H∞ CONTROL AND INPUT-TO-STATE STABILIZATION FOR HYBRID SYSTEMS WITH TIME DELAY

TAGHREED G. SUGATI, MOHAMAD S. ALWAN, AND XINZHI LIU

Abstract. This paper addresses the problem of designing a robust reliable H∞ control and a switching law to guarantee input-to-state stabilization (ISS) for a class of uncertain switched control systems with time delay not only when all the actuators are operational, but also when some of them experience failure. The output of faulty actuators are treated as a disturbance signal that is augmented with the system disturbance input. Multiple Lyapunov function with Razumikhin technique, and average dwell-time switching signal are used to establish the ISS property.

1. Introduction

A switched system is a special class of hybrid systems that consists of a family of continuous- or discrete-time dynamical subsystems, and a switching rule that controls the switchings among the subsystems. One may refer to [7, 8, 12] and the references therein.

The reliable control is the controller that tolerates failures in the control components. In reality, such failures are frequently encountered, yet the immediate repair may be impossible in some critical cases. Consequently, it is necessary to design a reliable controller that guarantees an acceptable level of performance [3, 11, 15, 18].

In practice, most of the real control systems are subject to some disturbance inputs. ISS notion, introduced in [13] which addresses the system response to a bounded disturbance when the unforced system is asymptotically stable, is an efficient tool to deal with these disturbances. In [1], a robust reliable H∞ controller was designed to guarantee ISS with a desired level of performance for stochastic systems with time delay. In this work, the nonzero output of faulty actuators was augmented with the system disturbance. Furthermore, Lyapunov function with the Razumikhin approach were used in that work.

Received by the editors: September 07, 2014; Accepted: March 03, 2015.

2010 Mathematics Subject Classification. 93B36, 93D99, 93B51, 74H55, 74M05.

Key words and phrases. Switched systems, ISS, robust reliable H∞ control, multiple Lyapunov functions, average dwell time, time delay.

©2015 Ankara University

29
The novelty of this work is to develop new sufficient conditions that guarantee the input-to-state stabilization and H_{∞} performance of the switched system in the presence of the disturbance, state uncertainties, time delay, and nonlinear lumped perturbation not only when all the actuators are operational, but also when some of them experience failure. While in most of the available literature on reliable controls, the faulty actuators are modeled as outages (i.e., zero output), in this work the output signal of these actuators is treated as a disturbance signal that is augmented with the system disturbance input. The latter case is more practical because most of the control component failures occur unexpectedly. The method of multiple Lyapunov functions is utilized to analyze the ISS. It is well known that the stability of a switched system is not guaranteed by the stability of each individual mode unless the switching among them is ruled by a logic-based switching signal, where in this work the average dwell-time condition is used. To the best of our knowledge, these results have not been studied in the available literature.

This paper is organized as follows. Section 2 involves the problem description, definitions, and a useful lemma. The main results and proofs are stated in Section 3. A numerical example with simulations is presented in Section 4. The conclusion is given in Section 5.

2. Problem formulation

Consider a class of uncertain switched systems with time delay given by

$$\begin{cases}
\dot{x} = (A_{i}(t) + \Delta A_{i}(t))x + (\bar{A}_{i}(t) + \Delta \bar{A}_{i}(t))x(t-r) + B_{i}(t)u + G_{i}(t)w + f_{i}(x(t-r)), \\
z = C_{i}(t)x + F_{i}(t)u, \\
x_{t_{0}} = \phi(t), \ t \in [t_{0}, r], \ r > 0,
\end{cases}$$

where $x \in \mathbb{R}^{n}$ is the system state, $u \in \mathbb{R}^{l}$ is the control input, and $w \in \mathbb{R}^{p}$ is an input disturbance, which is assumed to be in $L_{2}[t_{0}, \infty)$ that is $\|w\|_{2}^{2} = \int_{t_{0}}^{\infty} \|w(t)\|^{2} dt < \infty$, and $z \in \mathbb{R}^{r}$ is the controlled output. g is the switching rule which is a piecewise constant function defined by $g : [t_{0}, \infty) \rightarrow \mathcal{S} = \{1, 2, \cdots, N\}$. For $r > 0$, let C_{i} be the space of all continuous functions that are defined from $[-r, 0]$ to \mathbb{R}^{n}. For any $t \in \mathbb{R}^{+}$, let $x(t)$ be a function defined on $[t_{0}, \infty]$. Then, we define the functional $x_{i} : [-r, 0) \rightarrow \mathbb{R}^{n}$ by $x_{i}(s) = x(t+s)$ for all $s \in [-r, 0]$, and its norm by $\|x_{i}\|_{r} = \sup_{-r \leq \theta < 0} \|x(\theta)\|$, where $r > 0$ is the time delay. For each $i \in \mathcal{S}$, A_{i} is a non Hurwitz matrix, $K_{i} \in \mathbb{R}^{l \times n}$ is the control gain matrix such that $u = K_{i}x$, where (A_{i}, B_{i}) is assumed to be stabilizable, $f_{i}(\cdot) \in \mathbb{R}^{n}$ is some nonlinearity, A_{i}, B_{i}, G_{i}, C_{i} and F_{i} are known real constant matrices, and ΔA_{i}, $\Delta \bar{A}_{i}$ are piecewise continuous functions representing system parameter uncertainties. For any $i \in \mathcal{S}$ the closed-loop system is

