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AN ANTI-PERIODIC CAPUTO q−FRACTIONAL BOUNDARY
VALUE PROBLEM WITH A p−LAPLACIAN OPERATOR

BAHAA EL-DIN ABDALLAH AND T. ABDELJAWAD

Abstract. This paper studies the existence of solutions for an anti-periodic
boundary value problem for the q-fractional p-Laplacian equation. The exis-
tence result depends on Leray-Schaefer’s Fixed Point Theorem.

1. Introduction

To study the Turbulent flow in a porous medium, which is a fundamental me-
chanics problem, Leibenson introduced the p−Laplacian equation as follows:

(φp(x
′(t)))′ = f(t, x(t), x′(t)), (1.1)

where φp(s) = |s|p−2s, : p > 1. Obviously, φp is invertible and its inverse operator
is φr, : r > 1, : 1

p + 1
r = 1. Then, many certain boundary value conditions have

been associated to equation (1.1) during the past few decades. Chen and Liu in [1]
considered the following BVP.

CDβ
0+φp(

CDα
0+x(t)) = f(t, x(t)), : t ∈ [0, 1], (1.2)

with boundary conditions

x(0) = −x(1), CDα
0+x(0) = −CDα

0+x(1),

where 0 < α, β ≤ 1, 1 < α + β ≤ 2 and f : [0, 1] × R → R is continuous. When
p = 2 we get the composition linear operator CDβ

0+
CDα

0+ . Depending on Schaefer’s
fixed point, the authors proved under certain nonlinear growth conditions of the
nonlinearity, the following existence theorem:

Theorem 1.1. [1] Let f : [0, 1]× R→ R be continuous. Assume that there exist nonnegative
functions a, b ∈ C[0, 1] such that

|f(t, u)| ≤ a(t) + b(t)|u|p−1, ∀t ∈ [0, 1], u ∈ R. (1.3)
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Then the Anti BVP (1.2) has at least one solution, provided that

3r‖b‖r−1∞
2rΓ(α+ 1)Γ(β + 1)r−1

< 1. (1.4)

The q-fractional calculus basics were initiated about the middle of the previous
century [24, 14, 16, 19, 17, 18, 15, 4, 6, 7, 2, 3, 12]. In the last two decades this
calculus started to attract many authors, when fractional calculus [20, 21, 22, 23,
37] applications started to appear in different branches of science and engineering
and the discrete fractional calculus into nabla and delta started to be developed
extensively [5, 8, 9, 10, 11, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 13]. In this
article we investigate the result stated in Theorem 1.1 in the sense of q-fractional
calculus.
For 0 < q < 1, let Tq be the time scale

Tq = {qn : n = 0, 1, ...} ∪ {0}

More generally, if α is a nonnegative real number then we define the time scale

Tαq = {qn+α : n = 0, 1, ...} ∪ {0}

We write T 0q = Tq.
For a function f : Tq → R, the nabla q−derivative of f is given by

∇qf(t) =
f(t)− f(qt)

(1− q)t , t ∈ Tq − {0} (1.5)

The nabla q−integral of f is given by∫ t

0

f(s)∇qs = (1− q)t
∞∑
i=0

qif(tqi) (1.6)

and for 0 ≤ a ∈ Tq ∫ t

a

f(s)∇qs =

∫ t

0

f(s)∇qs−
∫ a

0

f(s)∇qs

By the fundamental theorem in q−calculus we have

∇q
∫ t

0

f(s)∇qs = f(t) (1.7)

and if f is continuous at 0, then∫ t

0

∇qf(s)∇qs = f(t)− f(0) (1.8)

Also the following identity will be helpful

∇q
∫ t

a

f(t, s)∇qs =

∫ t

a

∇qf(t, s)∇qs+ f(qt, t) (1.9)
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From the theory of q−calculus and the theory of time scale more generally, the
following product rule is valid

∇q(f(t)g(t)) = f(qt)∇qg(t) + (∇qf(t))g(t) (1.10)

The q−binomial function for n ∈ N is defined by

(t− s)nq =

n−1∏
i=0

(t− qis) (1.11)

When α is a non positive integer, the q−binomial fractional function is defined by

