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POSITIVE SOLUTIONS FOR A FRACTIONAL BOUNDARY
VALUE PROBLEM

A. GUEZANE-LAKOUD, S. KOUACHI AND F. ELLAGGOUNE

Abstract. We discuss the existence of positive solutions for a fractional bound-
ary value problem by the help of some fixed point theorems and under suitable
conditions on the nonlinear term. Two examples are also included to illustrate
that the corresponding assumptions are satisfied.

1. Introduction

The purpose of the present work is to investigate suffi cient conditions for the
existence of three positive solutions for the following fractional boundary value
problem (P):

cDq
0+u(t) = a(t)f (u(t)) , 0 < t < 1,

u (0) = u′(0) = 0, u′′ (0) = αu (1) ,

where f : R → R is a given function, 2 < q < 3, cDq
0+ denotes the Caputo’s

fractional derivative, a ∈ C([0, 1],R).We show that under certain growth conditions
on the nonlinear term f, the fractional boundary value problem (P ) has at least
one or at least three positive solutions.
Fractional differential equations have recently proved to be valuable tools in

the modelling of many phenomena in various fields of science and engineering,
physics and economics. We can find numerous applications in viscoelasticity, elec-
trochemistry, electrical networks, control theory, biosciences, electromagnetic, sig-
nal processes, mechanics and diffusion processes see [20, 21, 22, 23]. Significant
developments in fractional differential equations can be find in the monographs of
Kilbas et al. [20], Miller and Ross [22], Lakshmikantham et al. [21], Podlubny
[23]. Ordinary differential equations and fractional differential equations have been
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studied by many authors by means of fixed point theory see [1, 2, 3, 4, 13, 14, 15,
16, 17, 18, 19, 24, 25].
Note that numerous works [6, 7, 8, 9, 10, 11, 12, 26] were dedicated to the research

questions of local and non local boundary value problems for partial differential
equations with boundary operators of high (integer and fractional) order. In [6],
the initial boundary value problem for partial differential equations of higher order
with the caputo fractional derivative was studied in the case when the order of the
fractional derivative belongs to the interval (0,1).
In [16], El-Shahed consider the following nonlinear fractional boundary value

problem

Dq
0+u(t) + λa(t)f (t, u(t)) = 0, 0 < t < 1,

u (0) = u′(0) = u′(1) = 0,

here 2 < q ≤ 3, and Dq
0+ denotes the Riemann-Liouville fractional derivative.

Using Krasnoselskii’s fixed point theorem on cone, he proved the existence and
nonexistence of positive solutions for the above fractional boundary value problem.
In [14], Bai and Lu investigated the existence and multiplicity of positive solu-

tions for nonlinear fractional differential equation boundary value problem of type:

Dq
0+u(t) + f (t, u(t)) = 0, 0 < t < 1,

u (0) = u(1) = 0,

where 1 < q ≤ 2, and Dq
0+ denotes the Riemann-Liouville fractional derivative.

Applying fixed point theorem on cone, they proved some existence and multiplicity
results of positive solutions.
The organization of this paper is as follows. In Section 2, we introduce some

definitions notations that will be used later. In the third Section, we discuss the
existence of at least one positive solution of problem (P) by using Guo-Krasnosel’skii
fixed point theorem in cone, then, under some suffi cient conditions on the nonlinear
source term, we apply Avery-Peterson theorem to prove the existence of at least
three positive solutions. At the end of this section, we give two examples illustrating
the previous results.

2. Preliminaries

In this section, we present some definitions and lemmas from fractional calculus
theory, which will be needed later.

Definition 2.1. If g ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional
integral is defined by

Iαa+g(t) =
1

Γ (α)

∫ t

a

g(s)

(t− s)1−α ds.
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Definition 2.2. Let α ≥ 0, n = [α] + 1. If f ∈ Cn[a, b] then the Caputo fractional
derivative of order α of f defined by cDα

a+g(t) = 1
Γ(n−α)

∫ t
a

gn(s)
(t−s)α−n+1 ds exists

almost everywhere on [a, b] ([α] is the entire part of α).

Lemma 2.3. For α > 0, g ∈ C([0, 1] ,R), the homogenous fractional differential
equation cDα

a+g(t) = 0 has a solution g(t) = c1 + c2t + c3t
2 + · · · + cnt

n−1, where
ci ∈ R, i = 0, . . . , n, and n = [α] + 1.

Define E = C [0, 1] equipped with the norm ‖u‖ = maxt∈[0,1] |u (t)| .