$$\begin{cases}
\dot{x} = (A_{i} + \Delta A_{i} + B_{i}K_{i})x + (\bar{A}_{i} + \Delta \bar{A}_{i})x(t-r) + G_{i}w + f_{i}(x(t-r)), \\
z = C_{i}x, \quad C_{i} = C_{i} + F_{i}K_{i} \\
x_{t_{0}} = \phi(t), \ t \in [t_{0}, r], \ r > 0,
\end{cases}$$
To analyze the reliable stabilization with respect to actuator failures, for any \(i \in \mathcal{S}\), we write \(B_i = B_{i\Sigma} + B_{i\bar{\Sigma}}\), where \(\Sigma \subseteq \{1, 2, \ldots, l\}\) the set of actuators that are susceptible to failure, and \(\Sigma \subseteq \{1, 2, \ldots, l\} - \Sigma\) the other set of actuators which are robust to failures and essential to stabilize the given system, moreover, the matrices \(B_{i\Sigma}, B_{i\bar{\Sigma}}\) are the control matrices associated with \(\Sigma, \bar{\Sigma}\), respectively, and are generated by zeroing out the columns corresponding to \(\Sigma, \bar{\Sigma}\), respectively. The pair \((A_i, B_{i\Sigma})\) is assumed to be stabilizable. For a fixed \(i \in \mathcal{S}\), let \(\sigma \subseteq \Sigma\) corresponds to some of the actuators that experience failure, and assume that the output of faulty actuators is an arbitrary energy-bounded signal which belongs to \(L_2(t_0, \infty)\). Then, the decomposition becomes \(B_i = B_{i\sigma} + B_{i\bar{\sigma}}\), where \(B_{i\sigma}\) and \(B_{i\bar{\sigma}}\) have the same definition of \(B_{i\Sigma}, B_{i\bar{\Sigma}}\), respectively. Furthermore, the augmented disturbance input to the system becomes \(w^f = (w^T (u^f)^T)^T\), where \(u^f \in \mathbb{R}^l\) is the failure vector whose elements corresponding to the set of faulty actuators \(\sigma\), and \(F\) here stands for “failure”. Thus, the closed-loop system becomes

\[
\begin{align*}
\dot{x} &= (A_i + \Delta A_i + B_{i\sigma}K_i)x + (\dot{A}_i + \Delta \dot{A}_i)x(t - r) + G_{ic}w^f + f_i(x(t - r)), \\
\dot{z} &= C_{ic}x, \\
x_{t_0} &= \phi(t), \ t \in [-r, 0], \ r > 0,
\end{align*}
\]

(1)

where \(G_{ic} = (G_i, B_{i\sigma})\).

Definition 1. System (2) is said to be robustly globally exponentially ISS if there exist \(\lambda > 0, \bar{\lambda} > 0\) and a function \(\rho \in \mathcal{K}\) such that the solution \(x(t)\) exists \(\forall t \geq t_0\) and satisfies

\[
||x|| \leq \bar{\lambda}||x_{t_0}||e^{-\lambda(t-t_0)} + \rho\left(\sup_{t_0 \leq r \leq t} ||w(r)||\right).
\]

Definition 2. Given a constant \(\gamma > 0\), system (2) is said to be ISS-\(H_\infty\) if there exists a state feedback law \(u(t) = K_i x(t)\), such that, for any admissible parameter uncertainties \(\Delta A_i\) and \(\Delta \dot{A}_i\), the closed-loop system (2) is globally exponentially ISS, and the controlled output \(z\) satisfies

\[
||z||^2 = \int_{t_0}^{\infty} ||z||^2 dt \leq \gamma^2 ||w||^2 + m_0, \quad \text{for some} \ m_0 > 0.
\]

