
Commun.Fac.Sci.Univ .Ank.Series A1
Volum e 63, Number 2, Pages 147—161 (2014)
ISSN 1303—5991

CONSTRUCTING GRAY MAPS FROM COMBINATORIAL
GEOMETRIES

ABDULLAH PAŞA AND BAHATTİN YILDIZ

Abstract. The focus of this work is constructing Gray maps for linear codes
over a family of Frobenius rings, using tools from combinatorial geometries.
The main combinatorial structure that are used are projective geometries
PGn(q), defined over Fq . Codes over Zpk , Galois rings, finite chain rings
and Rk have been considered with respect to homogeneous weights. Using hy-
perplanes in projective geometries, distance preserving Gray maps from afore-
mentioned rings to residue fields have been constructed. The use of projective
geometries serves as a novel approach to what was a primarily algebraic ap-
proach in the literature. The constructions also serve as a motivation for using
homogeneous weights.

1. Introduction

In the ground-breaking paper [9], it was shown that some well known nonlinear
binary codes could be obtained as Gray images of linear codes over Z4. In this paper,
Hammons et al. gave a distance preserving map from Z4 to F22 . This opened up a
new venue for Coding Theory, and there has been an extensive amount of research
on linear codes over rings. Later the work done in this paper were extended in many
different directions with different weights. In [4], Carlet extended this map to Z2k
with homogeneous weight and used this to obtain the generalized Kerdock codes.
In [8], Greferath and Schmidt defined Gray isometries for finite chain rings in their
paper. Yildiz gave an inductive construction of the Gray map from Zpk to Zp

k−1

p

in [14] and he also gave a combinatorial construction of the Gray map for Galois
rings by using Affi ne geometries in [15]. In this paper, we generalize construction of
the Gray map for finite chain rings and the family of the ring Rk by using another
important tool of Combinatorics, which is projective geometries.
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In section 2, we give a background on finite chain rings and family of the ring
Rk together with homogeneous weights.
In section 3, we give basic definitions and properties of projective geometries.
Section 4 will contain our main contributions, which are the construction of the

distance preserving Gray maps for finite chain rings and the family of the ring Rk
by using tools from projective geometries.
In the last section, we conclude with some final thoughts and possible directions

for future work.

2. Codes over Rings and the Homogeneous Weight

Let R be a finite commutative ring. A code over R of length n is a subset of
Rn. A linear code over R of length n is an R-submodule of Rn. There are many
different types of rings that have been considered in the literature. The largest
class of rings that can be studied for coding theory is Frobenius rings [13]. Finite
chain rings of the form Zpk , Galois rings, the Rk family of the rings are special
examples of Frobenius rings. Codes over rings differ from codes over finite fields,
as for example a ring may have zero divisors, while a field does not. The algebraic
structure of the code also changes from a vector space to a module. The notions
of weight and distance are similarly defined for rings, only this time other weights
than the Hamming weight can be considered. As an example, the homogeneous
weight can be considered for rings.

2.1. Codes over Finite Chain Rings.

Definition 2.1. A commutative ring with identity is called a finite chain ring if
its ideals are ordered by inclusion.

A finite chain ring R has a unique maximal ideal which we denote by (γ) and
let its residue field R/(γ) be Fq where q is a prime power. The ideal structure of
R can be listed as

0 = (γd) ⊂ (γd−1) ⊂ · · · ⊂ (γ2) ⊂ (γ) ⊂ R

for some d. This d is called the nilpotency index of R, which is defined to be
the smallest positive integer such that γd = 0 where γ is a generator of its maximal
ideal.
One can see that, the ring Zpk and the Galois ring are examples of finite chain

rings.

Definition 2.2. Let R be a finite chain ring. A linear code C of length n over R
is an R-submodule of Rn.

