AN ANTI-PERIODIC CAPUTO q-FRACTIONAL BOUNDARY VALUE PROBLEM WITH A p-LAPLACIAN OPERATOR

BAHAA EL-DIN ABDALLAH AND T. ABDELJAWAD

Abstract

This paper studies the existence of solutions for an anti-periodic boundary value problem for the q-fractional p-Laplacian equation. The existence result depends on Leray-Schaefer's Fixed Point Theorem.

1. Introduction

To study the Turbulent flow in a porous medium, which is a fundamental mechanics problem, Leibenson introduced the p-Laplacian equation as follows:

$$
\begin{equation*}
\left(\phi_{p}\left(x^{\prime}(t)\right)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right) \tag{1.1}
\end{equation*}
$$

where $\phi_{p}(s)=|s|^{p-2} s,: p>1$. Obviously, ϕ_{p} is invertible and its inverse operator is $\phi_{r},: r>1,: \frac{1}{p}+\frac{1}{r}=1$. Then, many certain boundary value conditions have been associated to equation (1.1) during the past few decades. Chen and Liu in [1] considered the following BVP.

$$
\begin{equation*}
{ }^{C} D_{0^{+}}^{\beta} \phi_{p}\left({ }^{C} D_{0^{+}}^{\alpha} x(t)\right)=f(t, x(t)),: t \in[0,1], \tag{1.2}
\end{equation*}
$$

with boundary conditions

$$
x(0)=-x(1), \quad{ }^{C} D_{0^{+}}^{\alpha} x(0)=-{ }^{C} D_{0^{+}}^{\alpha} x(1),
$$

where $0<\alpha, \beta \leq 1,1<\alpha+\beta \leq 2$ and $f:[0,1] \times R \rightarrow R$ is continuous. When $p=2$ we get the composition linear operator ${ }^{C} D_{0^{+}}^{\beta} D_{0^{+}}^{\alpha}$. Depending on Schaefer's fixed point, the authors proved under certain nonlinear growth conditions of the nonlinearity, the following existence theorem:

Theorem 1.1. [1] Let $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Assume that there exist nonnegative functions $a, b \in C[0,1]$ such that

$$
\begin{equation*}
|f(t, u)| \leq a(t)+b(t)|u|^{p-1}, \forall t \in[0,1], u \in \mathbb{R} . \tag{1.3}
\end{equation*}
$$

[^0]Then the Anti BVP (1.2) has at least one solution, provided that

$$
\begin{equation*}
\frac{3^{r}\|b\|_{\infty}^{r-1}}{2^{r} \Gamma(\alpha+1) \Gamma(\beta+1)^{r-1}}<1 \tag{1.4}
\end{equation*}
$$

The q-fractional calculus basics were initiated about the middle of the previous century $[24,14,16,19,17,18,15,4,6,7,2,3,12]$. In the last two decades this calculus started to attract many authors, when fractional calculus [20, 21, 22, 23, 37] applications started to appear in different branches of science and engineering and the discrete fractional calculus into nabla and delta started to be developed extensively $[5,8,9,10,11,26,27,28,29,30,31,31,32,33,34,35,36,13]$. In this article we investigate the result stated in Theorem 1.1 in the sense of q-fractional calculus.

For $0<q<1$, let T_{q} be the time scale

$$
T_{q}=\left\{q^{n}: n=0,1, \ldots\right\} \cup\{0\}
$$

More generally, if α is a nonnegative real number then we define the time scale

$$
T_{q}^{\alpha}=\left\{q^{n+\alpha}: n=0,1, \ldots\right\} \cup\{0\}
$$

We write $T_{q}^{0}=T_{q}$.
For a function $f: T_{q} \rightarrow R$, the nabla q-derivative of f is given by

$$
\begin{equation*}
\nabla_{q} f(t)=\frac{f(t)-f(q t)}{(1-q) t}, t \in T_{q}-\{0\} \tag{1.5}
\end{equation*}
$$

The nabla q-integral of f is given by

$$
\begin{equation*}
\int_{0}^{t} f(s) \nabla_{q} s=(1-q) t \sum_{i=0}^{\infty} q^{i} f\left(t q^{i}\right) \tag{1.6}
\end{equation*}
$$

and for $0 \leq a \in T_{q}$

$$
\int_{a}^{t} f(s) \nabla_{q} s=\int_{0}^{t} f(s) \nabla_{q} s-\int_{0}^{a} f(s) \nabla_{q} s
$$