Assumption A. For any \(i \in \mathcal{S}\) and \(\forall t \in \mathbb{R}_+, \Delta A_i(t) = D_i \mathcal{U}_i(t) H_i\) and \(\Delta \dot{A}_i(t) = D_i \dot{\mathcal{U}}_i(t) H_i\), with \(D_i, H_i, \dot{D}_i, \dot{H}_i\) being known real matrices with appropriate dimensions, and \(\mathcal{U}_i(t)\) being unknown real time-varying matrices and satisfying \(||\mathcal{U}_i(t)|| \leq 1\) and \(||\dot{\mathcal{U}}_i(t)|| \leq 1\).

Lemma. For any \(\xi_j > 0 \ (j = 1, \cdots, 5)\), and a positive-definite matrix \(P\), we have

(i) \(2x^T P(\Delta A)x \leq x^T (\xi_1 PDD^T P + \xi_1^{-1} H^T H)x\).

(ii) \(2x^T PGw \leq x^T (\xi_2 PGG^T P) x + \frac{1}{\xi_2} w^T w\).

Moreover, for \(x \in \mathcal{C}_r\), if \(||x(t - r)||_r^2 \leq q||x||^2\) with \(q > 1\), then

(iii) \(2x^T PAx(t - r) \leq x^T (\xi_3 P\dot{A}(\dot{A})^T P + \xi_3^{-1} H\dot{H})x\).

(iv) \(2x^T P(\Delta A) x(t - r) \leq x^T (\xi_4 P\dot{D}\dot{D}^T P + \xi_4^{-1} \dot{H}^2)x\).
Theorem 1. gives robust global exponential ISS property of the system.

Claim. For any

(iii) the following algebraic Riccati-like equation holds

\[
(A_i + B_i K_i)^T P_i + P_i (A_i + B_i K_i) + P_i (\xi_1 D_i D_i^T + \xi_2 G_i G_i^T + \xi_3 A_i (A_i)^T + \xi_4 D_i (D_i)^T
\]

where \(\delta_i > 0 \) such that \(||f_i(\psi)||^2 \leq \delta_i ||\psi||^2 \).

Then, system (2) is robustly globally exponentially ISS-H_{\infty}.

Proof. For all \(t \in [\ldots, 0] \), let \(x(t) = x(t, t_0, \phi) \) be the solution of system (2). For any \(i \in \mathcal{S} \), define \(V_i(x) = x^T P_i x \). Then, \(\lambda_{\min}(P_i)||x||^2 \leq V_i(x) \leq \lambda_{\max}(P_i)||x||^2 \) and

\[
\dot{V}_i(x) = x^T [(A_i + B_i K_i)^T P_i + P_i (A_i + B_i K_i) + x + 2x^T P_i (\Delta A_i) x + 2x^T P_i G_i w
\]

where \(\delta_i > 0 \) such that \(||f_i(\psi)||^2 \leq \delta_i ||\psi||^2 \).

Claim. For any \(i \in \mathcal{S} \), and \(k \in \mathbb{N} \), \(t \in [t_{k-1}, t_k) \), conditions (i) and (ii) imply that

\[
||x(t)||^2 \leq M_i ||\phi||^2 e^{-\lambda_i (t-t_{k-1})} + \gamma \left(\sup_{t_{k-1} \leq s \leq t} ||w(s)|| \right), \quad \lambda_i > 0, \quad M_i > 1.
\]

Proof of the claim. Choose \(M_i > 1 \) such that

\[
c_{2i} ||x_{t_k-1}||_R^2 \leq M_i c_{2i} ||x_{t_k-1}||_R^2 e^{-\lambda_i (t-t_{k-1})} + \tilde{\gamma}(t)
\]

where \(\tilde{\gamma}(t) = \gamma \left(\sup_{t_{k-1} \leq s \leq t} ||w(s)|| \right) \) and \(c_{2i} = \lambda_{\max}(P_i) \). Let \(v(t) = V_i(x(t)) \), for all \(t \in [t_{k-1} - r, t_k) \), \(k = 1, 2, \cdots \). From (3), we have for \(t \in [t_{k-1} - r, t_k) \),

\[
v(t) \leq c_{2i} ||x(t)||_R^2 \leq c_{2i} ||x_{t_k-1}||_R^2 \leq M_i c_{2i} ||x_{t_k-1}||_R^2 e^{-\lambda_i (t-t_{k-1})} + \tilde{\gamma}(t)
\]