Lemma 2.4. Let p, q ≥ 0, f ∈ L1[a, b]. Then, Ip0+I
q
0+f(t) = Ip+q0+ f(t) = Iq0+I

p
0+f(t)

and cDq
a+I

q
0+f(t) = f(t), for all t ∈ [a, b].

Now we present the necessary definition from the theory of cone in Banach
spaces.

Definition 2.5. A nonempty subset P of a Banach space E is called a cone if P
is convex, closed and satisfies the following conditions:

(i) αx ∈ P for all x ∈ P and α ∈ R+,
(ii) x,−x ∈ P implies x = 0.

Definition 2.6. A mapping is called completely continuous if it is continuous and
maps bounded sets into relatively compact sets.

We start by solving an auxiliary problem which allows us to get the expression
of the solution.

Lemma 2.7. Assuming that α 6= 2 and y ∈ C([0, 1],R). Then, the problem (P0)

cDq
0+u(t) = y(t), 0 < t < 1,

u (0) = u′(0) = 0, u′′ (0) = αu (1) ,

has a unique solution given by:

u(t) =
1

Γ (q)

∫ 1

0

G (t, s) y(s)ds,

where

G(t, s) =

{
(t− s)q−1 + α

2−α t
2 (1− s)q−1

, 0 ≤ s ≤ t,
α

2−α t
2 (1− s)q−1

, 0 ≤ t ≤ s ≤ 1.

Proof. Using Lemmas 2.3 and 2.4, we get

u(t) = Iq0+y(t) + a+ bt+ ct2. (2.1)

The boundary condition u (0) = 0 implies that a = 0. Differentiating both sides
of (2.1) and using the initial condition u′(0) = 0, it yields b = 0. The condition
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u′′ (0) = αu(1), u′′ (0) = 2c = αu(1), 2c = α[Iq0+y(1) + c], 2c− αc = αIq0+y(1), and

c =
α

2− αI
q
0+y(1). Substituting a, b and c by their values in (2.1), we obtain

u (t) = Iq0+y(t) +
α

2− αt
2Iq0+y(1)

=
1

Γ (q)

∫ t

0

(t− s)q−1y(s)ds+
α

2− α
1

Γ (q)
t2
∫ 1

0

(t− s)q−1y(s)ds

=
1

Γ (q)

∫ 1

0

G(t, s)y(s)ds.

�

3. Existence of positive solutions

In this section we assume that 0 < α < 2 and :

(H1) a ∈ C ([0, 1],R+) and for all τ such that 0 < τ < 1 then∫ 1

τ
(1− s)q−1

a(s)ds 6= 0.
(H2) f ∈ C (R+,R+) .

Define the integral operator T : E → E by

T (u)(t) =
1

Γ (q)

∫ 1

0

G (t, s) a(s)f (u(s)) ds, (3.1)

that can be written as :

T (u)(t) = Iq0+a (t) f (u(t) +
α

2− αt
2Iq0+a(1)f (u(1) . (3.2)

Definition 3.1. A function u is called positive solution of problem (P ) if u(t) ≥
0,∀t ∈ [0, 1] and it satisfies the boundary condition in (P ).

Let us introduce the following notation A0 = lim
u→0

f (u)

u
, A∞ = lim

u→∞

f (u)

u
. The

case A0 = 0 and A∞ = ∞ is called superlinear case and the case A0 = ∞ and
A∞ = 0 is called sublinear case.

Lemma 3.2. If 0 < α < 2, then the function G has the following properties:

(1) G(t, s) ≥ 0, for all t, s ∈ [0, 1].
(2) For all t ∈ [τ , 1] and s ∈ [0, 1], τ > 0, 0 < τ < 1, we have

0 ≤ ατ2γ(s) ≤ G(t, s) ≤ 2γ(s), (3.3)

and where γ(s) = (1−s)q−1
2−α .

Proof. Let t ∈ [0, 1] , then we have

G(t, s) ≤ (1− s)q−1

(
2

2− α

)
= 2γ(s),
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and if t ∈ [τ , 1] then

G(t, s) ≥ (1− s)q−1

(
αt2

2− α

)
≥ (1− s)q−1

(
ατ2

2− α

)
= ατ2γ(s). (3.4)

�

Lemma 3.3. The solution of fractional boundary value problem (P ) satisfies

minu(t)t∈[τ,1] ≥
ατ2

2
‖u‖ . (3.5)

Proof. The proof is easy, then we omit it. �

Theorem 3.4. Assuming that (H1) − (H2) holds, then the fractional boundary
value problem (P ) has at least one positive solution in the both cases superlinear as
well as sublinear.