The following theorem helps us understand the question of type and size for
linear codes over finite chain rings:



CONSTRUCTING GRAY MAPS FROM COMBINATORIAL GEOMETRIES 149

Theorem 2.3. [11] Let R be a finite chain ring with maximal ideal 〈γ〉, where γ is
the generator of maximal ideal with nilpotency index d. The generating matrix for
a code C over R is permutation equivalent to a matrix of the form:

G =


Ik1 A1,1 . . . A1,d
0 γIk2 γA2,2 . . γA2,d−1
0 0 . . . .
. . . . . .
. . . . . .
0 0 . 0 γd−1Ikd γd−1Ad,1


where the matrices Ai’s, Bj’s and so on are matrices over R and the columns are
grouped into blocks of size k1, k2,. . . ,kd. The size of C is |R/(γ)|α, where

α =

d∑
i=1

ki(d+ 1− i).

In this case, we say that C is of type

(k1, k2, . . . , kd)

There is an extensive literature on codes over finite chain rings.We refer to [8],
[10] and references therein for further details.

2.2. Codes over Rk.

Definition 2.4. The ring Rk is defined in [7] as follows:

Rk = F2[u1, u2, . . . , uk]/(u2i = 0, uiuj = ujui)

The ring can also be defined recursively,

Rk = Rk−1[uk]/(u2k = 0, ukuj = ujuk) = Rk−1 + ukRk−1, j = 1, 2, . . . , k − 1

Rk is not a chain ring for k > 1, but it has a unique maximal ideal, given by
Iu1,u2,...,uk = 〈u1, u2, . . . , uk〉 and a unique minimal ideal, given by Iu1u2...uk =
〈u1u2...uk〉.
First example of the ring Rk is R1 that is F2 + uF2 which is introduced in [2]

for constructing lattices. Codes over this ring have been studied by a number of
researchers. We refer to [3], [6], [12] for some of these works. The second example
of Rk is R2 which is F2 + uF2 + vF2 + uvF2. The ring R2 is an extension of R1.
The ring R2 is introduced by Yildiz and Karadeniz in [16]. Codes over this ring
have been studied by them further in [17], [18], [19].
In general, a linear code of length n over Rk is a submodule of Rnk . Note that

since Rk is not a chain ring when k ≥ 2, the generating matrix is not in a standard
form as for codes over chain rings, so we cannot define type in terms of such a
matrix.



150 ABDULLAH PAŞA AND BAHATTİN YILDIZ

2.3. The Homogeneous Weight. The homogeneous weight was first introduced
by I. Constantinescu and W. Heise [5]. This weight may be viewed as a generaliza-
tion of the Hamming weight for finite rings.

Definition 2.5. A real valued function w on the finite ring R is called a (left)
homogeneous weight if w(0) = 0 and the followings are true:

(H1) For all x, y ∈ R, Rx = Ry implies w(x) = w(y).
(H2) There exists a real number δ such that∑

y∈Rx
w(y) = δ|Rx|, for all : x ∈ R \ {0}.

Right homogeneous weights are defined accordingly, and since we are dealing
exclusively with commutative rings, we’ll simply refer to them as homogeneous
weights.
We next introduce the homogeneous weight for linear codes over Rk and linear

codes over finite chain rings.
For linear codes over finite chain rings, the homogeneous weight was introduced

in [8] as follows:

whom(u) =


0 , if u = 0

qd−1 , if u ∈ (γd−1)\{0}
qd−2(q − 1) , otherwise,

where Fq is the residue field of the ring and (γ) is the maximal ideal with the
nilpotency index d.
In [18], the homogeneous weight for R2 is defined as

whom(r) =

 0 , if r = 0
8 , if r ∈ Iuv\{0}
4 , otherwise.

In [5], the notion of a homogeneous weight for codes over Frobenius rings are
defined. Applying the conditions to this ring, the ideal structure of Rk dictates a
homogeneous weight of the form:

whom(r) =

 0 , if r = 0
2ω , if r ∈ Iu1u2...uk\{0}
ω , otherwise,

where ω is a non-negative real number.