If (3) is not true, then there exists \(\bar{t} \in (t_{k-1}, t_k) \) such that

\[
v(\bar{t}) > M_i c_{2i} ||x_{t_k-1}||_R^2 e^{-\lambda_i (t-t_{k-1})} + \tilde{\gamma}(t) \geq c_{2i} ||x_{t_k-1}||_R^2 \geq v(t + s), \quad s \in [\ldots, 0]
\]
From the continuity, there exists \(t^* \in (tk_{k-1}, \bar{t}) \) such that
\[
v(t^*) = M_t c_{2i} ||x_{tk_{k-1}}||^2 e^{-\lambda_i (tk_{k-1} - t)} + \gamma(t^*)
\]
and for all \(t \in [tk_{k-1} - r, t^*] \), we have
\[
v(t) \leq M_t c_{2i} ||x_{tk_{k-1}}||^2 e^{-\lambda_i (tk_{k-1} - t)} + \gamma(t)
\]
Also, there exists \(t^{**} \in [tk_{k-1}, t^*] \) such that \(v(t^{**}) = c_{2i} ||x_{tk_{k-1}}||^2 \) and for \(t \in [t^{**}, t^*] \), \(v(t) \geq c_{2i} ||x_{tk_{k-1}}||^2 \). Hence, from (7), for all \(t \in [t^{**}, t^*] \), and \(s \in [r, 0] \), we have
\[
v(t + s) \leq M_t c_{2i} ||x_{tk_{k-1}}||^2 e^{-\lambda_i (tk_{k-1} - t + s)} e^{\lambda_i (t^{**} - tk_{k-1})} + \gamma(t)
\]
\[
\leq M_t v(t) e^{\lambda_i (t^{**} - tk_{k-1})} + \gamma \left(\sup_{tk_{k-1} \leq t \leq t^{**}} ||w(s)|| \right)
\]
\[
\leq (M_t e^{\lambda_i (t^{**} - tk_{k-1})} + 1)v(t) \leq (M_t e^{\lambda_i \beta} + 1)v(t) = q_i v(t)
\]
where we used condition (i) to get the second last inequality. Therefore, we have \(\dot{v}(t) \leq 0 \) for \(t \in [t^{**}, t^*] \) which is a contradiction. Now by the claim, the lemma, and condition (2), we have
\[
\dot{V}_i(x) \leq x^T \left[(A_i + B_i K_t) P_t + P_t (A_i + B_i K_t)^T + P_t \xi_1 D_i D_i^T + \xi_2 G_i G_i^T + \xi_3 i \hat{A}_i \hat{A}_i^T \right.
\]
\[
+ \xi_4 i \hat{D}_i \hat{D}_i^T + \xi_5 i I \right] P_t + \frac{1}{\xi_i} H_i^T H_i + \left(\frac{q_i}{\xi_3} + \frac{q_i}{\xi_4} ||H_i||^2 + \frac{\delta q_i}{\xi_5} ||I||^2 \right) x + \frac{1}{\xi_i} w^T w
\]
\[
\leq -\alpha_i V_i(x) + \frac{1}{\xi_i} w^T w,
\]
Hence, \(\forall t \in [tk_{k-1}, tk_k] \), we have \(\dot{V}_i(x) \leq -\alpha_i V_i(x) - \theta_i V_i(x) + \frac{1}{\xi_i} w^T w \), where \(\alpha_i = \alpha_i - \theta_i \) and \(0 \leq \theta_i < \alpha_i \). The foregoing inequality implies that, \(\forall t \in [tk_{k-1}, tk_k] \), \(\dot{V}_i(x) \leq -\alpha_i V_i(x) \), provided that \(V_i(x) > \frac{1}{\alpha_i} ||w||^2 \), or \(||w|| > \frac{\alpha_i}{\alpha_i} ||w|| \), or \(||w|| > \frac{\alpha_i}{\alpha_i} ||w|| \).