(t− s)αq = tα
∞∏
i=0

1− s
t q
i

1− s
t q
i+α

(1.12)

It has the following properties

• (t− s)β+γq = (t− s)βq (t− qβs)γq
• (at− as)βq = aβ(t− s)βq
• The nabla q−derivative of the q−binomial function with respect to t is

∇q(t− s)αq =
1− qα
1− q (t− s)α−1q

• The nabla q−derivative of the q−binomial function with respect to s is

∇q(t− s)αq = −1− qα
1− q (t− qs)α−1q

where α, β, γ ∈ R.
Moreover, the q−fractional integral of order α 6= 0,−1,−2, ... is defined by

qI
α
0 f(t) =

1

Γq(α)

∫ t

0

(t− qs)α−1q f(s)∇qs. (1.13)

Let α > 0. If α /∈ N, then the α−order Caputo (left) q−fractional derivative of a
function f is defined by

qC
α
a f(t) ,:q I

(n−α)
a ∇nq f(t) =

1

Γ(n− α)

∫ t

a

(t− qs)n−α−1q ∇nq f(s)∇qs (1.14)

where n = [α] + 1 and [α] denotes the greatest integer less than or equal to α. If
α ∈ N, then qC

α
a f(t) , ∇nq f(t).

The following identity is useful to transform Caputo q−fractional difference equa-
tion into
q−fractional integrals.

Assume α > 0 and f is defined in suitable domains. Then

qI
α
a qC

α
a f(t) = f(t)−

n−1∑
k=0

(t− a)kq
Γq(k + 1)

∇kqf(a) (1.15)
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and if 0 < α ≤ 1 then
qI
α
a :q C

α
a f(t) = f(t)− f(a) (1.16)

The following identity is essential to solve linear q−fractional equations

qI
α
a (x− a)µq =

Γq(µ+ 1)

Γq(α+ µ+ 1)
(x− a)µ+αq (0 ≤ a < x < b) (1.17)

where α ∈ R+ and µ ∈ (−1,∞).
For more about q−Gamma functions and other q−calculus concepts we refer, for
example. to [14] The following theorem is of importance to be stated in the article.

Theorem 1.2. Leray-Schaefer’s Fixed Point Theorem:
let T be a continuous and compact mapping of a Banach space X into itself, such that the set

Λ = {x ∈ X : x = λTx, for some 0 ≤ λ ≤ 1}

is bounded. Then T has a fixed point. For more general versions of Theorem 1.2 see [38].

2. An anti-Caputo q−fractional BVP

qC
β
0 φp (qC

α
0 x(t)) = f(t, x(t)), : t ∈ Tq (2.1)

with anti-boundary conditions

x(0) = −x(1), qC
α
0 x(0) = −qCα0 x(1), (2.2)

where, 0 < α, β ≤ 1, 1 < α+ β ≤ 2 and f : Tq ×R→ R is continuous.
Cq[0, 1] will denote the Banach space of all continuous real-valued functions

defined on the time scale Tq with the supremum norm.

Lemma 2.1. Given h(t) = f(t, x(t)) is continuous on Tq , then the solution of (2.1) and (2.2)
is

x(t) = qI
α
0 φr(qI

β
0 h(t) +Ah(t)) +Bh(t)

=
1

Γq(α)

∫ t

0
(t− qs)α−1q φr

(
1

Γq(β)

∫ s

0
(s− qτ)β−1q h(τ)∇qτ +Ah(s)

)
∇qs+Bh(s),

where Ah(t) =
−1

2Γq(β)

∫ 1

0
(1− qs)β−1q h(s)∇qs and

Bh(t) =
−1

2Γq(α)

∫ 1

0
(1− qs)α−1q φr

(
1

Γq(β)

∫ s

0
(s− qτ)β−1q h(τ)∇aτ +Ah(s)

)
∇qs

∀t ∈ [0, 1]

Proof. Assume that x(t) satisfies (2.1), then

qI
β
0 qC

β
0 φp(qC

α
0 x(t)) = qI

β
0 h(t)

Now using (1.16) we get

φp(qC
α
0 x(t)) = qI

β
0 h(t) + φp(qC

α
0 x(0))