3. Projective Geometries

Most of the material presented here was taken from [1]. Let q be a prime power,
Fq be a finite field of order q and V = Fkq be the vector space of k-tuples over Fq.
A projective subspace of V is the empty set or a linear vector subspace of V . A
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projective geometry PGk−1(Fq) of order k − 1 over Fq is defined to be the set of
all projective subspaces of V = Fkq .
In the projective geometry of order k−1 over Fq, which is PGk−1(Fq), points are

1-dimensional subspaces of V , lines are 2-dimensional subspaces of V and hyper-
planes are (k−1) -dimensional subspaces of V. Neither {0} nor V play a significant
role in projective geometries and they are usually ignored. Frequently when work-
ing with projective geometries the projective dimension is referred to simply as the
dimension. The dimension formula for subspaces of V holds in projective geometry
as well, provided it is written as follows:

dim(U) + dim(W ) = dim(U +W ) + dim(U ∩W ),

where U and W are arbitrary non-zero subspaces of V and U + W = 〈U ∪W 〉 =
{u+ w|u ∈ U,w ∈ W}. Note that we use 〈S〉 to denote the subspace generated by
the set S. We can easily obtain the following remark:

Remark 3.1. Two distinct hyperplanes in PGk−1(Fq) intersect in a projective sub-
space of dimension k − 2.

The following properties of projective geometries will be used for this work:

(i) Let V be a k-dimensional vector space over Fq, then the number of sub-
spaces of V of dimension s, where 0 < s ≤ k, is given by

(qk − 1)(qk − q) · · · (qk − qs−1)
(qs − 1)(qs − q) · · · (qs − qs−1) .

In particular, the number of points of PGk−1(Fq) is

qk − 1

q − 1
= qk−1 + qk−2 + · · ·+ 1

which is the same as the number of the hyperplanes of PGk−1(Fq).
(ii) Let V be a k-dimensional vector space over Fq and P be a subspace of

dimension r, and s be an integer with 0 ≤ r < s ≤ k. Then the number of
subspaces of V of dimension s that contain P is

(qk − qr)(qk − qr+1) · · · (qk − qs−1)
(qs − qr)(qs − qr+1) · · · (qs − qs−1) .

In particular, the number of hyperplanes that contain the particular point
is qk−2 + qk−3 + · · ·+ 1.

It is known that the number of hyperplanes is qk−1 + qk−2 + · · · + 1 and the
number of hyperplanes that contain a particular points is qk−2 + qk−3 + · · · + 1.
Hence we have:
Observation 3.2.Let V be a k-dimensional vector space over Fq, then the number
of hyperplanes in PGk−1(Fq) that do not contain a particular point is qk−1.
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Let P = {p̄0, p̄1, . . . , p̄q−1} be a projective point, which is a 1-dimensional sub-
space of V , where p̄i ∈ V = Fkq , i = 0, 1, . . . , q − 1 and let H0, H1, . . . ,Hq(k−1)−1 be
hyperplanes that don’t contain point P.
We look at the cosets of these hyperplanes which are defined by p̄i + Hm, such

that p̄i ∈ P, Hm’s are hyperplanes that do not contain P and i = 0, 1, .., q − 1 ;
m = 0, 1, . . . , qk−1 − 1.
Let Γm be the set of all cosets of Hm. So,

Γm = {(p̄0 +Hm), (p̄1 +Hm), . . . , (p̄q−1 +Hm)}

We prove the following lemma which will be used in the subsequent parts of our
work:

Lemma 3.2. (p̄i +Hm) ∩ (p̄j +Hl) has qk−2 elements for all i, j = 0, 1, . . . , q − 1
and m, l = 1, . . . , qk−1 where m 6= l.

Proof. Since hyperplanes are (k − 1)-dimensional subspaces of V , they both have
bases. Let {v̄0, v̄1, . . . , v̄k−1} be a basis of V and let H1 and H2 be hyperplanes
such that {v̄0, v̄2, v̄3, . . . , v̄k−1} is a basis for H1 and {v̄0, v̄1, v̄3,..., v̄k−1} is a basis
for H2.
This means all elements of H1 are of the form α1v0+α2v2+α3v3+· · ·+αk−1vk−1

where αi ∈ Fq, and all elements of H2 are of the form β1v0 + β2v1 + β3v3 + · · · +
βk−1vk−1 where βj ∈ Fq.
The elements of cosets are of the following form:

p̄i +H1 → p̄i + α1v0 + α2v2 + α3v3 + · · ·+ αk−1vk−1,

p̄j +H2 → p̄j + β1v0 + β2v1 + β3v3 + · · ·+ βk−1vk−1.

