COMPLEX FACTORIZATION OF SOME TWO-PERIODIC LINEAR RECURRENCE SYSTEMS

SEMIH YILMAZ AND A.BULENT EKIN

Abstract

In this paper, we define the generalized two-periodic linear recurrence systems and find the factorizations of this recurrence systems. We also solve an open problem given in [3] under certain conditions.

1. Introduction

Definition 1.1. Let $a_{0}, a_{1}, b_{0}, b_{1}$ are real numbers. The two-periodic second order linear recurrence system $\left\{v_{n}\right\}$ is defined by $v_{0}:=0, v_{1} \in \mathbb{R}$ and for $n \geq 1$

$$
\begin{gathered}
v_{2 n}:=a_{0} v_{2 n-1}+b_{0} v_{2 n-2} \\
v_{2 n+1}:=a_{1} v_{2 n}+b_{1} v_{2 n-1}
\end{gathered}
$$

Also, let $A:=a_{0} a_{1}+b_{0}+b_{1}, \quad B:=b_{0} b_{1}, \quad$ and assume $A^{2}-4 B \neq 0$.
Heleman studied two periodic second order linear recurrence systems and called it as $\left\{f_{n}\right\}$ in [2]. Curtis and Parry also worked on the same linear recurrence systems in [3]. If we take $v_{0}=0, v_{1}=1$ then we get the sequence $\left\{f_{n}\right\}$, so here we study more general case.

We need the following results of Theorem 6 and Theorem 9 in [1], in the case $r=2$.

The generating function of the sequence $\left\{v_{n}\right\}$ is

$$
G(x)=\frac{v_{1} x+a_{0} v_{1} x^{2}-b_{0} v_{1} x^{3}}{1-A x^{2}+B x^{4}}
$$

and the terms of the sequences $\left\{v_{n}\right\}$ satisfy

$$
\begin{equation*}
v_{2 n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} a_{0} v_{1} \tag{1.1}
\end{equation*}
$$

Received by the editors: Sep. 16, 2014; Revised: Dec.05, 2014; Accepted: Dec. 08, 2014.
2000 Mathematics Subject Classification. 11B37, 11B39, 11B83, 15A18.
Key words and phrases. Recurrences, Fibonacci and Lucas numbers, Special sequences and polynomials, Periodic Recurrence, Factorization.
where

$$
\alpha=\frac{A+\sqrt{A^{2}-4 B}}{2} \quad, \quad \beta=\frac{A-\sqrt{A^{2}-4 B}}{2}
$$

that is, α and β are the roots of the polynomial $p(z)=z^{2}-A z+B$. Since $A^{2}-4 B \neq$ 0 thus α and β are distinct.

We also need to define, the following matrix, for a positive integer n,

$$
T(n):=\left[\begin{array}{cccccccc}
v_{1} & b_{0} & & & & & \\
0 & a_{0} & b_{1} & & & & \\
& -1 & a_{1} & b_{0} & & & \\
& & -1 & a_{0} & b_{1} & & \\
& & & -1 & a_{1} & b_{0} & \\
& & & & -1 & a_{0} & \ddots & \\
& & & & & \ddots & \ddots & \\
& & & & & & &
\end{array}\right]_{n \times n}
$$

It is easily seen by induction that for $n \geq 1$,

$$
\begin{equation*}
v_{n}=\operatorname{det}(T(n)) . \tag{1.2}
\end{equation*}
$$

2. The Factorization of $v_{2 n}$

We give two lemmas to prove our main results, Theorem 2.3 and Theorem 2.4.
Lemma 2.1. Let $n \geq 2$, then
$\operatorname{det}(T(2 n))=0 \Longleftrightarrow a_{0}=0$ or $v_{1}=0$ or $a_{0} a_{1}+b_{0}+b_{1}=2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)$
where $1 \leq k \leq n-1$.
Proof. By 1.1 and 1.2

$$
\begin{aligned}
\operatorname{det}(T(2 n)) & =0 \Longleftrightarrow v_{2 n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} a_{0} v_{1}=0 \\
& \Longleftrightarrow a_{0}=0 \text { or } v_{1}=0 \text { or } \alpha^{n}-\beta^{n}=0 \\
\alpha^{n}-\beta^{n} & =0 \Longleftrightarrow\left(\frac{\alpha}{\beta}\right)^{n}=1
\end{aligned}
$$