Now using qCα0 x(0) = −qCα0 x(1), we get

φp(qC
α
0 x(0)) = −1

2
qI
β
0 h(t)|t=1 = Ah(t)
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Now we have

φp(qC
α
0 x(t)) = qI

β
0 h(t) +Ah(t)

which is equivalent to qCα0 x(t) = φr(qI
β
0 h(t) +Ah(t)). Using (2.1), we get

x(t) = x(0) + qI
α
0 φr(qI

β
0 h(t) +Ah(t))

Using x(0) = −x(1), we obtain

x(0) = −1

2
:q I

α
0 φr(qI

β
0 h(t) +Ah(t))|t=1 = Bh(t). : �

�

Now, define the operator F : Cq[0, 1]→ Cq[0, 1] by

Fx(t) = qI
α
0+ : φr(qI

β
0+Nx(t) +ANx(t)) +BNx(t)

=
1

Γq(α)

∫ t

0

(t− qs)α−1q φr

(
1

Γq(β)

∫ s

0

(s− qτ)β−1q f(τ , x(τ))∇qτ

− 1

2Γq(β)

∫ 1

0

(1− qτ)β−1q f(τ , x(τ))∇qτ
)
∇qs

− 1

2Γq(α)

∫ 1

0

(1− qs)α−1q φr

(
1

Γq(β)

∫ s

0

(s− qτ)β−1q f(τ , x(τ))∇qτ

− 1

2Γq(β)

∫ 1

0

(1− qτ)β−1q f(τ , x(τ))∇qτ
)
∇qs,

∀t ∈ [0, 1] where N : Cq[0, 1] → Cq[0, 1] is the Nemytskii operator defined by
Nx(t) = f(t, x(t)), ∀t ∈ [0, 1]. Then the fixed points of the operator F are solutions
of (2.1) and (2.2). The next theorem is based on Schaefer’s fixed point theorem.

Theorem 2.2. let f : Tq × R → R be continuous. Assume that there exist two functions
a, b ∈ C(Tq ,R) such that

|f(t, u)| ≤ a(t) + b(t)|u|p−1, ∀t ∈ Tq , u ∈ R. (2.3)

Then the q-anti BVP (1-2) has at least one solution, provided that

3r‖b‖r−1∞
2rΓq(α+ 1)Γq(β + 1)r−1

< 1. (2.4)

Proof. Let us prove first that F : Cq[0, 1]→ Cq[0, 1] is completely continuous. Let
Ω ⊂ Cq[0, 1] be an open bounded subset. By the continuity of f , we can get that F
is continuous and F (Ω) is bounded. Moreover, there exists a constant T > 0 such
that |qIβ0+Nx + ANx| ≤ T, ∀x ∈ Ω, t ∈ [0, 1]. Thus, in view of the Arzelá-Ascoli
theorem, we need only to prove that F (Ω) ⊂ Cq[0, 1] is equicontinuous.
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For 0 ≤ t1 < t2 ≤ 1, x ∈ Ω, we have

|Fx(t2)− Fx(t1)|

=
∣∣∣qIα0+φr(qIβ0+Nx(t) +ANx(t))|t=t2 − qI

α
0+φr(qI

β
0+Nx(t) +ANx(t))|t=t1

∣∣∣
=

1

Γq(α)

∣∣∣∣∫ t2

0

(t2 − qs)α−1q φr(qI
β
0+Nx(s) +ANx(s))∇qs

−
∫ t1

0

(t1 − qs)α−1q φr(qI
β
0+Nx(s) +ANx(s))∇qs

∣∣∣∣
=

1

Γq(α)

∣∣∣∣∫ t1

0

[(t2 − qs)α−1q − (t1 − qs)α−1q ]φr(qI
β
0+Nx(s) +ANx(s))∇qs

+

∫ t2

t1

(t2 − qs)α−1q φr(qI
β
0+Nx(s) +ANx(s))∇qs

∣∣∣∣
≤ T r−1

Γq(α)

{∫ t1

0

[(t1 − qs)α−1q − (t2 − qs)α−1q ]∇qs+

∫ t2

t1

(t2 − qs)α−1q ∇qs
}

=
T r−1

Γq(α+ 1)
[tα1 − tα2 + 2(t1 − t2)αq ].