By the fundamental theorem in q-calculus we have

$$
\begin{equation*}
\nabla_{q} \int_{0}^{t} f(s) \nabla_{q} s=f(t) \tag{1.7}
\end{equation*}
$$

and if f is continuous at 0 , then

$$
\begin{equation*}
\int_{0}^{t} \nabla_{q} f(s) \nabla_{q} s=f(t)-f(0) \tag{1.8}
\end{equation*}
$$

Also the following identity will be helpful

$$
\begin{equation*}
\nabla_{q} \int_{a}^{t} f(t, s) \nabla_{q} s=\int_{a}^{t} \nabla_{q} f(t, s) \nabla_{q} s+f(q t, t) \tag{1.9}
\end{equation*}
$$

From the theory of q-calculus and the theory of time scale more generally, the following product rule is valid

$$
\begin{equation*}
\nabla_{q}(f(t) g(t))=f(q t) \nabla_{q} g(t)+\left(\nabla_{q} f(t)\right) g(t) \tag{1.10}
\end{equation*}
$$

The q-binomial function for $n \in N$ is defined by

$$
\begin{equation*}
(t-s)_{q}^{n}=\prod_{i=0}^{n-1}\left(t-q^{i} s\right) \tag{1.11}
\end{equation*}
$$

When α is a non positive integer, the q-binomial fractional function is defined by

$$
\begin{equation*}
(t-s)_{q}^{\alpha}=t^{\alpha} \prod_{i=0}^{\infty} \frac{1-\frac{s}{t} q^{i}}{1-\frac{s}{t} q^{i+\alpha}} \tag{1.12}
\end{equation*}
$$

It has the following properties

- $(t-s)_{q}^{\beta+\gamma}=(t-s)_{q}^{\beta}\left(t-q^{\beta} s\right)_{q}^{\gamma}$
- $(a t-a s)_{q}^{\beta}=a^{\beta}(t-s)_{q}^{\beta}$
- The nabla q-derivative of the q-binomial function with respect to t is

$$
\nabla_{q}(t-s)_{q}^{\alpha}=\frac{1-q^{\alpha}}{1-q}(t-s)_{q}^{\alpha-1}
$$

- The nabla q-derivative of the q-binomial function with respect to s is

$$
\nabla_{q}(t-s)_{q}^{\alpha}=-\frac{1-q^{\alpha}}{1-q}(t-q s)_{q}^{\alpha-1}
$$

where $\alpha, \beta, \gamma \in R$.
Moreover, the q-fractional integral of order $\alpha \neq 0,-1,-2, \ldots$ is defined by

$$
\begin{equation*}
{ }_{q} I_{0}^{\alpha} f(t)=\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{t}(t-q s)_{q}^{\alpha-1} f(s) \nabla_{q} s \tag{1.13}
\end{equation*}
$$

Let $\alpha>0$. If $\alpha \notin N$, then the α-order Caputo (left) q-fractional derivative of a function f is defined by

$$
\begin{equation*}
{ }_{q} C_{a}^{\alpha} f(t) \triangleq:_{q} I_{a}^{(n-\alpha)} \nabla_{q}^{n} f(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t}(t-q s)_{q}^{n-\alpha-1} \nabla_{q}^{n} f(s) \nabla_{q} s \tag{1.14}
\end{equation*}
$$

where $n=[\alpha]+1$ and $[\alpha]$ denotes the greatest integer less than or equal to α. If $\alpha \in N$, then ${ }_{q} C_{a}^{\alpha} f(t) \triangleq \nabla_{q}^{n} f(t)$.
The following identity is useful to transform Caputo q-fractional difference equation into
q-fractional integrals.
Assume $\alpha>0$ and f is defined in suitable domains. Then

$$
\begin{equation*}
{ }_{q} I_{a}^{\alpha}{ }_{q} C_{a}^{\alpha} f(t)=f(t)-\sum_{k=0}^{n-1} \frac{(t-a)_{q}^{k}}{\Gamma_{q}(k+1)} \nabla_{q}^{k} f(a) \tag{1.15}
\end{equation*}
$$

and if $0<\alpha \leq 1$ then

$$
\begin{equation*}
{ }_{q} I_{a}^{\alpha}:_{q} C_{a}^{\alpha} f(t)=f(t)-f(a) \tag{1.16}
\end{equation*}
$$

The following identity is essential to solve linear q-fractional equations

$$
\begin{equation*}
{ }_{q} I_{a}^{\alpha}(x-a)_{q}^{\mu}=\frac{\Gamma_{q}(\mu+1)}{\Gamma_{q}(\alpha+\mu+1)}(x-a)_{q}^{\mu+\alpha} \quad(0 \leq a<x<b) \tag{1.17}
\end{equation*}
$$

where $\alpha \in R^{+}$and $\mu \in(-1, \infty)$.
For more about q-Gamma functions and other q-calculus concepts we refer, for example. to [14] The following theorem is of importance to be stated in the article.

