ON CONVERGENCE PROPERTIES OF FIBONACCI-LIKE CONDITIONAL SEQUENCES

ELIF TAN AND ALI BULENT EKIN

Abstract

It is well-known that the ratios of successive terms of Fibonacci numbers $\left\{\frac{F_{n+1}}{F_{n}}\right\}$ converge to the golden ratio $\frac{1+\sqrt{5}}{2}$, so it is natural to ask if analogous results exist for the generalizations of the Fibonacci sequence. In this paper, we consider the generalization of the Fibonacci sequence, which is called Fibonacci-like conditional sequences and we investigate the convergence properties of this sequences.

1. INTRODUCTION

The sequence F_{n} of Fibonacci numbers are defined by the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}, \quad n \geq 2
$$

with the initial conditions $F_{0}=0$ and $F_{1}=1$.
One can find many applications of this numbers in various branches of science like pure and applied mathematics, in biology, among many others. Especially, this numbers are relatives of the golden section, which itself appears in the study of nature and of art. See also [3] and [6] for additional references and history.

This sequence has been generalized in many ways. In [5], authors introduced the Fibonacci-like conditional sequence which is defined by for $n \geq 2$

$$
v_{n}=\left\{\begin{array}{cc}
a_{0} v_{n-1}+b_{0} v_{n-2}, & \text { if } n \equiv 0(\bmod k) \tag{1.1}\\
a_{1} v_{n-1}+b_{1} v_{n-2}, & \text { if } n \equiv 1(\bmod k) \\
\vdots \\
a_{k-1} v_{n-1}+b_{k-1} v_{n-2}, & \text { if } n \equiv k-1(\bmod k)
\end{array}\right.
$$

with arbitrary initial conditions v_{0}, v_{1} and $a_{0}, a_{1}, \ldots, a_{k-1}, b_{0}, b_{1}, \ldots, b_{k-1}$ are non zero numbers. Taking $a_{0}=a_{1}=\ldots=a_{k-1}=1$ and $b_{0}=b_{1}=\ldots=b_{k-1}=1$ with initial conditions $v_{0}=0$ and $v_{1}=1$, it turns out the classical Fibonacci sequence.

[^0]In [5], it was also given the Binet's formulas for the sequence $\left\{v_{n}\right\}$ in terms of a generalized continuant;

$$
\begin{equation*}
v_{n k+r}=(-1)^{k(n+1)}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} v_{k+r}-B \frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta} v_{r}\right) \tag{1.2}
\end{equation*}
$$

where $\alpha=\frac{(-1)^{k} A+\sqrt{A^{2}-4(-1)^{k} B}}{2}$ and $\beta=\frac{(-1)^{k}-\sqrt{A^{2}-4(-1)^{k} B}}{2}$ are the roots of the polynomial $p(z)=z^{2}-(-1)^{k} A z+(-1)^{k} B$,

$$
\begin{equation*}
A:=K_{1}+b_{1} K_{2} \quad B:=\prod_{r=0}^{k-1} b_{r} \tag{1.3}
\end{equation*}
$$

Here, K_{1} and K_{2} are generalized continuants which are defined in [5].
As $\left\{\frac{F_{n+1}}{F_{n}}\right\}$ converges to the golden ratio $\frac{1+\sqrt{5}}{2}$, so it is natural to ask if analogous results exist for the generalizations of the Fibonacci sequence. In [2], it is investigated the convergence of the ratios of the terms of the k-periodic Fibonacci sequence, which is defined by taking $b_{0}=b_{1}=\ldots=b_{k-1}=1$ in (1.1), with initial conditions $v_{0}=0$ and $v_{1}=1$. Also in [1], for the k-periodic Fibonacci sequence in the case of $k=2$, authors show that successive terms of the sequence do not converge, though convergence of ratios of terms when increasing by two's or ratios of even or odd terms.

Following [1] and [2], here we investigate the convergence properties of the Fibonacci-like conditional sequences in (1.1). Our results generalize the former results.