To prove Theorem 3.4, we apply the well-known Guo-Krasnosel’skii fixed point
theorem on cone.

Theorem 3.5. [13] Let E be a Banach space, and let K ⊂ E, be a cone. Assume
Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩
(
Ω2\Ω1

)
→ K,

be a completely continuous operator such that

(i) ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω2; or
(ii) ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω2.Then A has a

fixed point in K ∩
(
Ω2\Ω1

)
.

Proof. Denote E+ = {u ∈ E, u(t) ≥ 0,∀t ∈ [0, 1]} and define the cone K by

K =

{
u ∈ E+, min

t∈[τ,1]
u(t) ≥ ατ2

2
‖u‖
}
, (3.6)

It is easy to check that K is a nonempty closed and convex subset of E, hence it
is a cone. One can check that TK ⊂ K. It is obvious that T is continuous since
G, a and f are continuous. Let us prove that T : K → E is completely continuous
mapping on K.
Claim 1. T (Br) is uniformly bounded, where Br = {u ∈ K, ‖u‖ ≤ r}.
Since the functions a and f are continuous, then there exists a constant c such

that maxt∈[0,1] |a(t)f(u(t)| = c for any u ∈ Br. By virtue of Lemma 3.2 we obtain

|Tu(t)| ≤ 2c

(2− α) Γ(q)
. (3.7)

Hence T is uniformly bounded.
Claim 2. T is equicontinuous. We have for any u ∈ Br
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|T ′u (t)| =

∣∣∣∣∣ 1
Γ(q)

∫ 1

0
(q − 1) (t− s)q−2a (s) f (u (s)) ds

+ 1
Γ(q)

∫ 1

0
2t α

2−α (1− s)q−1a (s) f (u (s)) ds

∣∣∣∣∣
≤ c

Γ (q − 1)

∫ 1

0

(1− s)q−2ds+
4c

Γq (2− α)

∫ 1

0

(1− s)q−1ds (3.8)

=
c

Γq

(
1 +

4

(2− α)

)
=
c1
Γq
.

Therefore

|Tu (t2)− Tu (t1)| =
∣∣∣∣∫ t2

t1

T ′u (t) dt

∣∣∣∣ ≤ c1 (t2 − t1)

Γ (q)
. (3.9)

Consequently T is equicontinuous. From Arzela-Ascoli theorem we deduce that T
is completely continuous operator.
Let us consider the superlinear case. First, A0 = 0, for any ε > 0, there exists

R1 > 0, such that if 0 < u ≤ R1 then f (u) ≤ εu. Let Ω1 = {u ∈ E, ‖u‖ < R1} ,
Letting u ∈ K ∩ ∂Ω1, then we have

Tu(t) =
1

Γ (q)

∫ 1

0

G (t, s) a(s)f(u(s)ds,

≤ 2ε ‖u‖
Γ (q)

∫ 1

0

γ(s)a(s)ds, (3.10)

Then if we choose ε = Γ (q) /2
∫ 1

0
γ(s)a(s)ds, we get ||Tu|| ≤ ||u|| , for any u ∈

K ∩ ∂Ω1.
Second, since A∞ = ∞, then for any M > 0, there exists R2 > 0, such

that f (u) ≥ Mu for u ≥ R2. Let R = max
{

2R1,
2R2

ατ2

}
, and denote by Ω2 =

{u ∈ E : ||u|| < R} . If u ∈ K ∩ ∂Ω2 then

min
t∈[τ,1]

u(t) ≥ ατ2

2
‖u‖ =

ατ2

2
R ≥ R2. (3.11)

Using the left-hand side of Lemmas 3.2 and 3.3, we obtain

Tu(t) ≥ ατ2M

Γ (q)

∫ 1

τ

γ(s)a(s)u (s) ds, (3.12)

thus

Tu(t) ≥ α2τ4M ‖u‖
2Γ (q)

∫ 1

τ

γ(s)a(s)ds, (3.13)

we can choose M = 2Γ (q) /α2τ4
∫ 1

τ
γ(s)a(s)ds, then we get ||Tu|| ≥ ||u|| , ∀u ∈

K ∩ ∂Ω2.The first statement of Theorem 3.5 implies that T has a fixed point in
K ∩

(
Ω2�Ω1

)
such that R2 ≤ ||u|| ≤ R. Applying similar techniques as above, we

prove the sublinear case. The proof of is complete. �
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Let us introduce the following functionals. Defining on K, the nonnegative,
continuous, and concave functional Λ by Λ (u) = mint∈[τ,1] |u(t)| , then Λ (u) ≤
‖u‖ . Defining the nonnegative, continuous, and convex functional ϕ and Φ on K
by ϕ (u) = Φ (u) = ‖u‖ and the nonnegative continuous functional Ψ on K by
Ψ (u) = ‖u‖ , then Ψ (ku) ≤ k ‖u‖ for 0 ≤ k ≤ 1.