Theorem 1.2. Leray-Schaefer's Fixed Point Theorem:

let T be a continuous and compact mapping of a Banach space X into itself, such that the set

$$
\Lambda=\{x \in X: x=\lambda T x, \text { for some } 0 \leq \lambda \leq 1\}
$$

is bounded. Then T has a fixed point. For more general versions of Theorem 1.2 see [38].
2. An anti-Caputo q-FRactional BVP

$$
\begin{equation*}
{ }_{q} C_{0}^{\beta} \phi_{p}\left({ }_{q} C_{0}^{\alpha} x(t)\right)=f(t, x(t)),: t \in T_{q} \tag{2.1}
\end{equation*}
$$

with anti-boundary conditions

$$
\begin{equation*}
x(0)=-x(1), \quad{ }_{q} C_{0}^{\alpha} x(0)=-{ }_{q} C_{0}^{\alpha} x(1) \tag{2.2}
\end{equation*}
$$

where, $0<\alpha, \beta \leq 1,1<\alpha+\beta \leq 2$ and $f: T_{q} \times R \rightarrow R$ is continuous.
$C_{q}[0,1]$ will denote the Banach space of all continuous real-valued functions defined on the time scale T_{q} with the supremum norm.
Lemma 2.1. Given $h(t)=f(t, x(t))$ is continuous on T_{q}, then the solution of (2.1) and (2.2) is

$$
\begin{aligned}
& x(t)={ }_{q} I_{0}^{\alpha} \phi_{r}\left({ }_{q} I_{0}^{\beta} h(t)+A h(t)\right)+B h(t) \\
&=\quad \frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{t}(t-q s)_{q}^{\alpha-1} \phi_{r}\left(\frac{1}{\Gamma_{q}(\beta)} \int_{0}^{s}(s-q \tau)_{q}^{\beta-1} h(\tau) \nabla_{q} \tau+A h(s)\right) \nabla_{q} s+B h(s), \\
& \text { where } A h(t)=\frac{-1}{2 \Gamma_{q}(\beta)} \int_{0}^{1}(1-q s)_{q}^{\beta-1} h(s) \nabla_{q} s \text { and } \\
& B h(t)=\frac{-1}{2 \Gamma_{q}(\alpha)} \int_{0}^{1}(1-q s)_{q}^{\alpha-1} \phi_{r}\left(\frac{1}{\Gamma_{q}(\beta)} \int_{0}^{s}(s-q \tau)_{q}^{\beta-1} h(\tau) \nabla_{a} \tau+A h(s)\right) \nabla_{q} s \\
& \forall t \in[0,1]
\end{aligned}
$$

Proof. Assume that $x(t)$ satisfies (2.1), then

$$
{ }_{q} I_{0}^{\beta}{ }_{q} C_{0}^{\beta} \phi_{p}\left({ }_{q} C_{0}^{\alpha} x(t)\right)={ }_{q} I_{0}^{\beta} h(t)
$$

Now using (1.16) we get

$$
\phi_{p}\left({ }_{q} C_{0}^{\alpha} x(t)\right)={ }_{q} I_{0}^{\beta} h(t)+\phi_{p}\left({ }_{q} C_{0}^{\alpha} x(0)\right)
$$

Now using ${ }_{q} C_{0}^{\alpha} x(0)=-{ }_{q} C_{0}^{\alpha} x(1)$, we get

$$
\phi_{p}\left({ }_{q} C_{0}^{\alpha} x(0)\right)=-\left.\frac{1}{2}{ }_{q} I_{0}^{\beta} h(t)\right|_{t=1}=A h(t)
$$