Since tαq is uniformly continuous on [0, 1], we can obtain that F (Ω) ⊂ Cq[0, 1] is
equicontinuous.
Now we need to prove that the set Ω =

{
x ∈ Cq[0, 1]

∣∣x = λr−1Fx, λ ∈ (0, 1)
}
is

bounded.
By (2.3), we have

|ANx(t)| ≤ 1

2Γq(β)

∫ 1

0

(1− qs)β−1q |f(s, x(s))|∇qs

≤ 1

2Γq(β)

∫ 1

0

(1− qs)β−1q (a(s) + b(s)|x(s)|p−1)∇qs

≤ 1

2Γq(β)
(‖a‖∞ + ‖b‖∞‖x‖p−1∞ ) · 1

β

=
1

2Γq(β + 1)
(‖a‖∞ + ‖b‖∞‖x‖p−1∞ ), : ∀t ∈ [0, 1],
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which together with the monotonicity of sq−1, implies that

|BNx(t)| ≤ 1

2Γq(α)

∫ 1

0

(1− qs)α−1q |qIβ0+Nx(s) +ANx(s)|r−1∇qs

≤ 1

2Γq(α)

∫ 1

0

(1− qs)α−1q

(
tβ

Γq(β + 1)
(‖a‖∞ + ‖b‖∞‖x‖p−1∞ )

+
1

2Γq(β + 1)
(‖a‖∞ + ‖b‖∞‖x‖p−1∞ )

)r−1
∇qs

=
1

2Γq(α)

(‖a‖∞ + ‖b‖∞‖x‖p−1∞ )r−1

2r−1(Γq(β + 1))r−1
(2tβ + 1)r−1

∫ 1

0

(1− qs)α−1q ∇qs

Hence, we get

|BNx(t)| ≤ 3r−1

2rΓq(α+ 1)(Γq(β + 1))r−1
(‖a‖∞ + ‖b‖∞‖x‖p−1∞ )r−1 (2.5)

∀t ∈ [0, 1] Similarly, we find that,

|qIα0+φr(qI
β
0+Nx(t) +ANx(t))| ≤ 3r−1(‖a‖∞ + ‖b‖∞‖x‖p−1∞ )r−1

2r−1Γq(α+ 1)(Γq(β + 1))r−1
(2.6)

For x ∈ Ω, we get x(t) = λr−1Fx(t). Thus, using (2.5)and (2.6), we obtain

|x(t)| ≤ |qIα0+φr(qI
β
0+Nx(t) +ANx(t))|+ |BNx(t)|

≤ 3r(‖a‖∞ + ‖b‖∞‖x‖p−1∞ )r−1

2rΓq(α+ 1)(Γq(β + 1))r−1
∀t ∈ [0, 1].

There exist a constant M > 0 such that ‖x‖∞ ≤M .
As a consequence of Schaefer’s fixed point theorem, we deduce that F has a fixed
point which is the solution of ABVP (2.1) and (2.2). �

3. An example

Here is an example that illustrates the main result.

Consider the time scale Tq , and consider the following ABVP for the q−fractional
p−Laplacian equation

qC
1
2
0 φ3

(
qC

3
4
0 x(t)

)
=

1

10
x2(t) + sin t, t ∈ Tq

with boundary conditions

x(0) = −x(1), qC
3
4
0 x(0) = − qC

3
4
0 x(1).

Corresponding to ABVP (2.1) and (2.2), we have: p = 3, r = 3
2 , α = 3

4 , β = 1
2 and

f(t, x(t)) = 1
10x

2(t) + sin t.
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Choose a(t) = 1, b(t) = 1
10 , then after a straightforward calculations, we obtain

that ‖b‖∞ = 1
10 and

3
3
2 ( 110 )

1
2

2
3
2 Γq(

3
4 + 1)(Γq(

1
2 + 1))

1
2

< 1.

The ABVP in this example satisfies all assumptions of the Theorem 2.2, hence it
has at least one solution.

References

[1] T. Chen and w. Liu, An anti-periodic boundary value problem for the fractional differential
equation with a p−Laplacian operator, Applied Mathematics Letters, vol. 25, no. 11, pp.
1671-1675, 2012.
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