2. Main Results

Assume that $A \neq 0$ and $A^{2}>(-1)^{k} 4 B$. Hence, either $\left|\frac{\beta}{\alpha}\right|<1$ or $\left|\frac{\alpha}{\beta}\right|<1$.
Theorem 2.1. For $n \geq 1$, the ratios of successive terms of the subsequence $\left\{v_{n k+r}\right\}$ converge to

$$
\begin{cases}(-1)^{k} \alpha, & \text { if }\left|\frac{\beta}{\alpha}\right|<1 \tag{2.1}\\ (-1)^{k} \beta, & \text { if }\left|\frac{\alpha}{\beta}\right|<1\end{cases}
$$

Proof. From (1.2), we get

$$
\begin{aligned}
\frac{v_{(n+1) k+r}}{v_{n k+r}} & =\frac{(-1)^{k(n+2)}\left[\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right) v_{k+r}-B\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) v_{r}\right]}{(-1)^{k(n+1)}\left[\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right) v_{k+r}-B\left(\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta}\right) v_{r}\right]} \\
& =(-1)^{k} \frac{\left(\alpha^{n+1}-\beta^{n+1}\right) v_{k+r}-B\left(\alpha^{n}-\beta^{n}\right) v_{r}}{\left(\alpha^{n}-\beta^{n}\right) v_{k+r}-B\left(\alpha^{n-1}-\beta^{n-1}\right) v_{r}}
\end{aligned}
$$

On CONVERGENCE PROPERTIES OF FIBONACCI-LIKE CONDITIONAL SEQUENCES121
If $\left|\frac{\beta}{\alpha}\right|<1$, we have

$$
\frac{v_{(n+1) k+r}}{v_{n k+r}}=(-1)^{k} \alpha \frac{\left(1-\left(\frac{\beta}{\alpha}\right)^{n+1}\right) v_{k+r}-\frac{B}{\alpha}\left(1-\left(\frac{\beta}{\alpha}\right)^{n}\right) v_{r}}{\left(1-\left(\frac{\beta}{\alpha}\right)^{n}\right) v_{k+r}-\frac{B}{\alpha}\left(1-\left(\frac{\beta}{\alpha}\right)^{n-1}\right) v_{r}}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{v_{(n+1) k+r}}{v_{n k+r}}=(-1)^{k} \alpha
$$

Similarly, if $\left|\frac{\alpha}{\beta}\right|<1$, we have

$$
\frac{v_{(n+1) k+r}}{v_{n k+r}}=(-1)^{k} \beta \frac{\left(\left(\frac{\alpha}{\beta}\right)^{n+1}-1\right) v_{k+r}-\frac{B}{\beta}\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right) v_{r}}{\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right) v_{k+r}-\frac{B}{\beta}\left(\left(\frac{\alpha}{\beta}\right)^{n-1}-1\right) v_{r}}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{v_{(n+1) k+r}}{v_{n k+r}}=(-1)^{k} \beta
$$

Theorem 2.2. For $n \geq 1$ and $r=1,2, \ldots, k-1, \frac{v_{n k+r}}{v_{n k+r-1}}$ converge to

$$
\begin{cases}\frac{v_{k+r}+(-1)^{k+1} \beta v_{r}}{v_{k+r-1}+(-1)^{k+1} \beta v_{r-1}}, & \text { if }\left|\frac{\beta}{\alpha}\right|<1 \tag{2.2}\\ \frac{v_{k+r}+(-1)^{k+1} \alpha v_{r}}{v_{k+r-1}+(-1)^{k+1} \alpha v_{r-1}}, & \text { if }\left|\frac{\alpha}{\beta}\right|<1\end{cases}
$$

as $n \rightarrow \infty$.
Proof. From (1.2) and $B=(-1)^{k} \alpha \beta$, we get

$$
\begin{aligned}
\frac{v_{n k+r}}{v_{n k+r-1}} & =\frac{(-1)^{k(n+1)}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} v_{k+r}-B \frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta} v_{r}\right)}{(-1)^{k(n+1)}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} v_{k+r-1}-B \frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta} v_{r-1}\right)} \\
& =\frac{\left(\alpha^{n}-\beta^{n}\right) v_{k+r}-B\left(\alpha^{n-1}-\beta^{n-1}\right) v_{r}}{\left(\alpha^{n}-\beta^{n}\right) v_{k+r-1}-B\left(\alpha^{n-1}-\beta^{n-1}\right) v_{r-1}}
\end{aligned}
$$