Now we have

$$
\phi_{p}\left({ }_{q} C_{0}^{\alpha} x(t)\right)={ }_{q} I_{0}^{\beta} h(t)+A h(t)
$$

which is equivalent to ${ }_{q} C_{0}^{\alpha} x(t)=\phi_{r}\left({ }_{q} I_{0}^{\beta} h(t)+A h(t)\right)$. Using (2.1), we get

$$
x(t)=x(0)+{ }_{q} I_{0}^{\alpha} \phi_{r}\left({ }_{q} I_{0}^{\beta} h(t)+A h(t)\right)
$$

Using $x(0)=-x(1)$, we obtain

$$
x(0)=-\frac{1}{2}:\left._{q} I_{0}^{\alpha} \phi_{r}\left({ }_{q} I_{0}^{\beta} h(t)+A h(t)\right)\right|_{t=1}=B h(t) .:
$$

Now, define the operator $F: C_{q}[0,1] \rightarrow C_{q}[0,1]$ by

$$
\begin{aligned}
F x(t) & ={ }_{q} I_{0^{+}}^{\alpha}: \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(t)+A N x(t)\right)+B N x(t) \\
& =\frac{1}{\Gamma_{q}(\alpha)} \int_{0}^{t}(t-q s)_{q}^{\alpha-1} \phi_{r}\left(\frac{1}{\Gamma_{q}(\beta)} \int_{0}^{s}(s-q \tau)_{q}^{\beta-1} f(\tau, x(\tau)) \nabla_{q} \tau\right. \\
& \left.-\frac{1}{2 \Gamma_{q}(\beta)} \int_{0}^{1}(1-q \tau)_{q}^{\beta-1} f(\tau, x(\tau)) \nabla_{q} \tau\right) \nabla_{q} s \\
& -\frac{1}{2 \Gamma_{q}(\alpha)} \int_{0}^{1}(1-q s)_{q}^{\alpha-1} \phi_{r}\left(\frac{1}{\Gamma_{q}(\beta)} \int_{0}^{s}(s-q \tau)_{q}^{\beta-1} f(\tau, x(\tau)) \nabla_{q} \tau\right. \\
& \left.-\frac{1}{2 \Gamma_{q}(\beta)} \int_{0}^{1}(1-q \tau)_{q}^{\beta-1} f(\tau, x(\tau)) \nabla_{q} \tau\right) \nabla_{q} s,
\end{aligned}
$$

$\forall t \in[0,1]$ where $N: C_{q}[0,1] \rightarrow C_{q}[0,1]$ is the Nemytskii operator defined by $N x(t)=f(t, x(t)), \forall t \in[0,1]$. Then the fixed points of the operator F are solutions of (2.1) and (2.2). The next theorem is based on Schaefer's fixed point theorem.

Theorem 2.2. let $f: T_{q} \times \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Assume that there exist two functions $a, b \in C\left(T_{q}, \mathbb{R}\right)$ such that

$$
\begin{equation*}
|f(t, u)| \leq a(t)+b(t)|u|^{p-1}, \forall t \in T_{q}, u \in \mathbb{R} . \tag{2.3}
\end{equation*}
$$

Then the q-anti BVP (1-2) has at least one solution, provided that

$$
\begin{equation*}
\frac{3^{r}\|b\|_{\infty}^{r-1}}{2^{r} \Gamma_{q}(\alpha+1) \Gamma_{q}(\beta+1)^{r-1}}<1 . \tag{2.4}
\end{equation*}
$$

Proof. Let us prove first that $F: C_{q}[0,1] \rightarrow C_{q}[0,1]$ is completely continuous. Let $\Omega \subset C_{q}[0,1]$ be an open bounded subset. By the continuity of f, we can get that F is continuous and $F(\bar{\Omega})$ is bounded. Moreover, there exists a constant $T>0$ such that $\left|{ }_{q} I_{0^{+}}^{\beta} N x+A N x\right| \leq T, \forall x \in \bar{\Omega}, t \in[0,1]$. Thus, in view of the Arzelá-Ascoli theorem, we need only to prove that $F(\bar{\Omega}) \subset C_{q}[0,1]$ is equicontinuous.