where \(c_2 = \max_{i \in S} \lambda_{\text{max}}(P_t) \). Then, for all \(t \in [tk_{k-1}, tk_k] \),
\[
V_i(x(t)) \leq V_i(x(tk_{k-1})) e^{-\alpha_i(t-k_{k-1})}
\]
provided that \(||x|| > \rho(||w||) \), where \(\rho(||w||) = \max_{i \in S} \{\lambda_{\text{max}}(P_t)\} \). As for the switching, we have for any \(i, j \in \mathcal{S} \),
\[
V_j(x(t)) \leq \mu V_i(x(t)), \quad \mu = \frac{c_2}{c_1}
\]
where \(c_1 = \min_{i \in \mathcal{S}} \{\lambda_{\text{min}}(P_t)\} \) and \(c_2 = \max_{i \in \mathcal{S}} \{\lambda_{\text{max}}(P_t)\} \). Then, for \(i \in \mathcal{S} \) and \(t \in [tk_{k-1}, tk_k] \),
\[
V_i(x(t)) \leq \mu^{k-1} e^{-\alpha_i(t-k_{k-1})} e^{-\alpha_{i-1}(tk_{k-1} - t_{k-2})} \ldots e^{-\alpha_1(t_{k-1} - t_0)} V_i(x_0)
\]
provided that \(||x|| > \rho(||w||) \). Letting \(\alpha^* = \min\{\alpha_i; i \in \mathcal{S}\} \), one may get
\[
V_i(x(t)) \leq \mu^{k-1} e^{-\alpha^*(t-t_0)} V_i(x_0) = e^{(k-1) \ln \mu - \alpha^*(t-t_0)} V_i(x_0),
\]
provided that \(||x|| > \rho(||w||) \).
Using ADTC with $N_0 = \frac{\nu}{\ln \mu}$, $\tau_a = \frac{\ln \mu}{\alpha^* - \nu}$, ($\nu < \alpha^*$), for some $\eta > 0$, we get

$$V_i(x(t)) \leq e^{\eta - \nu(t-t_0)}V_i(x_0),$$

provided that $\|x\| > \rho(||w||)$.

This implies that \[5\] \[5\] \[5\] \[5\] where $b = \sqrt{2co_2/c_1}$, and $\gamma(s) = \frac{\sqrt{2}}{2} \rho(s)$. This completes the proof of exponential ISS.

To prove the upper bound on $\|z\|$, for any $i \in \mathcal{S}$, let $J_i = \int_{t_0}^{\infty} (z^Tw - \gamma_i^2 w^Tw) dt$. Then,

$$J_i = \int_{t_0}^{\infty} (z^Tw - \gamma_i^2 w^Tw) dt + \int_{t_0}^{\infty} \dot{V}_i dt - V_i(\infty) + V_i(x_0)$$

$$\leq \int_{t_0}^{\infty} (z^Tw - \gamma_i^2 w^Tw) dt + V_i(x_0) + \int_{t_0}^{\infty} \{x^T[(A_i + B_i K_i)^TP_i + P_i (A_i + B_i K_i)$$

$$+ P_i (\xi_{i1} D_i D_i^T + \xi_{i2} \tilde{A}_i (\tilde{A}_i)^T + \xi_{i3} \tilde{D}_i (\tilde{D}_i)^T + \xi_{i4} I)P_i + \frac{1}{\xi_{i1}} H_i^T H_i$$

$$+ (\frac{\delta_{i1}}{\xi_{i1}} + \frac{\delta_{i2}}{\xi_{i2}}) I + \gamma_i^{-2} P_i G_i G_i^T P_i - \gamma_i^{-2} P_i G_i G_i^T P_i \|x + 2x^T P_i G_i w\| \} dt$$

$$= V_i(x_0) + \int_{t_0}^{\infty} \{x^T[(A_i + B_i K_i)^TP_i + P_i (A_i + B_i K_i) + P_i (\xi_{i1} D_i D_i^T + \xi_{i2} \tilde{A}_i (\tilde{A}_i)^T$$

$$+ \xi_{i3} \tilde{D}_i (\tilde{D}_i)^T + \xi_{i4} I)P_i + \frac{1}{\xi_{i1}} H_i^T H_i + (\frac{\delta_{i1}}{\xi_{i1}} + \frac{\delta_{i2}}{\xi_{i2}}) I + \gamma_i^{-2} P_i G_i G_i^T P_i$$

$$+ C_i^T C_i \|x\| \} dt - \int_{t_0}^{\infty} \gamma_i^2 (w - \gamma_i^{-2} G_i^T P_i x)^T (w - \gamma_i^{-2} G_i^T P_i x) dt \}.$$

The last term is strictly negative, using (2) with $\gamma_i^{-2} = \xi_{2i}$, we get $J_i \leq V_i(x_0)$ which leads to $\|z\|^2 \leq \gamma^2 \|w\|^2 + m_0$, where $m_0 = \max_{i \in \mathcal{S}} \{V_i(x_0)\}$, and $\gamma = \max_{i \in \mathcal{S}} \{\gamma_i\}$.

