STABILITY AND SUPER STABILITY OF FUZZY APPROXIMATELY *-HOMOMORPHISMS

N. EGHBALI

Abstract. In this paper we introduce the concept of fuzzy Banach *-algebra. Then we study the stability and super stability of approximately *-homomorphisms in the fuzzy sense.

1. Introduction

It seems that the stability problem of functional equations had been first raised by Ulam [12]. In 1941, Hyers [3] showed that if \(\delta > 0 \) and if \(f : E_1 \to E_2 \) is a mapping between Banach spaces \(E_1 \) and \(E_2 \) with \(\|f(x+y)-f(x)-f(y)\| \leq \delta \) for all \(x, y \in E_1 \), then there exists a unique \(T : E_1 \to E_2 \) such that \(T(x+y) = T(x)+T(y) \) with \(\|f(x)-T(x)\| \leq \delta \) for all \(x, y \in E_1 \). In 1978, a generalized solution to Ulam’s problem for approximately linear mappings was given by Th. M. Rassias [10]. Suppose \(E_1 \) and \(E_2 \) are two real Banach spaces and \(f : E_1 \to E_2 \) is a mapping. If there exist \(\delta \geq 0 \) and \(0 < p < 1 \) such that \(\|f(x+y)-f(x)-f(y)\| \leq \delta (\|x\|^p+\|y\|^p) \) for all \(x, y \in E_1 \), then there is a unique additive mapping \(T : E_1 \to E_2 \) such that \(\|f(x)-T(x)\| \leq 2\delta \|x\|^p/2-2^p \) for every \(x \in E_1 \). In 1991, Gajda [1] gave a solution to this question for \(p > 1 \). For the case \(p = 1 \), Th. M. Rassias and Šemrl [11] showed that there exists a continuous real-valued function \(f : \mathbb{R} \to \mathbb{R} \) such that \(f \) cannot be approximated with an additive map.

Găvruta [2] generalized Rassias’s result: Let \(G \) be an abelian group and \(X \) a Banach space. Denote by \(\varphi : G \times G \to [0, \infty) \) a function such that \(\tilde{\varphi}(x,y) = \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k y) < \infty \) for all \(x, y \in G \). Suppose that \(f : G \to X \) is a mapping satisfying
\[
\|f(x+y) - f(x) - f(y)\| \leq \varphi(x,y)
\]
for all \(x, y \in G \). Then there exists a unique additive mapping \(T : G \to X \) such that
\[
\|f(x) - T(x)\| \leq 1/2 \tilde{\varphi}(x,x)
\]

Received by the editors: October 10, 2013; Accepted: April 04, 2015.
2010 Mathematics Subject Classification. Primary: 46S40; Secondary: 39B52, 39B82, 26E50, 46S50.
Key words and phrases. Fuzzy normed space; approximately *-homomorphism; stability.
for all \(x \in G \). Recently, Park [9] applied Găvruta’s result to linear functional equations in Banach modules over a C*-algebra.

B. E. Johnson [4] also investigated almost algebra *-homomorphisms between Banach *-algebras.

Fuzzy notion introduced firstly by Zadeh [13] that has been widely involved in different subjects of mathematics. Zadeh’s definition of a fuzzy set characterized by a function from a nonempty set \(X \) to \([0, 1]\).

Later, in 1984 Katsaras [7] defined a fuzzy norm on a linear space to construct a fuzzy vector topological structure on the space. Defining the class of approximately solutions of a given functional equation one can ask whether every mapping from this class can be somehow approximated by an exact solution of the considered equation in the fuzzy Banach *-algebra. To answer this question, we use here the definition of fuzzy normed spaces given in [7] to exhibit some reasonable notions of fuzzy approximately *-homomorphism in fuzzy normed algebras and we will prove that if \(A \) is a Banach *-algebra, then under some suitable conditions a fuzzy approximately *-homomorphism \(f : A \to A \) can be approximated in a fuzzy sense by a *-homomorphism \(H : A \to A \). This is applied to show that for a fuzzy approximately map \(f : A \to A \) on a C*-algebra \(A \), there exists a unique *-homomorphism \(H : A \to A \) such that \(f = H \).

2. Preliminaries

In this section, we provide a collection of definitions and related results which are essential and used in the next discussions.