For $0 \leq t_{1}<t_{2} \leq 1, x \in \bar{\Omega}$, we have

$$
\begin{aligned}
& \left|F x\left(t_{2}\right)-F x\left(t_{1}\right)\right| \\
= & \left|{ }_{q} I_{0^{+}}^{\alpha} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(t)+A N x(t)\right)\right|_{t=t_{2}}-\left.{ }_{q} I_{0^{+}}^{\alpha} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(t)+A N x(t)\right)\right|_{t=t_{1}} \mid \\
= & \left.\frac{1}{\Gamma_{q}(\alpha)} \right\rvert\, \int_{0}^{t_{2}}\left(t_{2}-q s\right)_{q}^{\alpha-1} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(s)+A N x(s)\right) \nabla_{q} s \\
- & \int_{0}^{t_{1}}\left(t_{1}-q s\right)_{q}^{\alpha-1} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(s)+A N x(s)\right) \nabla_{q} s \mid \\
= & \left.\frac{1}{\Gamma_{q}(\alpha)} \right\rvert\, \int_{0}^{t_{1}}\left[\left(t_{2}-q s\right)_{q}^{\alpha-1}-\left(t_{1}-q s\right)_{q}^{\alpha-1}\right] \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(s)+A N x(s)\right) \nabla_{q} s \\
+ & \int_{t_{1}}^{t_{2}}\left(t_{2}-q s\right)_{q}^{\alpha-1} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(s)+A N x(s)\right) \nabla_{q} s \mid \\
\leq & \frac{T^{r-1}}{\Gamma_{q}(\alpha)}\left\{\int_{0}^{t_{1}}\left[\left(t_{1}-q s\right)_{q}^{\alpha-1}-\left(t_{2}-q s\right)_{q}^{\alpha-1}\right] \nabla_{q} s+\int_{t_{1}}^{t_{2}}\left(t_{2}-q s\right)_{q}^{\alpha-1} \nabla_{q} s\right\} \\
= & \frac{T^{r-1}}{\Gamma_{q}(\alpha+1)}\left[t_{1}^{\alpha}-t_{2}^{\alpha}+2\left(t_{1}-t_{2}\right)_{q}^{\alpha}\right] .
\end{aligned}
$$

Since t_{q}^{α} is uniformly continuous on $[0,1]$, we can obtain that $F(\bar{\Omega}) \subset C_{q}[0,1]$ is equicontinuous.
Now we need to prove that the set $\Omega=\left\{x \in C_{q}[0,1] \mid x=\lambda^{r-1} F x, \lambda \in(0,1)\right\}$ is bounded.
By (2.3), we have

$$
\begin{aligned}
|A N x(t)| & \leq \frac{1}{2 \Gamma_{q}(\beta)} \int_{0}^{1}(1-q s)_{q}^{\beta-1}|f(s, x(s))| \nabla_{q} s \\
& \leq \frac{1}{2 \Gamma_{q}(\beta)} \int_{0}^{1}(1-q s)_{q}^{\beta-1}\left(a(s)+b(s)|x(s)|^{p-1}\right) \nabla_{q} s \\
& \leq \frac{1}{2 \Gamma_{q}(\beta)}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right) \cdot \frac{1}{\beta} \\
& =\frac{1}{2 \Gamma_{q}(\beta+1)}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right),: \forall t \in[0,1]
\end{aligned}
$$

which together with the monotonicity of s^{q-1}, implies that

$$
\begin{aligned}
|B N x(t)| & \leq\left.\frac{1}{2 \Gamma_{q}(\alpha)} \int_{0}^{1}(1-q s)_{q}^{\alpha-1}\right|_{q} I_{0^{+}}^{\beta} N x(s)+\left.A N x(s)\right|^{r-1} \nabla_{q} s \\
& \leq \frac{1}{2 \Gamma_{q}(\alpha)} \int_{0}^{1}(1-q s)_{q}^{\alpha-1}\left(\frac{t^{\beta}}{\Gamma_{q}(\beta+1)}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right)\right. \\
& \left.+\frac{1}{2 \Gamma_{q}(\beta+1)}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right)\right)^{r-1} \nabla_{q} s \\
& =\frac{1}{2 \Gamma_{q}(\alpha)} \frac{\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right)^{r-1}}{2^{r-1}\left(\Gamma_{q}(\beta+1)\right)^{r-1}}\left(2 t^{\beta}+1\right)^{r-1} \int_{0}^{1}(1-q s)_{q}^{\alpha-1} \nabla_{q} s
\end{aligned}
$$

Hence, we get

$$
\begin{equation*}
|B N x(t)| \leq \frac{3^{r-1}}{2^{r} \Gamma_{q}(\alpha+1)\left(\Gamma_{q}(\beta+1)\right)^{r-1}}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right)^{r-1} \tag{2.5}
\end{equation*}
$$