Remark. Theorem 1 provides sufficient conditions to ensure the robust global exponential ISS property. The algebraic Riccati-like equation in (2) is to guarantee the existence of the positive-definite matrix P_i (for all $i \in \mathcal{S}$), which implies that the solution trajectories of the subsystems are decreasing outside a certain neighbourhood of the disturbance $w(t)$. The role of the average dwell time condition is to organize the switching among the system modes. ξ_1, ξ_2 are tuning parameters to reduce the conservativeness of the Riccati-like equation.

Theorem 2. (Reliability) For any $i \in \mathcal{S}$, let the constant $\gamma_i > 0$ be given, and assume that there exist positive constants ξ_{jj}, ($j = 1, \cdots, 5$), ϵ_i, α_i, a positive-definite matrix P_i, and $V_i : \mathbb{R}^n \to \mathbb{R}_+$ such that conditions (i)-(iii) from Theorem 1
hold, \(K_i = -\frac{1}{2} \epsilon_i B_{i\sigma}^T P_i \), and the following algebraic Riccati-like equation holds

\[
A_i^T P_i + P_i A_i + P_i (\xi_1 D_i D_i^T + \xi_2 G_i G_i^T + \xi_3 \tilde{A}_i) + \xi_4 \tilde{D}_i (\tilde{D}_i)^T + \xi_5 I) P_i + \left(\frac{\delta_1}{\xi_3} + \frac{\delta_2}{\xi_4} \right) I + \frac{1}{\xi_1} H_i^T H_i + C_i^T C_i + \alpha_i p_i = 0,
\]

where \(\delta_1 > 0 \) such that \(||f_i(\psi)||^2 \leq \delta_1 ||\psi||^2 \). Then, system (1) is robustly globally exponentially ISS-\(H_\infty \).

Proof. Let \(x(t) = x(t, t_0, \phi) \) be the solution of (1). \(\forall i \in S \), define \(V_i(x) = x^T P_i x \).

Then,

\[
\dot{V}_i(x) \leq x^T [A_i^T P_i + P_i A_i + P_i (\xi_1 D_i D_i^T + \xi_2 G_i G_i^T + \xi_3 \tilde{A}_i) + \xi_4 \tilde{D}_i (\tilde{D}_i)^T + \xi_5 I) P_i + \left(\frac{\delta_1}{\xi_3} + \frac{\delta_2}{\xi_4} \right) I + \frac{1}{\xi_1} H_i^T H_i + C_i^T C_i + \alpha_i p_i] x - \alpha_i V_i(x) + \frac{1}{\xi_2} (w_{i\sigma}^T w_{i\sigma})^T w_{i\sigma}
\]

where we used the claim proved in Theorem 1, the lemma, the fact that \(|B_{i\sigma}^T B_{i\sigma}^T - B_{i\sigma} B_{i\sigma}^T| \), and condition (4). Then, for any \(i \in S \), \(\dot{V}_i(x) \leq -\alpha_i V_i(x) - \theta_i V_i(x) + \frac{1}{\xi_2} (w_{i\sigma}^T w_{i\sigma})^T w_{i\sigma} \), where \(\alpha_i = \alpha_i - \theta_i \) and \(0 < \theta_i < \alpha_i \). Then, for all \(t \in [t_k-1, t_k) \), \(\dot{V}_i(x) \leq -\alpha_i V_i(x) \), provided that \(||x|| > \frac{\|w_{i\sigma}\|}{\sqrt{\theta_i \epsilon_1 \xi_3}} =: \rho_i(||w_{i\sigma}\|) \), which implies that \(\dot{V}_i(x(t)) \leq e^{\gamma(t-t_0)} V_i(x_0) \) provided that \(||x|| > \rho(||w||) \), where \(\rho(||w||) = \max_{i \in S} \{ \rho_i(||w_{i\sigma}\|) \} \). This also implies that \(\|x(t)\| \leq b ||x_{t_0}|| e^{-\gamma(t-t_0)/2} + \gamma \left(\sup_{t_0 \leq t \leq t} ||w_{i\sigma}(\tau)|| \right), t \geq t_0 \), where \(b = \sqrt{\epsilon_2 c_1}, \gamma(s) = \sqrt{\epsilon_2} \rho(s) \). As for the upper bound \(||z|| \), one can follow the same steps in Theorem 1, where \(J_i = \int_{t_0}^{t} (z^T z - \gamma^2 (w_{i\sigma}^T w_{i\sigma})) dt \).