If $\left|\frac{\beta}{\alpha}\right|<1$ we have

$$
\frac{v_{n k+r}}{v_{n k+r-1}}=\frac{\left(1-\left(\frac{\beta}{\alpha}\right)^{n}\right) v_{k+r}-\frac{B}{\alpha}\left(1-\left(\frac{\beta}{\alpha}\right)^{n-1}\right) v_{r}}{\left(1-\left(\frac{\beta}{\alpha}\right)^{n}\right) v_{k+r-1}-\frac{B}{\alpha}\left(1-\left(\frac{\beta}{\alpha}\right)^{n-1}\right) v_{r-1}}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{v_{n k+r}}{v_{n k+r-1}}=\frac{v_{k+r}+(-1)^{k+1} \beta v_{r}}{v_{k+r-1}+(-1)^{k+1} \beta v_{r-1}}
$$

Similarly, since $\left|\frac{\alpha}{\beta}\right|<1$ we have

$$
\frac{v_{n k+r}}{v_{n k+r-1}}=\frac{\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right) v_{k+r}-\frac{B}{\beta}\left(\left(\frac{\alpha}{\beta}\right)^{n-1}-1\right) v_{r}}{\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right) v_{k+r-1}-\frac{B}{\beta}\left(\left(\frac{\alpha}{\beta}\right)^{n-1}-1\right) v_{r-1}}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{v_{n k+r}}{v_{n k+r-1}}=\frac{v_{k+r}+(-1)^{k+1} \alpha v_{r}}{v_{k+r-1}+(-1)^{k+1} \alpha v_{r-1}}
$$

In the case of $k=2$ in $\left\{v_{n}\right\}$, with the initial conditions $v_{0}=0$ and $v_{1}=1$, Teorem 2.1 and Teorem 2.2 reduce the following results.

Corollary 1. For $n \geq 1$, the ratios of successive even terms of the sequence $\left\{v_{n}\right\}$ converge to

$$
\begin{cases}\frac{A+\sqrt{A^{2}-4 B}}{2}, & \text { if }\left|\frac{\beta}{\alpha}\right|<1 \tag{2.3}\\ \frac{-A+\sqrt{A^{2}-4 B}}{2}, & \text { if }\left|\frac{\alpha}{\beta}\right|<1\end{cases}
$$

where $A=a_{0} a_{1}+b_{0}+b_{1}$ and $B=b_{0} b_{1}$.
Corollary 2. For $n \geq 1$, the ratios $\frac{v_{2 n+1}}{v_{2 n}}$ converge to

$$
\begin{cases}\frac{\alpha-b_{0}}{a_{0}}, & \text { if }\left|\frac{\beta}{\alpha}\right|<1 \tag{2.4}\\ \frac{\beta-b_{0}}{a_{0}}, & \text { if }\left|\frac{\alpha}{\beta}\right|<1\end{cases}
$$

as $n \rightarrow \infty$.
Corollary 3. For $n \geq 1$, the ratios $\frac{v_{2 n+2}}{v_{2 n+1}}$ converge to

$$
\begin{cases}\frac{\alpha a_{0}}{\alpha-b_{0}}, & \text { if }\left|\frac{\beta}{\alpha}\right|<1 \tag{2.5}\\ \frac{\beta a_{0}}{\beta-b_{0}}, & \text { if }\left|\frac{\alpha}{\beta}\right|<1\end{cases}
$$

as $n \rightarrow \infty$.

Proof. From (1.2) and using $\alpha \beta=b_{0} b_{1}$, we have

$$
\begin{aligned}
\frac{v_{2 n+2}}{v_{2 n+1}} & =\frac{a_{0}\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right)}{\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right)-b_{0}\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)} \\
& =\frac{a_{0}\left(\alpha^{n+1}-\beta^{n+1}\right)}{\left(\alpha^{n+1}-\beta^{n+1}\right)-b_{0}\left(\alpha^{n}-\beta^{n}\right)}
\end{aligned}
$$