To find the number of elements of (p̄i +Hm)∩ (p̄j +Hl), it is enough to determine
when the following equation holds:

p̄i + α1v0 + α2v2 + · · ·+ αk−1vk−1 = p̄j + β1v0 + β2v1 + · · ·+ βk−1vk−1.

This is equivalent to

p̄j − p̄i = (β1 − α1)v0 + β2v1 − α2v2 + (β3 − α3)v3 + · · ·+ (βk−1 − αk−1)vk−1.

It is known that p̄j − p̄i ∈ V and all elements of V can be expressed by using the
basis of V . So p̄j − p̄i can be written as

p̄j − p̄i = γ1v0 + γ2v1 + · · ·+ γkvk−1, γi ∈ Fq.

Then, we have

(β1 − α1)v0 + β2v1 − α2v2 + (β3 − α3)v3 + · · ·+ (βk−1 − αk−1)vk−1 =

k−1∑
j=0

γjvj−1
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which leads to the following equations:

(β1 − α1) = γ1

(β2) = γ2

(−α3) = γ3

(β4 − α4) = γ4
...

(βk−1 − αk−1) = γk,

where the γi’s are known. So, it is enough to look at αi’s and βi’s. It is easy to
observe that α3 = − γ3 and β2 = γ2 so, these two are fixed. Thus, there are (k−2)
equations that will be considered. They are all of the form (βi − αi) = γi.
It is known that γi’s are fixed so for each αi there is a fixed βi. Since there are

q choices for αi, there are q choices for each equation. This leads to q(k−2) different
solutions for αi’s and βi’s. This means (p̄i +Hm) ∩ (p̄j +Hl) has q(k−2) elements,
i.e., any coset in Γm intersects any coset in Γl in exactly q(k−2) points. �

4. The Construction of the Gray Maps

4.1. The Construction of the Gray Map for Finite Chain Rings. We are
now ready to give a coordinate-wise construction of the Gray map from a finite
chain ring to its residue field that preserves the homogeneous distance.
First of all, recall how the homogeneous weight is defined for finite chain rings.

whom(u) =


0 , if u = 0

qd−1 , if u ∈ (γd−1)\{0}
qd−2(q − 1) , otherwise.

For the construction of the Gray map for finite chain rings whose residue field
is Fq and maximal ideal (γ) with nilpotency index d, the projective geometry that
we will consider is PGd−1(Fq).

So we can quickly say that the number of hyperplanes that do not contain a
particular point P is q(d−1) by using the properties of the projective geometries
that are given in the previous section.
Let P = {p̄0, p̄1, . . . , p̄q−1} be a particular point. Let H1 be a hyperplane that

does not contain point P and write all cosets of H1 which we denoted by Γ1. So,

Γ1 = {(p̄0 +H1), (p̄1 +H1), . . . , (p̄q−1 +H1)},

where p̄0, p̄1, . . . , p̄q−1 are elements of point P and (p̄i + H1) = {hj1 + p̄i|hj1 is jth
element of H1 and j = 1, 2, . . . , qd−1}.
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Then, write elements of Γ1, the cosets of H1 as rows:

H =


h11 + p̄0 h21 + p̄0 · · · hq

d−1

1 + p̄0

h11 + p̄1 h21 + p̄1 · · · hq
d−1

1 + p̄1
...

...
. . .

...

h11 + p̄q−1 h21 + p̄q−1 · · · hq
d−1

1 + p̄q−1

 .
All the other hyperplanes contain only one element from each column inH. Because
if a hyperplane contains at least two elements from the same column, it will contain
p̄i − p̄j , and all of P .
Let Γm be a set such that it contains all cosets of Hm so,

Γm = {(p̄0 +Hm), (p̄1 +Hm), . . . , (p̄q−1 +Hm)}.
We know that the residue field of R is Fq = {0, 1, α, α2, . . . , αq−2}, where α is a

primitive element of the field.
Take Γ1 = {(p̄0 +H1), (p̄1 +H1), . . . , (p̄q−1 +H1)} and match all elements of Γ1

to Fq as follows:

(p̄0 +H1) → (0, 0, . . . , 0)

(p̄1 +H1) → (1, 1, . . . , 1)

(p̄1 +H1) → (α, α, . . . , α)

...

