Vs
q 1

Tr—l
Lol +1)

to
/ (b2 — 45)2 "6, (47, Nx(s) + ANx(s))V g5
0

A Ntz — 49)2 — (11— g5)2 116, (1P, Nex(s) + ANa(s))V 5

(67 — t5 + 2(t1 — t2)g]-

Since tg is uniformly continuous on [0, 1], we can obtain that F'(Q2) C C,[0,1] is
equicontinuous.

Now we need to prove that the set Q = {z € Cy[0,1] |z = N Ez N € (0,1) )} is
bounded.

By (2.3), we have

T ! 1 —qs)% 7Y f (s, z(s s
ANa0) € g [ (a9 s )Y
St IR ORT CIECTEp
1 p—1 l
< g lalle + Iblclielh) - 5
1

= o p—1y .
o g 7Ty lalee + [Bllslialies™),: vt € 0,1),
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which together with the monotonicity of s9~!, implies that

1 ! a— r—
|[BNz(t)| < 2Fq(a)/0 (1—-gs); 1|qI5+N:r(s)+ANx(s)| v
< g [ 0097 (g alle + 1ol lolis)
RO S VTCES VA
1 r—1
p—1
+ gy lal + Illelih) Vs

1 (alloe + Bl s s /
W) 2 T,B )t G T el Vs

Hence, we get
3r—1
| <
2T, (a+ D(T,(B+ 1)

Vt € [0, 1] Similarly, we find that,

|BNx(t)

1 (lallse + 1Bl oo [l2]I55 )" (2.5)

< T lallos+ Plloliali
= 20, (a+ DT, B+ D)

For z € Q, we get x(t) = X"~ ' Fa(t). Thus, using (2.5)and (2.6), we obtain
l2()] < loI§hdp(oIys Na(t) + ANa(t))| + | BN (t)]

3" (llalloo + [1Blloo 125"

2Tg(a+ 1)(Ty(8 + 1)1

There exist a constant M > 0 such that ||zl < M.
As a consequence of Schaefer’s fixed point theorem, we deduce that F' has a fixed
point which is the solution of ABVP (2.1) and (2.2). O

oI5 & (o Ios No(t) + ANa(t))

IN

vt € [0,1].

3. AN EXAMPLE
Here is an example that illustrates the main result.

Consider the time scale T, , and consider the following ABVP for the g—fractional
p—Laplacian equation

1 3 1
iC3 65 (sCoa(t)) = 5a*(t) +sint, t€ T,
with boundary conditions

2(0) = —2(1), ,Cia(0) = — ,Cla(1).

Corresponding to ABVP (2.1) and (2.2), we have: p=3,r = %,a = %,ﬁ = % and
f(t,z(t)) = {522(t) + sint.
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Choose a(t) = 1,b(t) = -, then after a straightforward calculations, we obtain

10°
that [[b]|oc = 75 and

3 1
32 (1%) 3
250, (§ + 1(Ty(3 + 1)
The ABVP in this example satisfies all assumptions of the Theorem 2.2, hence it
has at least one solution.
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