Theorem 3.6. Assume that (H1) − (H2) hold, and that there exists positive con-
stants a, b, c, d, µ, β and ν such that a < b, µ > 2

(2−α)Γ(q)

∫ 1

0
(1− s)q−1

a (s) ds,

β < ατ2

(2−α)Γ(q)

∫ 1

τ
(1− s)q−1

a (s) ds, and

(i) f (u) ≤ d
µ for u ∈ [0, d] .

(ii) f (u) ≤ b
β for u ∈ [b, c] .

(iii) f (u) ≤ a
µ for u ∈ [0, a] .

Then the problem (P ) has at least three positive solutions u1, u2, u3 ∈ K (ϕ, d)
such that
ϕ (ui) ≤ d for i = 1, 2, 3, b < Λ (u1) , a < Ψ (u2) with Λ (u2) < b and Ψ (u3) < a.

To prove the existence of three positive solutions, we apply (Avery and Peterson
fixed point Theorem).

Theorem 3.7. [5] Let K be a cone in a real Banach space E. Let ϕ and Φ be
nonnegative, continuous, and convex functional on K, let Λ be a continuous, non-
negative and concave functional on K, and let Ψ be a continuous and nonnegative
functional on K satisfying Ψ (ku) ≤ k ‖u‖ for 0 ≤ k ≤ 1. Define the sets, K (ϕ, d),
K (ϕ,Λ, b, d), K (ϕ,Φ,Λ, b, c, d) and R (ϕ,Ψ, a, d) by

K (ϕ, d) = {u ∈ K,ϕ (u) < d} ,
K (ϕ,Λ, b, d) = {u ∈ K, b ≤ Λ (u) , ϕ (u) ≤ d} ,

K (ϕ,Φ,Λ, b, c, d) = {u ∈ K, b ≤ Λ (u) ,Φ (u) ≤ c, ϕ (u) ≤ d} ,
R (ϕ,Ψ, a, d) = {u ∈ K, a ≤ Ψ (u) , ϕ (u) ≤ d} .

For M and d positive numbers we have Λ (u) ≤ Ψ (u) and ‖u‖ ≤Mϕ (u) for any
u ∈ K (ϕ, d). Assume T : K (ϕ, d) −→ K (ϕ, d) is completely continuous and there
exists positive numbers a, b and c with a < b such that

(S1) {u ∈ K(ϕ,Φ,Λ, b, c, d),Λ(u) � b} 6= ∅ and Λ (Tu) � b for u ∈ K(ϕ,Φ,Λ,
b, c, d),

(S2) Λ (Tu) > b for u ∈ K (ϕ,Λ, b, d) with Φ (Tu) > c,
(S3) 0 /∈ R (ϕ,Ψ, a, d) and Ψ (Tu) ≺ a for u ∈ R (ϕ,Ψ, a, d) with Ψ (u) = a.

Then T has at least three positive fixed points u1, u2, u3 ∈ K (ϕ, d) such that
ϕ (ui) ≤ d for i = 1, 2, 3, b < Λ (u1) , a < Ψ (u2) with Λ (u2) < b and Ψ (u3) < a.

Proof. Proceeding analogously as in the proof of Theorem 3.4, we prove that the
mapping T is completely continuous on K (ϕ, d).
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Claim 1. T
(
K (ϕ, d)

)
⊂ K (ϕ, d). Letting u ∈ K (ϕ, d), then ‖u‖ ≤ d. Thus

with the help of assumption (i) it yields

ϕ (Tu) = ‖Tu‖ = max
t∈[0,1]

1

Γ (q)

∫ 1

0

G (t, s) a(s)f (u(s))ds

≤ 2

(2− α) Γ (q)

∫ 1

0

(1− s)q−1
a (s) f (u(s)) ds

≤ d

µ

2

(2− α) Γ (q)

∫ 1

0

(1− s)q−1
a (s) ds < d,

and hence Tu ∈ K (ϕ, d).

Claim 2. (S1) holds, that is
{
u ∈ K

(
ϕ,Φ,Λ, b, b

1−λ , d
)
,Λ (u) > b

}
6= ∅ and

Λ (Tu) > b for u ∈ K
(
ϕ,Φ,Λ, b, b

1−λ , d
)
. Let y (t) = b

(
λ

1−λ

)
with 1

2 < λ < 1,

then

Φ (y) = ϕ (y) = ‖y‖ = b

(
λ

1− λ

)
<

b

1− λ.