Hence, for some $0 \leq k \leq n-1$ we have

$$
\begin{aligned}
\left(\frac{\alpha}{\beta}\right)^{n} & =e^{2 k \pi i} \\
& \Longleftrightarrow \frac{\alpha}{\beta}=e^{\frac{2 k \pi i}{n}}
\end{aligned}
$$

We note here that $k \neq 0$ since $\alpha \neq \beta$.

Let

$$
\theta:=\frac{2 k \pi i}{n}
$$

for some $1 \leq k \leq n-1$. Then,

$$
\begin{aligned}
\frac{\alpha}{\beta} & =\frac{A+\sqrt{A^{2}-4 B}}{A-\sqrt{A^{2}-4 B}}=e^{i \theta} \\
& \Longleftrightarrow A+\sqrt{A^{2}-4 B}=e^{i \theta}\left(A-\sqrt{A^{2}-4 B}\right)
\end{aligned}
$$

Next,

$$
\sqrt{A^{2}-4 B} e^{i \theta}+\sqrt{A^{2}-4 B}=A e^{i \theta}-A
$$

Then,

$$
\sqrt{A^{2}-4 B}=A \frac{e^{i \theta}-1}{e^{i \theta}+1}=A \frac{e^{i \theta}-1}{e^{i \theta}+1} \frac{e^{-i \theta}+1}{e^{-i \theta}+1}=A \frac{e^{i \theta}-e^{-i \theta}}{2+e^{i \theta}+e^{-i \theta}}
$$

Now, since

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta) \text { and } \sin (-\theta)=-\sin (\theta), \cos (-\theta)=\cos (\theta)
$$

we have

$$
\sqrt{A^{2}-4 B}=A \frac{e^{i \theta}-e^{-i \theta}}{2+e^{i \theta}+e^{-i \theta}}=A \frac{i \sin (\theta)}{1+\cos (\theta)}=A i \tan \left(\frac{\theta}{2}\right)
$$

Squaring both sides of this equality and after some simplifications we have

$$
\begin{equation*}
A=2 \sqrt{B} \cos \left(\frac{\theta}{2}\right) \tag{2.1}
\end{equation*}
$$

Now, substituting the values of A, B and θ in 2.1 , we get

$$
a_{0} a_{1}+b_{0}+b_{1}=2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)
$$

for some $1 \leq k \leq n-1$. This is what we wanted prove.
Lemma 2.2. Let $n \geq 2$. The eigenvalues of $T(2 n)$ are
a_{0}, v_{1} and $\frac{a_{0}+a_{1}}{2} \pm \sqrt{\left(\frac{a_{0}-a_{1}}{2}\right)^{2}-\left(b_{0}+b_{1}\right)+2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)}, \quad 1 \leq k \leq n-1$.
Proof. Let $g_{0}:=0, g_{1}:=v_{1}-t$ and for $n \geq 1$

$$
\begin{gathered}
g_{2 n}:=\left(a_{0}-t\right) g_{2 n-1}+b_{0} g_{2 n-2} \\
g_{2 n+1}:=\left(a_{1}-t\right) g_{2 n}+b_{1} g_{2 n-1}
\end{gathered}
$$

The eigenvalues of $T(2 n)$ are the solutions of $\operatorname{det}\left(T(2 n)-t I_{2 n}\right)=g_{2 n}=0$. By Lemma 2.1,
$g_{2 n}=0 \Longleftrightarrow a_{0}-t=0$ or $g_{1}=v_{1}-t=0$ or $\left(a_{0}-t\right)\left(a_{1}-t\right)+b_{0}+b_{1}=2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)$
for some $1 \leq k \leq n-1$. Therefore, the eigenvalues of $T(2 n)$ are a_{0}, v_{1} and the solutions of the quadratic equation