If $\left|\frac{\beta}{\alpha}\right|<1$, we have

$$
\frac{v_{2 n+2}}{v_{2 n+1}}=\frac{a_{0}\left(1-\left(\frac{\beta}{\alpha}\right)^{n+1}\right)}{\left(1-\left(\frac{\beta}{\alpha}\right)^{n+1}\right)-\frac{b_{0}}{\alpha}\left(1-\left(\frac{\beta}{\alpha}\right)^{n}\right)}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{v_{2 n+2}}{v_{2 n+1}}=\frac{\alpha a_{0}}{\alpha-b_{0}}
$$

Similarly, if $\left|\frac{\alpha}{\beta}\right|<1$, then

$$
\frac{v_{2 n+2}}{v_{2 n+1}}=\frac{a_{0}\left(\left(\frac{\alpha}{\beta}\right)^{n+1}-1\right)}{\left(\left(\frac{\alpha}{\beta}\right)^{n+1}-1\right)-\frac{b_{0}}{\alpha}\left(\left(\frac{\alpha}{\beta}\right)^{n}-1\right)}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{v_{2 n+2}}{v_{2 n+1}}=\frac{\beta a_{0}}{\beta-b_{0}} .
$$

Now, we consider the sequences $\left\{\frac{v_{n k+r}}{v_{n k+r-1}}\right\}$ for $r=1,2, \ldots, k$.
In [4], it is shown that, for k-periodic Fibonacci sequence

$$
\left\{\frac{v_{n k+r}}{v_{n k+r-1}}\right\} \rightarrow L_{r-1}
$$

where

$$
L_{i+1}=\frac{a_{i+2} L_{i}+1}{L_{i}}, i \in\{0,1, \ldots, k-2\} .
$$

It is surprising that when we consider the Fibonacci-like conditional sequences, we can also get the similar results.

By using the definition of the sequence $\left\{v_{n}\right\}$, we have

$$
\begin{equation*}
v_{n k+i}=a_{i} v_{n k+i-1}+b_{i} v_{n k+i-2}, i=0,1, \ldots, k-1 \tag{2.6}
\end{equation*}
$$

If $\left|\frac{\beta}{\alpha}\right|<1$, from (2.2)

$$
\frac{v_{n k+1}}{v_{n k}} \rightarrow \frac{v_{k+1}+(-1)^{k+1} \beta v_{1}}{v_{k}+(-1)^{k+1} \beta v_{0}}
$$

Let $\frac{v_{k+1}+(-1)^{k+1} \beta v_{1}}{v_{k}+(-1)^{k+1} \beta v_{0}}=L_{0}$.
Similarly, one can show that

$$
\frac{v_{n k+2}}{v_{n k+1}} \rightarrow \frac{v_{k+2}+(-1)^{k+1} \beta v_{2}}{v_{k+1}+(-1)^{k+1} \beta v_{1}}=\frac{a_{2} L_{0}+b_{2}}{L_{0}}=L_{1}
$$

Analogously,

$$
\frac{v_{n k+3}}{v_{n k+2}} \rightarrow \frac{a_{3} L_{1}+b_{3}}{L_{1}}=L_{2}
$$

More generally,

$$
\frac{v_{n k+(i+2)}}{v_{n k+(i+1)}} \rightarrow \frac{a_{i+2} L_{i}+b_{i+2}}{L_{i}}=L_{i+1}, i \in\{0,1, \ldots, k-2\}
$$

And note that $L_{k+i}=L_{i}$, for all non negative integers i. Hence, the set of the limits of the sequences $\left\{\frac{v_{n k+r}}{v_{n k+r-1}}\right\}$ is

$$
\begin{equation*}
\left\{L_{0}, L_{1}, \ldots, L_{k-1}\right\} \tag{2.7}
\end{equation*}
$$

If $\left|\frac{\alpha}{\beta}\right|<1$, following the same ideas, one can show that

$$
\begin{aligned}
& \frac{v_{n k+1}}{v_{n k}} \rightarrow \widetilde{L}_{0} \\
& \frac{v_{n k+2}}{v_{n k+1}} \rightarrow \frac{a_{2} \widetilde{L}_{0}+b_{2}}{\widetilde{L}_{0}}=\widetilde{L}_{1}
\end{aligned}
$$

and more generally,

$$
\frac{v_{n k+(i+2)}}{v_{n k+(i+1)}} \rightarrow \frac{a_{i+2} \widetilde{L}_{i}+b_{i+2}}{\widetilde{L}_{i}}=\widetilde{L}_{i+1}, i \in\{0,1, \ldots, k-2\}
$$