4. **Numerical examples**

Consider system (2) with \(S = \{ 1, 2 \} \),

\[
A_1 = \begin{bmatrix} 0.2 & 0.1 \\ 1 & 0 \end{bmatrix}, B_1 = \begin{bmatrix} -3 & 1 \\ 0.1 & 0.2 \end{bmatrix}, C_1 = \begin{bmatrix} 2 & 0.1 \\ 0 & 2 \end{bmatrix}, F_1 = \begin{bmatrix} 0.1 & -2 \\ 0.1 & 0 \end{bmatrix},
\]

\[
\tilde{A}_1 = \begin{bmatrix} 0.1 & 0.1 \\ 0.2 & 1 \end{bmatrix}, \tilde{D}_1 = \begin{bmatrix} 0 & 0.1 \\ 0 & 0 \end{bmatrix}, H_1 = \begin{bmatrix} 0 & 1 \end{bmatrix}, \tilde{H}_1 = \begin{bmatrix} 0 \end{bmatrix}, H_1 = \begin{bmatrix} 1 & 0 \end{bmatrix},
\]

\[
G_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, f_1 = 0.1 \begin{bmatrix} \sin(x_1(t-1)) \\ \sin(x_2(t-1)) \end{bmatrix}, U_1 = \sin(t),
\]
$\epsilon_1 = 2$, $\xi_{11} = 0.2$, $\gamma_1 = 0.1$, $\alpha_1 = 2$, $\xi_{21} = \gamma_1^{-2}$, $\xi_{31} = 0.1$, $\xi_{41} = 0.3$, $\xi_{51} = 0.2$, $M_1 = 2$, $\beta = 3$, $\theta_1 = 0.05$, and $\delta_1 = 0.1$. As for the second mode,

$$A_2 = \begin{bmatrix} -9 & 0.2 \\ 0 & 0.1 \end{bmatrix}, B_2 = \begin{bmatrix} 0.1 & 0.5 \\ 0.1 & -1 \end{bmatrix}, C_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}, F_2 = \begin{bmatrix} 0.1 & 0 \\ -3 & 0.1 \end{bmatrix},$$

$$\bar{A}_2 = \begin{bmatrix} 0.3 & 0.2 \\ 0 & 0.1 \end{bmatrix}, D_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, H_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \bar{D}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \bar{H}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix},$$

$$G_2 = \begin{bmatrix} 0.5 & 0 \\ 0 & 1 \end{bmatrix}, f_2 = 0.01 \begin{bmatrix} \sin(x_1(t-1)) \\ \sin(x_2(t-1)) \end{bmatrix}, \mathcal{U}_2 = \sin(t),$$

$\epsilon_2 = 0.5$, $\xi_{12} = 0.3$, $\gamma_2 = 0.15$, $\alpha_2 = 2.5$, $\xi_{22} = \gamma_2^{-2}$, $\xi_{32} = 0.2$, $\xi_{42} = 0.09$, $\xi_{52} = 0.1$, $M_2 = 1.1$, $\theta_2 = 0.15$, and $\delta_2 = 0.01$. The disturbance $w^T(t) = 1.2[\sin(t) \sin(t)]$.

$\epsilon_1 = 2$, $\xi_{11} = 0.2$, $\gamma_1 = 0.1$, $\alpha_1 = 2$, $\xi_{21} = \gamma_1^{-2}$, $\xi_{31} = 0.1$, $\xi_{41} = 0.3$, $\xi_{51} = 0.2$, $M_1 = 2$, $\beta = 3$, $\theta_1 = 0.05$, and $\delta_1 = 0.1$. As for the second mode,

$$A_2 = \begin{bmatrix} -9 & 0.2 \\ 0 & 0.1 \end{bmatrix}, B_2 = \begin{bmatrix} 0.1 & 0.5 \\ 0.1 & -1 \end{bmatrix}, C_2 = \begin{bmatrix} 1 & 0 \\ 0 & 0.5 \end{bmatrix}, F_2 = \begin{bmatrix} 0.1 & 0 \\ -3 & 0.1 \end{bmatrix},$$

$$\bar{A}_2 = \begin{bmatrix} 0.3 & 0.2 \\ 0 & 0.1 \end{bmatrix}, D_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, H_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \bar{D}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \bar{H}_2 = \begin{bmatrix} 0 & 1 \end{bmatrix},$$

$$G_2 = \begin{bmatrix} 0.5 & 0 \\ 0 & 1 \end{bmatrix}, f_2 = 0.01 \begin{bmatrix} \sin(x_1(t-1)) \\ \sin(x_2(t-1)) \end{bmatrix}, \mathcal{U}_2 = \sin(t),$$