$$
t^{2}-\left(a_{0}+a_{1}\right) t+a_{0} a_{1}+b_{0}+b_{1}=2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)
$$

for some $1 \leq k \leq n-1$. Completing the square we have
$t^{2}-\left(a_{0}+a_{1}\right) t+\left(\frac{a_{0}+a_{1}}{2}\right)^{2}=\left(\frac{a_{0}+a_{1}}{2}\right)^{2}-a_{0} a_{1}-b_{0}-b_{1}+2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)$.
Therefore, the eigenvalues of $T(2 n)$ are a_{0}, v_{1} and

$$
\frac{a_{0}+a_{1}}{2} \pm \sqrt{\left(\frac{a_{0}-a_{1}}{2}\right)^{2}-\left(b_{0}+b_{1}\right)+2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)}
$$

for some $1 \leq k \leq n-1$.
Theorem 2.3. Let $\left\{v_{n}\right\}$ be the two-periodic second order linear recurrence system, and $n \geq 2$. Then

$$
v_{2 n}=a_{0} v_{1} \prod_{k=1}^{n-1}\left(\frac{a_{0}+a_{1}}{2} \pm \sqrt{\left(\frac{a_{0}-a_{1}}{2}\right)^{2}-\left(b_{0}+b_{1}\right)+2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)}\right)
$$

Proof. The result follows from Lemma 2.2, $v_{2 n}=\operatorname{det}(T(2 n))$ and the fact that the determinant of a matrix is the product of the eigenvalues of the matrix.
Theorem 2.4. Let $\left\{v_{n}\right\}$ be the two-periodic second order linear recurrence system, $n \geq 2$ and $b_{1}:=0$. Then

$$
v_{2 n+1}=a_{0} a_{1} v_{1}\left(a_{0} a_{1}+b_{0}\right)^{n-1}
$$

Proof. If we take $b_{1}=0$ in Definition 1, we get $v_{0}=0, v_{1} \in \mathbb{R}$ and for $n \geq 1$

$$
\begin{aligned}
v_{2 n} & =a_{0} v_{2 n-1}+b_{0} v_{2 n-2} \\
v_{2 n+1} & =a_{1} v_{2 n}
\end{aligned}
$$

By Theorem 2.3, we have

$$
\begin{aligned}
v_{2 n} & =a_{0} v_{1} \prod_{k=1}^{n-1}\left(\frac{a_{0}+a_{1}}{2} \pm \sqrt{\left(\frac{a_{0}-a_{1}}{2}\right)^{2}-b_{0}}\right) \\
& =a_{0} v_{1} \prod_{k=1}^{n-1}\left(a_{0} a_{1}+b_{0}\right) \\
& =a_{0} v_{1}\left(a_{0} a_{1}+b_{0}\right)^{n-1}
\end{aligned}
$$

Hence, by the definition of $\left\{v_{n}\right\}$, we get the result

$$
v_{2 n+1}=a_{1} v_{2 n}=a_{0} a_{1} v_{1}\left(a_{0} a_{1}+b_{0}\right)^{n-1}
$$

Example 2.5. Let $v_{0}=0, v_{1}=1$ and for $n \geq 1$

$$
\begin{aligned}
v_{2 n} & =a_{0} v_{2 n-1}+b_{0} v_{2 n-2} \\
v_{2 n+1} & =a_{1} v_{2 n}+b_{1} v_{2 n-1}
\end{aligned}
$$

Then $\left\{v_{n}\right\}$ is added one term to beginning of $\left\{f_{n}\right\}$ sequences in [3]. Namely,

$$
f_{n}=v_{n+1}, \quad n \geq 0
$$

Hence
$f_{2 n+1}=v_{2 n}=a_{0} \prod_{k=1}^{n-1}\left(\frac{a_{0}+a_{1}}{2} \pm \sqrt{\left(\frac{a_{0}-a_{1}}{2}\right)^{2}-\left(b_{0}+b_{1}\right)+2 \sqrt{b_{0} b_{1}} \cos \left(\frac{k \pi}{n}\right)}\right)$.
Therefore this factorization is the same as Theorem 11 in [3].
They give several open questions for future work. One of this question is a complex factorization of the terms $f_{2 n}$. We have solved in the following way at condition $b_{1}=0$ of this question by Theorem 2.4,