(p̄q−1 +H1) → (αq−2, αq−2, . . . , αq−2)

Call this set Γ
′

1 = {(i, i, . . . , i)|i = 0, 1, . . . , αq−2} and each vector is of length
q(d−1). Then all other Γ

′

m’s can be obtained by renaming all cosets depending on
this labeling.
It is known that all cosets of H1 are distinct, each coset has qd−1 elements and

there are total of q cosets. This means all elements of V are labeled. Now we are
ready to describe the Gray map.

Definition 4.1. For u = j · (γd−1) with j = 0, 1, . . . , αq−2, Gd maps u to elements
of Γ′1 bijectively in such a way 0 is mapped to labeled (p̄0+H1) which is (0, 0, . . . , 0).
For 1 ≤ j ≤ qd−1−1, we map the elements of coset c̄j = cj +(γd−1) to the elements
of Γ′j+1 bijectively. Here {c̄j = cj + (γd−1)|j = 1, 2, . . . , qd−1 − 1} denotes the set
of cosets of all non-trivial cosets of (γd−1).

Theorem 4.2. The map Gd defined above is indeed a distance preserving map.

Proof. Suppose u ∈ (γd−1)\{0}. Then this means that Gd(u) is the element of the
set Γ′1\(0, 0, . . . , 0). But this means Gd(u) does not have any zeros,which means
that

whom(Gd(u)) = qd−1
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If v ∈ R\(γd−1) then v ∈ c̄j for some j > 1 so by the definition, this means that,
Gd(v) is the element of the set in some Γ′m with m 6= 1. But it is easy to observe
that any coset in Γm intersects with any coset in Γn in qd−2 points, if m 6= 1. So
any element of Γ′m intersects any element of Γ′1 in exactly qd−2 points and since
(0, 0, . . . , 0) belongs to Γ′1, Gd(v) has to have exactly qd−2 0’s. Hence we have that

whom(Gd(u)) = qd−1 − qd−2 = (q − 1)qd−2

Now, suppose u, v ∈ R so that u − v ∈ (γd−1)\{0}. Then by the construction of
Gd,we see that Gd(u) and Gd(v) come from two different coset of same hyperplane
this means that Gd(u) and Gd(v) are in the same set Γ′m for some m. Since two
different cosets of same hyperplane are distinct, two elements of any set Γ′m are
also distinct. But this means that Gd(u) and Gd(v) are different in each coordinate
which means that dhom(Gd(u), Gd(v)) = qd−1. Suppose now that u− v ∈ R\(γd−1)
this means that Gd(u) and Gd(v) are elements of Γ′m and Γ′n respectively wherem 6=
n. But this means that Gd(u) and Gd(v) come from cosets of different hyperplanes
and we know that cosets of different hyperplanes intersect in exactly qd−2 points,
this means Gd(u) and Gd(v) will have exactly qd−2 coordinates where the entries
are equal. Hence we see that dhom(Gd(u), Gd(v)) = qd−1 − qd−2 = (q− 1)qd−2. �

Remark 4.3. In [15], Yildiz gave a combinatorial construction for the Gray map of
Galois rings with respect to the homogeneous weight using Affi ne geometries. The
construction that we have given generalizes the results in the aforementioned paper
in two directions. We extend the construction to all finite chain rings and also we
use projective geometries instead of Affi ne geometries.

4.2. The Construction of the Gray Map for Rk. First of all, recall how the
homogeneous weight is defined for Rk

whom(r) =

 0 , if r = 0
2ω , if r ∈ Iu1u2···uk\{0}
ω , otherwise,

where ω is a non-negative real number.
The homogeneous weight has not been defined for Rk in general. However by

using the definition of the homogeneous weight for Frobenius rings and generalizing
what Yildiz and Karadeniz did in [18], we can suggest the homogeneous weight to
be defined for ω = 22

k−2. This requires a Gray map to be an isometry from Rk to

F22
k−1

2 .
It is easy to observe that the projective geometry we need to consider is PG2k−1(F2)

and it is clear that the number of hyperplanes that don’t contain a fixed point P
is 2(2

k−1).
Let P = {p̄0, p̄1} be a projective point which is a 1-dimensional subspaces of V ,

where p̄i ∈ V = F2k2 , i = 0, 1 and let H1 be a hyperplane that doesn’t contain point
P.
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We can easily find the other hyperplanes in the same way that was done for finite
chain rings.
Now, find all cosets of H1 which we call this set as Γ1 so,

Γ1 = {(p̄0 +H1), (p̄1 +H1)},

where (p̄i +H1) = {hj1 + p̄i|hj1 is jth element of H1 and j = 1, 2, . . . , 22
k−1}.