Moreover we have

Λ (y) = min
t∈[τ,1]

y (t) = b

(
λ

1− λ

)
> b > (1− λ) ‖y‖ .

Thus y ∈ K
(
ϕ,Φ,Λ, b, b

1−λ , d
)
, so

{
u ∈ K

(
ϕ,Φ,Λ, b, b

1−λ , d
)
,Λ (u) > b

}
6= ∅.

Letting u ∈ K
(
ϕ,Φ,Λ, b, b

1−λ , d
)
, then b ≤ u (t) ≤ b

1−λ , thus by virtue of (3.3)

and assumption (ii), we obtain

Λ (Tu) = min
t∈[τ,1]

|Tu(t)| ≥ ατ2

(2− α) Γ (q)

∫ 1

τ

(1− s)q−1
a (s) f (u(s)) ds

≥ ατ2

(2− α) Γ (q)

b

β

∫ 1

τ

(1− s)q−1
a (s) ds > b.

So condition (S1) is satisfied.
Claim 3. (S2) holds. Letting u ∈ K (ϕ,Λ, b, d) such that Φ (Tu) = ‖Tu‖ > c,

then

Λ (Tu) = min
t∈[τ,1]

|Tu(t)| ≥ b,

this implies that (S2) holds.
Claim 4. (S3) holds. Letting u ∈ R (ϕ,Ψ, a, d), then 0 < a ≤ ‖u‖ ≤ d, and so

0 /∈ R (ϕ,Ψ, a, d) with Ψ (u) = ‖u‖ = a, using Lemma 3.2 and assumption (iii) it
yields
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Ψ (Tu) = max
t∈[0,1]

1

Γ (q)

∫ 1

0

G (t, s) a(s)f (u(s)) ds

≤ 2

(2− α) Γ (q)

∫ 1

0

(1− s)q−1
a (s) f (u(s)) ds

≤ a

µ

2

(2− α) Γ (q)

∫ 1

0

(1− s)q−1
a (s) ds < a,

Then (S3) is satisfied. �

Now we give two examples to illustrate Theorem 3.4 and 3.6

Example 3.8. Let us consider the following fractional boundary value problem

cD
8
3

0+u(t) = a(t)f (u(t)) , 0 < t < 1,

where q = 8
3 , α = 1

2 , f (u) = exp (−u) , a (t) = t, τ = 4
5 , by calculus we obtain∫ 0,8

0
a (s) ds =

∫ 0,8

0
sds = 0, 32 6= 0. The assumptions (H1) − (H2) holds and that

A0 = ∞, A∞ = 0, applying Theorem 3.4, we deduce that there exists at least one
positive solution.

Example 3.9. Let us consider the following fractional boundary value problem

cD
9
4

0+u(t) = a(t)f(u(t)), 0 < t < 1,

where

q =
9

4
, α = 1, a (t) =

√
1 + t, τ =

9

10
,

f (u) =


u3

2 , 0 ≤ u ≤ 3,
7u2

2 − 18 , 3 ≤ u ≤ 4,
38 , u ≥ 4.

It is easy to see that (H1) and (H2) are satisfied. Let us check the assumptions of
Theorem 3.6

µ >
2 (0, 1)

5
4

Γ
(

9
4

) ∫ 1

0

√
1 + sds = 2.151 7,

β <
(0, 9)

2
(0, 1)

5
4

Γ
(

9
4

) ∫ 1

0,9

√
1 + sds = 0, 87149.

If we choose µ = 2, 30, β = 0, 5, a = 2, b = 3, c = 0, 1, d ≥ 127, 65, then the
assumptions of Theorem 3.6 are satisfied, consequently, there exists at least three
positive solutions u1, u2, u3 ∈ K (ϕ, d) such that
‖ui‖ ≤ d = 128, 3 < mint∈[ 9

10 ,1]
u1 (t) , 2 < ‖u2‖ , with mint∈[ 9

10 ,1]
u2 (t) < 3 and

‖u3‖ < 2.
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Conclusion

In this paper, we have proved the existence of at least one positive solution of
problem (P) by using Guo-Krasnosel’skii fixed point theorem in cone, then under
some suffi cient conditions on the nonlinear source term, we have applied Avery-
Peterson theorem to prove the existence of at least three positive solutions. One
can prove the existence of multiple positive solutions by using other fixed theorems.
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