$$
f_{2 n}=v_{2 n+1}=a_{0} a_{1} v_{1}\left(a_{0} a_{1}+b_{0}\right)^{n-1}
$$

2.1. Special Cases:

Case 1. The case $v_{0}:=0, v_{1}:=1, a_{0}:=1, a_{1}:=1, b_{0}:=1, b_{1}:=1$, then $\left\{v_{n}\right\}$ becomes the sequence of Fibonacci numbers. Therefore, we get

$$
F_{2 n}=\prod_{k=1}^{n-1}\left(3-2 \cos \left(\frac{k \pi}{n}\right)\right)
$$

that is the equation 4.1 in [4].
Case 2. The case $v_{0}:=0, v_{1}:=1, a_{0}:=2, a_{1}:=2, b_{0}:=1, b_{1}:=1$, then $\left\{v_{n}\right\}$ becomes the sequence of Pell numbers. Therefore,

$$
P_{2 n}=2 \prod_{k=1}^{n-1}\left(6-2 \cos \left(\frac{k \pi}{n}\right)\right)=2^{n} \prod_{k=1}^{n-1}\left(3-\cos \left(\frac{k \pi}{n}\right)\right) .
$$

Case 3. The case $v_{0}:=0, v_{1}:=1, a_{0}:=1, a_{1}:=1, b_{0}:=2, b_{1}:=2$, then $\left\{v_{n}\right\}$ becomes the sequence of Jacobsthal numbers. Therefore,

$$
J_{2 n}=\prod_{k=1}^{n-1}\left(5-4 \cos \left(\frac{k \pi}{n}\right)\right)
$$

Case 4. The case $v_{0}:=0, v_{1}:=1, a_{0}:=1, a_{1}:=1, b_{0}:=-1, b_{1}:=1$, then $\left\{v_{n}\right\}$ becomes the sequence of A053602 on [5]. Then $\left\{v_{2 n}\right\}$ becomes the sequence of Fibonacci numbers. Therefore, we get

$$
F_{n}=\prod_{k=1}^{n-1}\left(1-2 i \cos \left(\frac{k \pi}{n}\right)\right)
$$

that is the equation 1.1 in [4].

Case 5. The case $v_{0}:=0, v_{1}:=1, a_{0}:=3, a_{1}:=3, b_{0}:=-2, b_{1}:=-2$, then $\left\{v_{n}\right\}$ becomes the sequence of Mersenne numbers. Therefore,

$$
M_{2 n}=3 \prod_{k=1}^{n-1}\left(5-4 \cos \left(\frac{k \pi}{n}\right)\right)=3 J_{2 n}
$$

References

[1] Daniel Panario, Murat Şahin, Qiang Wang; A family of Fibonacci-like conditional sequences, INTEGERS Electronic Journal of Combinatorial Number Theory, 13, A78, 2013.
[2] Heleman R. P. Ferguson; The Fibonacci Pseudogroup, Characteristic Polynomials and Eigenvalues of Tridiagonal Matrices, Periodic Linear Recurrence Systems and Application to Quantum Mechanics, The Fibonacci Quarterly, 16.4 (1978): 435-447.
[3] Curtis Cooper, Richard Parry; Factorizations Of Some Periodic Linear Recurrence Systems, The Eleventh International Conference on Fibonacci Numbers and Their Applications, Germany (July 2004).
[4] Nathan D. Cahill, John R. D'Errico, John P. Spence; Complex Factorizations of the Fibonacci and Lucas Numbers, The Fibonacci Quarterly, 41, No. 1 (2003), 13-19.
[5] www.oeis.org, The On-Line Encyclopedia of Integer Sequences.
Current address: Ankara University, Faculty of Sciences, Dept. of Mathematics, Ankara, TURKEY

E-mail address: semihyilmaz@ankara.edu.tr, ekin@science.ankara.edu.tr
URL: http://communications.science.ankara.edu.tr/index.php?series=A1