Write elements of Γ1 which means cosets of H1 as rows :

H =


h11 + p̄0 h21 + p̄0 · · · h2

2k−1

1 + p̄0
...

...
. . .

...

h11 + p̄1 h21 + p̄1 · · · h2
2k−1

1 + p̄1


Now, the other hyperplanes can be obtained by taking only one element from

each column in H. We have all hyperplanes that don’t contain point P. Let Γm be
a set which contains all cosets of Hn. So, Γm = {(p̄0 +Hm), (p̄1 +Hm)}.
Take Γ1 = {(p̄0+H1), (p̄1+H1)}. Then, label all elements of Γ1 to Z2 as follows

(p̄0 +H1) → (0, 0, . . . , 0),

(p̄1 +H1) → (1, 1, . . . , 1).

Call the set Γ
′

1 = {(i, i, . . . , i)|i = 0, 1}, where each vector is of length 2(2
k−1). Then,

find all Γ
′

m ’s by renaming all cosets depending on this labeling.
It is known that all cosets of H1 are distinct, each coset has 22

k−1 element and
there are total of 2 cosets. Thus we labeled all elements of V. Now, Gray map can
be described as follows:

Definition 4.4. For u = j.u1u2 · · ·uk, j = 0, 1 G
22k

maps u to elements of Γ′1
bijectively in such a way 0 is mapped to labeled (p̄0 +H1) which is (0, 0, . . . , 0).
For 1 ≤ j ≤ 2(2

k−1) − 1, we mapped the elements of coset c̄j = cj + Iu1u2···uk to
the elements of Γ′j+1 bijectively. Here {c̄j = cj + Iu1u2···uk |j = 1, 2, . . . , 2(2

k−1)− 1}
denotes the set of cosets of all non-trivial cosets of Iu1u2···uk .

Theorem 4.5. The map G22k defined above is indeed distance preserving map.

Proof. The proof, being very similar to the proof of Theorem 4.2, has been omitted
here. �

Example 4.6. Construction of the Gray map for R2.

By letting p = 2 and k = 2, this becomes a special case for our construction,
where the projective geometry is PG3(F2).
This means that hyperplanes will be 3-dimensional subspaces of V = F42 and

points will be 1-dimensional subspaces of V = F42. There are 23 + 22 + 2 + 1 = 15
points and there are 23 hyperplanes that don’t contain a particular point.
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List all points as follows:

P1 = {(0000), (0001)}
P2 = {(0000), (0010)}
P3 = {(0000), (0100)}
P4 = {(0000), (1000)}
P5 = {(0000), (1100)}
P6 = {(0000), (1010)}
P7 = {(0000), (1001)}
P8 = {(0000), (0110)}

P9 = {(0000), (0101)}
P10 = {(0000), (0011)}
P11 = {(0000), (1110)}
P12 = {(0000), (1101)}
P13 = {(0000), (1011)}
P14 = {(0000), (0111)}
P15 = {(0000), (1111)}

Now, take a point P1 = {(0000), (0001)} and call it P. Then find a hyperplane that
does not contain this point and call it H1.

H1 = {(0000), (0010), (0100), (1000), (0110), (1010), (1100), (1110)}.