3. Examples

Example 3.1. Let $k=3$. The sequence $\left\{v_{n}\right\}$ satisfies with initial conditions $v_{0}=0, v_{1}=1$ and for $n \geq 2$,

$$
v_{n}=\left\{\begin{align*}
a_{0} v_{n-1}+b_{0} v_{n-2}, & \text { if } n \equiv 0(\bmod 3) \tag{3.1}\\
a_{1} v_{n-1}+b_{1} v_{n-2}, & \text { if } n \equiv 1(\bmod 3) \\
a_{2} v_{n-1}+b_{2} v_{n-2}, & \text { if } n \equiv 2(\bmod 3)
\end{align*}\right.
$$

Using definition of generalized continuant in [5], we have

$$
A=a_{0} a_{1} a_{2}+a_{1} b_{0}+a_{0} b_{2}+a_{2} b_{1} \quad \text { and } \quad B=b_{0} b_{1} b_{2}
$$

Since

$$
\begin{aligned}
& v_{2}=a_{2}, v_{3}=a_{0} a_{2}+b_{0}, v_{4}=a_{0} a_{1} a_{2}+a_{1} b_{0}+a_{2} b_{1} \\
& v_{5}=a_{2}\left(a_{0} a_{1} a_{2}+a_{1} b_{0}+a_{2} b_{1}\right)+b_{2}\left(a_{0} a_{2}+b_{0}\right)
\end{aligned}
$$

and taking $a_{0}=1, a_{1}=2, a_{2}=1, b_{0}=2, b_{1}=-1, b_{2}=1$, the terms of the sequence $\left\{v_{n}\right\}$ are listed in the following table

n	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
v_{n}	1	1	3	5	8	18	28	46	102	158	260	576	\ldots

Since

$$
\alpha=-3+\sqrt{7} \quad \text { and } \quad \beta=-3-\sqrt{7},
$$

then $\left|\frac{\alpha}{\beta}\right|<1$.
For $r=1,2,3$, the limit of the terms of the sequence $\left\{\frac{v_{3 n+r}}{v_{3 n+r-1}}\right\}$ are

$$
\begin{aligned}
\frac{v_{3 n+1}}{v_{3 n}} & \rightarrow \frac{v_{4}+\alpha v_{1}}{v_{3}+\alpha v_{0}}=\frac{2+\sqrt{7}}{3}=\widetilde{L}_{0} \\
\frac{v_{3 n+2}}{v_{3 n+1}} & \rightarrow \frac{v_{5}+\alpha v_{2}}{v_{4}+\alpha v_{1}}=-1+\sqrt{7} \\
& =\frac{a_{2} \widetilde{L}_{0}+b_{2}}{\widetilde{L}_{0}}=\frac{\widetilde{L}_{0}+1}{\widetilde{L}_{0}}=\widetilde{L}_{1} \\
\frac{v_{3 n+3}}{v_{3 n+2}} & \rightarrow \frac{\widetilde{L}_{1}+2}{\widetilde{L}_{1}}=\frac{4+\sqrt{7}}{3}=\widetilde{L}_{2} .
\end{aligned}
$$

Example 3.2. Let $k=2$. The sequence $\left\{v_{n}\right\}$ satisfies with initial conditions $v_{0}=0, v_{1}=1$ and for $n \geq 2$,

$$
\begin{gather*}
v_{n}=\left\{\begin{array}{l}
a_{0} v_{n-1}+b_{0} v_{n-2}, \text { if } n \equiv 0(\bmod 2) \\
a_{1} v_{n-1}+b_{1} v_{n-2}, \text { if } n \equiv 1(\bmod 2)
\end{array}\right. \tag{3.2}\\
A=a_{0} a_{1}+b_{0}+b_{1} \quad \text { and } \quad B=b_{0} b_{1} .
\end{gather*}
$$

Taking $a_{0}=1, a_{1}=2, b_{0}=3, b_{1}=4$, the terms of the sequence $\left\{v_{n}\right\}$ are listed in the following table

n	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
v_{n}	1	1	6	9	42	69	306	513	2250	3789	16578	27945	\ldots

Since

$$
\alpha=\frac{9+\sqrt{33}}{2} \quad \text { and } \quad \beta=\frac{9-\sqrt{33}}{2},
$$

then $\left|\frac{\beta}{\alpha}\right|<1$.