$\epsilon_2 = 0.5$, $\xi_{12} = 0.3$, $\gamma_2 = 0.15$, $\alpha_2 = 2.5$, $\xi_{22} = \gamma_2^{-2}$, $\xi_{32} = 0.2$, $\xi_{42} = 0.09$, $\xi_{52} = 0.1$, $M_2 = 1.1$, $\theta_2 = 0.15$, and $\delta_2 = 0.01$. The disturbance $w^T(t) = 1.2[\sin(t) \sin(t)]$.

Figure 1. Input-to-state stabilization, $\phi(s) = 1 - s$, $s \in [-1, 0]$.

Case 1. When all actuators are operational, we have $P_1 = \begin{bmatrix} 0.7234 & -0.0157 \\ -0.0157 & 0.5559 \end{bmatrix}$,

$$P_2 = \begin{bmatrix} 11.6224 & -1.2007 \\ -1.2007 & 10.6159 \end{bmatrix}, \text{ with } c_{11} = \lambda_{\min}(P_1) = 9.8173$, $c_{12} = \lambda_{\max}(P_1) = 12.4211$, $c_{21} = \lambda_{\min}(P_2) = 26.6962$, $c_{22} = \lambda_{\max}(P_2) = 54.1990$, so, $c_1 = 9.8173$, $c_2 = 54.1990$, and $K_1 = \begin{bmatrix} 34.9874 & -4.6636 \\ -11.3823 & -0.9225 \end{bmatrix}, K_2 = \begin{bmatrix} -1.2381 & -0.5812 \\ -7.7135 & 7.3350 \end{bmatrix}$. Thus, the matrices $A_i + B_i K_i$ ($i = 1, 2$) are Hurwitz and $\tau_\alpha = \frac{\ln \mu}{\alpha - \nu} = 1.1783$, with $\nu = 0.5$, the upper bound of the disturbance magnitude is 0.1031, and the cheater bound $N_0 = 0.5853$.
Case 2. When there is a failure in the first actuator, i.e., $B_{1\Sigma} = \{1\}$ and $B_{2\Sigma} = \{2\}$, we have $P_1 = \begin{bmatrix} 11.7139 & -3.1981 \\ -3.1981 & 11.5155 \end{bmatrix}$, $P_2 = \begin{bmatrix} 53.1251 & -4.8927 \\ -4.8927 & 27.3562 \end{bmatrix}$, with $c_{11} = \lambda_{\min}(P_1) = 8.4151$, $c_{12} = \lambda_{\max}(P_1) = 14.8144$, $c_{21} = 26.4585$, $c_{22} = 54.0228$, so $c_1 = 8.4151$, $c_2 = 54.0228$, and the control gain matrices $K_1 = \begin{bmatrix} 35.4616 \\ 0 \\ 0 \end{bmatrix}$, $K_2 = \begin{bmatrix} -7.8638 \\ 0 \\ 7.4506 \end{bmatrix}$. Thus, the matrices $A_i + B_iK_i$ $(i = 1, 2)$ are Hurwitz and $\tau_a = 1.2823$, the upper bound of the disturbance magnitude is 0.1033, and the cheater bound $N_0 = 0.5378$.

Figure 1 shows the simulation results of $||x||$ (top) and $\rho(s)$ (bottom) for both cases, where $\rho(s) = \max\{\rho_1(s), \rho_2(s)\}$ and $\rho_1(s) = s/\sqrt{c_2\theta_1^2\xi_2}$, $\tau_a = 3$. The figure shows the input-to-state stability of the system where the state magnitude $||x||$ is bounded below by the system disturbance magnitude.

5. Conclusion

The system under investigation has been exponentially stabilized by state feedback robust reliable controllers. The Razumikhin technique along with average dwell time approach by multiple Lyapunov functions has been utilized to fulfill our purpose, which implies that the results are delay independent. The output of the faulty actuators has been treated as a disturbing signal that has been augmented with the system disturbance.

Acknowledgments. This work was partially supported by NSERC Canada. The first author acknowledges the sponsorship of King Abdulaziz University, Saudi Arabia.

References

Address: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

E-mail: teetawa@gmail.com, malwan@uwaterloo.ca, xinzhi.liu@uwaterloo.ca