Then, take Γ1 to be the set of all cosets of H1, i.e.,

p̄0 +H1

H1 = {(0000), (0010), (0100), (1000), (0110), (1010), (1100), (1110)}

p̄1 +H1

H
′

1 = {(0001), (0011), (0101), (1001), (0111), (1011), (1101), (1111)}

Write these cosets as rows of H̄. So,

H̄ =

{
(0000) (0010) (0100) (1000) (0110) (1010) (1100) (1110)
(0001) (0011) (0101) (1001) (0111) (1011) (1101) (1111)

}
Now, to get all the other hyperplanes, it is enough to take one element each

from 2nd , 3rd and 4th columns of H̄, since hyperplanes have dimension 3. Next,
all hyperplanes can be listed as follows:

H1 = {(0000), (0010), (0100), (1000), (0110), (1010), (1100), (1110)}
H2 = {(0000), (0010), (0100), (1001), (0110), (1011), (1101), (1111)}
H3 = {(0000), (0010), (0101), (1000), (0111), (1010), (1101), (1111)}
H4 = {(0000), (0010), (0101), (1001), (0111), (1011), (1100), (1110)}
H5 = {(0000), (0011), (0100), (1000), (0111), (1011), (1100), (1111)}
H6 = {(0000), (0011), (0100), (1001), (0111), (1010), (1101), (1110)}
H7 = {(0000), (0011), (0101), (1000), (0110), (1011), (1101), (1110)}
H8 = {(0000), (0011), (0101), (1001), (0110), (1010), (1100), (1111)}

Determine the set Γm’s which are cosets of these hyperplanes, defined by p̄i+Hm

where i = 0, 1 , m = 1, 2, 3, 4. Since elements of point P are p̄0 = (0000) and
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p̄1 = (0001), cosets are given as folows:

H
′

1 = {(0001), (0011), (0101), (1001), (0111), (1011), (1101), (1111)}
H
′

2 = {(0001), (0011), (0101), (1000), (0111), (1010), (1100), (1110)}
H
′

3 = {(0001), (0011), (0100), (1001), (0110), (1011), (1100), (1110)}
H
′

4 = {(0001), (0011), (0100), (1000), (0110), (1010), (1101), (1111)}
H
′

5 = {(0001), (0010), (0101), (1001), (0110), (1010), (1101), (1110)}
H
′

6 = {(0001), (0010), (0101), (1000), (0110), (1011), (1100), (1111)}
H
′

7 = {(0001), (0010), (0100), (1001), (0111), (1010), (1100), (1111)}
H
′

8 = {(0001), (0010), (0100), (1000), (0111), (1011), (1101), (1110)}

Then set Γm = {{Hm}, {H
′

m}} and construct Γ′1 by labeling Γ1 in such a way
that label all elements of H1 to 0 and all elements of H ′1 to 1 as follows:

(0000)→ 0 (0001)→ 1
(0010)→ 0 (0011)→ 1
(0100)→ 0 (0101)→ 1
(1000)→ 0 (1001)→ 1
(0110)→ 0 (0111)→ 1
(1010)→ 0 (1011)→ 1
(1100)→ 0 (1101)→ 1
(1110)→ 0 (1111)→ 1

then Γ′1 = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)}

Then, label all cosets depending on this label. The labeling of cosets will be as
follows:

H1 = (0, 0, 0, 0, 0, 0, 0, 0) H
′

1 = (1, 1, 1, 1, 1, 1, 1, 1)

H2 = (0, 0, 0, 1, 0, 1, 1, 1) H
′

2 = (1, 1, 1, 0, 1, 0, 0, 0)

H3 = (0, 0, 1, 0, 1, 0, 1, 1) H
′

3 = (1, 1, 0, 1, 0, 1, 0, 0)

H4 = (0, 0, 1, 1, 1, 1, 0, 0) H
′

4 = (1, 1, 0, 0, 0, 0, 1, 1)

H5 = (0, 1, 0, 0, 1, 1, 0, 1) H
′

5 = (1, 0, 1, 1, 0, 0, 1, 0)

H6 = (0, 1, 0, 1, 1, 0, 1, 0) H
′

6 = (1, 0, 1, 0, 0, 1, 0, 1)

H7 = (0, 1, 1, 0, 0, 1, 1, 0) H
′

7 = (1, 0, 0, 1, 1, 0, 0, 1)

H8 = (0, 1, 1, 1, 0, 0, 0, 1) H
′

8 = (1, 0, 0, 0, 1, 1, 1, 0)

So, all Γ′i’s are given by:

Γ′1 = {(0, 0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1)}
Γ′2 = {(0, 0, 0, 1, 0, 1, 1, 1), (1, 1, 1, 0, 1, 0, 0, 0)}
Γ′3 = {(0, 0, 1, 0, 1, 0, 1, 1), (1, 1, 0, 1, 0, 1, 0, 0)}
Γ′4 = {(0, 0, 1, 1, 1, 1, 0, 0), (1, 1, 0, 0, 0, 0, 1, 1)}
Γ′5 = {(0, 1, 0, 0, 1, 1, 0, 1), (1, 0, 1, 1, 0, 0, 1, 0)}
Γ′6 = {(0, 1, 0, 1, 1, 0, 1, 0), (1, 0, 1, 0, 0, 1, 0, 1)}
Γ′7 = {(0, 1, 1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0, 0, 1)}
Γ′8 = {(0, 1, 1, 1, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1, 1, 0)}
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We define c̄j = cj + Iu1u2...uk as the set of all non-trivial cosets of Iu1u2...uk for
the case for Rk, where j = 1, 2, . . . , 2(2

k−1)− 1. For R2 this definition becomes that
c̄j = cj + Iuv is the set of all non-trivial cosets of Iuv ,where j = 1, 2, . . . , 7 and
Iuv = {0, uv}. Without loss of generality, write cj’s and c̄j’s as follows:

c1 = u c̄1 = {u, u+ uv}
c2 = v c̄2 = {v, v + uv}
c3 = 1 c̄3 = {1, 1 + uv}
c4 = u+ v c̄4 = {u+ v, u+ v + uv}
c5 = 1 + u c̄5 = {1 + u, 1 + u+ uv}
c6 = 1 + v c̄6 = {1 + v, 1 + v + uv}
c7 = 1 + u+ v c̄7 = {1 + u+ v, 1 + u+ v + uv}

By construction, we map

0 and uv to elements of Γ′1 respectively,
u and u+ uv to elements of Γ′2 respectively,
v and v + uv to elements of Γ′3 respectively,
1 and 1 + uv to elements of Γ′4 respectively,
u+ v and u+ v + uv to elements of Γ′5 respectively,
1 + u and 1 + u+ uv to elements of Γ′6 respectively,
1 + v and 1 + v + uv to elements of Γ′7 respectively,
1 + u+ v and 1 + u+ v + uv to elements of Γ′8 respectively.

This means that

G(0) = (0, 0, 0, 0, 0, 0, 0, 0) G(uv) = (1, 1, 1, 1, 1, 1, 1, 1)
G(u) = (0, 0, 0, 1, 0, 1, 1, 1) G(u+ uv) = (1, 1, 1, 0, 1, 0, 0, 0)
G(v) = (0, 0, 1, 0, 1, 0, 1, 1) G(v + uv) = (1, 1, 0, 1, 0, 1, 0, 0)
G(1) = (0, 0, 1, 1, 1, 1, 0, 0) G(1 + uv) = (1, 1, 0, 0, 0, 0, 1, 1)
G(u+ v) = (0, 1, 1, 1, 0, 0, 0, 1) G(u+ v + uv) = (1, 0, 0, 0, 1, 1, 1, 0)
G(1 + u) = (0, 1, 0, 0, 1, 1, 0, 1) G(1 + u+ uv) = (1, 0, 1, 1, 0, 0, 1, 0)
G(1 + v) = (0, 1, 0, 1, 1, 0, 1, 0) G(1 + v + uv) = (1, 0, 1, 0, 0, 1, 0, 1)
G(1 + u+ v) = (0, 1, 1, 0, 0, 1, 1, 0) G(1 + u+ v + uv) = (1, 0, 0, 1, 1, 0, 0, 1)

This defines a distance preserving map from R2 to F82.

5. Conclusion

The construction we have given uses combinatorial tools to obtain the Gray maps
for the homogeneous weights of codes over rings. The most common constructions
for these Gray maps in literature are algebraic constructions.As can be seen from
the constructions, by choosing the projective point, we get many different equivalent
Gray maps for the same ring. The freedom of choice provided by the combinatorial
structure makes us believe that all the other constructions can be obtained as a
special case of our constructions.
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The strong connection between the homogeneous weight and the combinatorial
geometries may provide an additional motivation for homogeneous weights in coding
theory. Thus, reversing the process, other weights and associated Gray maps may
be found through other combinatorial structures.
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