The ratios of successive even terms of $\left\{v_{n}\right\}$ converge

$$
\frac{v_{2 n+2}}{v_{2 n}} \rightarrow \alpha=\frac{9+\sqrt{33}}{2}
$$

For $r=1,2$, the limit of the sequence $\left\{\frac{v_{2 n+r}}{v_{2 n+r-1}}\right\}$ are

$$
\begin{aligned}
\frac{v_{2 n+1}}{v_{2 n}} & \rightarrow \frac{\alpha-b_{0}}{a_{0}}=\frac{3+\sqrt{33}}{2}=L_{0} \\
\frac{v_{2 n+2}}{v_{2 n+1}} & \rightarrow \frac{\alpha a_{0}}{\alpha-b_{0}}=\frac{1+\sqrt{33}}{4} \\
& =\frac{a_{0} L_{0}+b_{0}}{L_{0}}=L_{1} .
\end{aligned}
$$

Example 3.3. In (3.2), by taking $a_{0}=3, a_{1}=-5, b_{0}=2, b_{1}=1$, the terms of the sequence $\left\{v_{n}\right\}$ are listed in the following table

n	1	2	3	4	5	6	7	8	9	10	11	12	\ldots
v_{n}	1	3	-14	-36	166	426	-1964	-5040	23236	59628	-274904	-705456	\ldots

Since

$$
\alpha=-6+\sqrt{34} \quad \text { and } \quad \beta=-6-\sqrt{34},
$$

then $\left|\frac{\alpha}{\beta}\right|<1$.
The ratios of successive even terms of the sequence $\left\{v_{n}\right\}$ converge

$$
\frac{v_{2 n+2}}{v_{2 n}} \rightarrow \beta=-6-\sqrt{34}
$$

For $r=1,2$, the limit of the sequence $\left\{\frac{v_{2 n+r}}{v_{2 n+r-1}}\right\}$ are

$$
\begin{aligned}
\frac{v_{2 n+1}}{v_{2 n}} & \rightarrow \frac{\beta-b_{0}}{a_{0}}=-\frac{8+\sqrt{34}}{3}=\widetilde{L}_{0} \\
\frac{v_{2 n+2}}{v_{2 n+1}} & \rightarrow \frac{\beta a_{0}}{\beta-b_{0}}=\frac{7+\sqrt{34}}{5} \\
& =\frac{a_{0} \widetilde{L}_{0}+b_{0}}{\widetilde{L}_{0}}=\widetilde{L}_{1}
\end{aligned}
$$

References

[1] Edson, M. and Yayenie, O. A new generalizations of Fibonacci sequences and extended Binet's Formula, Integers 9, (A48), 639-654, 2009.
[2] Edson, M. and Lewis S. and Yayenie, O., The k-Periodic Fibonacci Sequence and an Extended Binet's Formula, Integers 11, 739-751, 2011.
[3] Koshy, T. Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[4] Luis, R. and Olievira, H.M. Products of 2 x 2 matrices related to non autonomous Fibonacci difference equations, Applied Mathematics and Computation 226, 101-116, 2014.
[5] Panario, D. and Sahin,M. and Wang, Q. A Family of Fibonacci-like Conditional Sequences, Integers 13 (A78), 2013.
[6] Vajda, S. Fibonacci \& Lucas Numbers and The Golden Section, Theory and Applications, Ellis Horwood Ltd., Chishester, 1989.
Current address: Elif TAN and Ali Bulent EKIN: Ankara University, Faculty of Sciences, Dept. of Mathematics, Ankara, TURKEY

E-mail address: etan@ankara.edu.tr, ekin@science.ankara.edu.tr

[^0]: Received by the editors: Nov. 18, 2014, Accepted: Dec. 01, 2014.
 2000 Mathematics Subject Classification. 11B39, 05A15.
 Key words and phrases. Fibonacci sequence, generating function, convergence.