$\forall t \in[0,1]$ Similarly, we find that,

$$
\begin{equation*}
\left|{ }_{q} I_{0^{+}}^{\alpha} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(t)+A N x(t)\right)\right| \leq \frac{3^{r-1}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right)^{r-1}}{2^{r-1} \Gamma_{q}(\alpha+1)\left(\Gamma_{q}(\beta+1)\right)^{r-1}} \tag{2.6}
\end{equation*}
$$

For $x \in \Omega$, we get $x(t)=\lambda^{r-1} F x(t)$. Thus, using (2.5) and (2.6), we obtain

$$
\begin{aligned}
|x(t)| & \leq\left|{ }_{q} I_{0^{+}}^{\alpha} \phi_{r}\left({ }_{q} I_{0^{+}}^{\beta} N x(t)+A N x(t)\right)\right|+|B N x(t)| \\
& \leq \frac{3^{r}\left(\|a\|_{\infty}+\|b\|_{\infty}\|x\|_{\infty}^{p-1}\right)^{r-1}}{2^{r} \Gamma_{q}(\alpha+1)\left(\Gamma_{q}(\beta+1)\right)^{r-1}} \forall t \in[0,1] .
\end{aligned}
$$

There exist a constant $M>0$ such that $\|x\|_{\infty} \leq M$.
As a consequence of Schaefer's fixed point theorem, we deduce that F has a fixed point which is the solution of ABVP (2.1) and (2.2).

3. An example

Here is an example that illustrates the main result.
Consider the time scale T_{q}, and consider the following ABVP for the q-fractional p-Laplacian equation

$$
{ }_{q} C_{0}^{\frac{1}{2}} \phi_{3}\left({ }_{q} C_{0}^{\frac{3}{4}} x(t)\right)=\frac{1}{10} x^{2}(t)+\sin t, t \in T_{q}
$$

with boundary conditions

$$
x(0)=-x(1), \quad{ }_{q} C_{0}^{\frac{3}{4}} x(0)=-{ }_{q} C_{0}^{\frac{3}{4}} x(1)
$$

Corresponding to ABVP (2.1) and (2.2), we have: $p=3, r=\frac{3}{2}, \alpha=\frac{3}{4}, \beta=\frac{1}{2}$ and $f(t, x(t))=\frac{1}{10} x^{2}(t)+\sin t$.

Choose $a(t)=1, b(t)=\frac{1}{10}$, then after a straightforward calculations, we obtain that $\|b\|_{\infty}=\frac{1}{10}$ and

$$
\frac{3^{\frac{3}{2}}\left(\frac{1}{10}\right)^{\frac{1}{2}}}{2^{\frac{3}{2}} \Gamma_{q}\left(\frac{3}{4}+1\right)\left(\Gamma_{q}\left(\frac{1}{2}+1\right)\right)^{\frac{1}{2}}}<1
$$

The ABVP in this example satisfies all assumptions of the Theorem 2.2, hence it has at least one solution.

References

[1] T. Chen and w. Liu, An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Applied Mathematics Letters, vol. 25, no. 11, pp. 1671-1675, 2012.
[2] H. Aktuğlu and M. A. Özarslan, On the solvability of Caputo q-fractional boundary value problem involving p-Laplacian operator, Hindawi Publishing Corporation, vol. 2013, Article ID 658617, 8 pages.
[3] T. Abdeljawad, D. Baleanu, Caputo q-Fractional Initial Value Problems and a q-Analogue Mittag-Leffler Function, Communications in Nonlinear Science and Numerical Simulations, vol. 16 (12), 4682-4688 (2011).
[4] Thabet Abdeljawad, J. Alzabut, The q-fractional analogue for Gronwall-type inequality, Vol. 2013 (2013), Article ID 543839, 7 pages.
[5] T. Abdeljawad, D. Dumitru, Fractional differences and integration by parts, Journal of computational Analysis and Applications, vol 13, no. 3, 574-582.
[6] Thabet Abdeljawad, Betul Benli, Dumitru Baleanu, A generalized q-Mittag-Leffler function by Caputo fractional linear equations, Abstract and Applied Analysis, vol 2012, 11 pages, Article ID 546062 (2012).
[7] Fahd Jarad, Thabet Abdeljawad, Dumitru Baleanu. Stability of q-farctional nonautonomous systems, Nonlinear Analysis: Real and World Applications, doi: 10.1016/j.nnorwa.2012.08.001, (2012).
[8] T. Abdeljawad, F. Jarad, D. Baleanu, A semigroup-like property for discrete Mittag-Leffler functions, Advances in Difference Equations, 2012/1/72.
[9] N. Bastos, R. A. C. Ferreira, D. F. M. Torres, Discrete-Time Variational Problems, Signal Processing, Volume 91 Issue 3, March, 2011.
[10] F. M. Atıcı, P.W. Eloe, A Transform method in discrete fractional calculus , International Journal of Difference Equations, vol 2, no 2, (2007), 165-176.
[11] F. M. Atıcı, P.W.Eloe, Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society, to appear.
[12] F. M. Atıcı, P.W. Eloe, Fractional q-calculus on a time scale, Journal of Nonlinear Mathematical Physics 14, 3, (2007), 333-344.
[13] K.S. Miller, B. Ross,Fractional difference calculus, Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, Japan, (1989), 139-152.
[14] T. Ernst, The history of q-calculus and new method (Licentiate Thesis), U.U.D.M. Report 2000: http://math.uu.se/thomas/Lics.pdf.
[15] R. P. Agrawal, Certain fractional q-integrals and q-derivatives, Proc. Camb. Phil. Soc. (1969), 66,365, 365-370.
[16] W.A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edin. Math. Soc., vol 15 (1969), 135-140.
[17] W.A. Al-Salam, A. Verma, A fractional Leibniz q-formula, Pacific Journal of Mathematics, vol 60, (1975), 1-9.
[18] W. A. Al-Salam, q-Analogues of Cauchy's formula, Proc. Amer. Math. Soc. 17,182-184,(19521953).
[19] M. R. Predrag,D. M. Sladana, S. S. Miomir, Fractional Integrals and Derivatives in q-calculus, Applicable Analysis and Discrete Mathematics, 1, 311-323, (2007).
[20] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
[21] S. Samko, A. A. Kilbas, Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
[22] A. A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and Application of Fractional Differential Equations, North Holland Mathematics Studies 204, 2006.
[23] A. A. Kilbas, M. Saigo, On solution of integral equation of Abel-Volterra type, Diff. Integr. Equat., 8 (5), (1995) 993-1011.
[24] W. Hahn, Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der Hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation, Math. Nachr., 2, 340-379 (1949).
[25] Ferhan M. Atıcı, Paul W. Eloe, Gronwallâ $€^{T M}{ }_{S}$ inequality on discrete fractional calculus, Computers \& Mathematics with Applications, Volume 64, Issue 10, November 2012, Pages 3193â€"3200.
[26] R. P. Agarwal, Difference equations and inequalities, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker Inc., New York, 2000. Theory, methods, and applications.
[27] G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Modelling 51 (2010), no. 5-6, 562-571.
[28] F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), no. 2, 165-176.
[29] F. M. Atici, Paul W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), no. 3, 981-989.
[30] F. M. Atici, S. SengA $\frac{1}{4} l$, Modeling with fractional difference equations, J. Math. Anal. Appl. 369 (2010), no. 1, 1-9.
[31] F. M. Atici, P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011), no. 4, 445-456.
[32] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst. 29 (2011), no. 2, 417-437.
[33] J. B. Diaz, T. J. Osler, Differences of fractional order, Math. Comp. 28 (1974), 185-202.
[34] C. S. Goodrich, Continuity of solutions to discrete fractional initial value problems, Comput. Math. Appl. 59 (2010), no. 11, 3489-3499.
[35] C. S. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equ. 5 (2010), no. 2, 195-216.
[36] H. L. Gray, N. F. Zhang, On a new definition of the fractional difference, Math. Comp. 50 (1988), no. 182, 513-529.
[37] R. L. Magin, Fractional Calculus in Bioengineering, Begell House, 2006.
[38] Mohamed A. Khamsi, William A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory, A Wiley-Interscience Series of Texts,2001.
Current address: Department of Mathematics and General Sciences, Prince Sultan University-Riyadh-KSA

E-mail address: anyone@science.ankara.edu.tr
URL: http://math.science.ankara.edu.tr

[^0]: Received by the editors July 21, 2014; Accepted: Oct. 25, 2014.
 2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18.
 Key words and phrases. p-Laplacian, Caputo q-fractional derivative.