Definition 2.1. Let \(X \) be a real linear space. A function \(N : X \times \mathbb{R} \to [0, 1] \) is said to be a fuzzy norm on \(X \) if for all \(x, y \in X \) and all \(t, s \in \mathbb{R} \),

1. \(N(x, c) = 0 \) for \(c \leq 0 \);
2. \(x = 0 \) if and only if \(N(x, c) = 1 \) for all \(c > 0 \);
3. \(N(cx, t) = N(x, \frac{t}{|c|}) \) if \(c \neq 0 \);
4. \(N(x + y, s + t) \geq \min\{N(x, s), N(y, t)\} \);
5. \(N(x, \cdot) \) is a non-decreasing function on \(\mathbb{R} \) and \(\lim_{t \to \infty} N(x, t) = 1 \);
6. for \(x \neq 0 \), \(N(x, \cdot) \) is (upper semi) continuous on \(\mathbb{R} \).

The pair \((X, N)\) is called a fuzzy normed linear space.

Example 2.2. Let \((X, ||\cdot||)\) be a normed linear space. Then

\[
N(x, t) = \begin{cases}
0, & t \leq 0; \\
\frac{t}{||x||}, & 0 < t \leq ||x||; \\
1, & t > ||x||.
\end{cases}
\]

is a fuzzy norm on \(X \).

Definition 2.3. Let \((X, N)\) be a fuzzy normed linear space and \(\{x_n\} \) be a sequence in \(X \). Then \(\{x_n\} \) is said to be convergent if there exists \(x \in X \) such that
\(\lim_{n \to \infty} N(x_n - x, t) = 1 \) for all \(t > 0 \). In that case, \(x \) is called the limit of the sequence \(\{x_n\} \) and we denote it by \(N \lim_{n \to \infty} x_n = x \).

Definition 2.4. A sequence \(\{x_n\} \) in \(X \) is called Cauchy if for each \(\varepsilon > 0 \) and each \(t > 0 \) there exists \(n_0 \) such that for all \(n \geq n_0 \) and all \(p > 0 \), we have \(N(x_{n+p} - x_n, t) > 1 - \varepsilon \).

It is known that every convergent sequence in a fuzzy normed space is Cauchy and if each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and furthermore the fuzzy normed space is called a complete fuzzy normed space.

Let \(X \) be an algebra and \((X,N) \) be complete fuzzy normed space. The pair \((X,N) \) is said to be a fuzzy Banach algebra if for every \(x,y \in X \) and \(s,t \in \mathbb{R} \) we have \(N(xy,st) \geq \min\{N(x,s),N(y,t)\} \).

Definition 2.5. Let \(X \) be a linear space and \(\varphi : X \times X \to [0, \infty) \). We say that \(\varphi \) is control function if we have
\[
\varphi(x,y) = \sum_{n=0}^{\infty} 2^{-n} \varphi(2^n x, 2^n y) < \infty,
\]
for all \(x,y \in X \).

We give the following results proved in [8].

Theorem 2.6. Let \(X \) be a linear space and \((Y,N) \) be a fuzzy Banach space. Suppose that \(\varphi : X \times X \to [0, \infty) \) is a control function and \(f : X \to Y \) is a uniformly approximately additive function with respect to \(\varphi \) in the sense that
\[
\lim_{t \to \infty} N(f(x + y) - f(x) - f(y), t\varphi(x,y)) = 1
\]
uniformly on \(X \times X \). Then \(T(x) = N - \lim_{t \to \infty} \frac{f(2^n x)}{2^n} \) for all \(x \in X \) exists and defines an additive mapping \(T : X \to Y \) such that for some \(\delta > 0, \alpha > 0 \)
\[
N(f(x + y) - f(x) - f(y), \delta \varphi(x,y)) > \alpha,
\]
for all \(x,y \in X \), then
\[
N(T(x) - f(x), \delta/2 \varphi(x,x)) > \alpha,
\]
for every \(x \in X \).

Corollary 2.7. Let \(X \) be a linear space and \((Y,N) \) be a fuzzy Banach space. Let \(\varphi : X \times X \to [0, \infty) \) be a control function and \(f : X \to Y \) be a uniformly approximately additive function with respect to \(\varphi \) in the sense that
\[
\lim_{t \to \infty} N(f(x + y) - f(x) - f(y), t\varphi(x,y)) = 1
\]
uniformly on \(X \times X \). Then there is a unique additive mapping \(T : X \to Y \) such that
\[
\lim_{t \to \infty} N(T(x) - f(x), t\varphi(x,x)) = 1,
\]
uniformly on \(X \).

Theorem 2.8. Let \(X \) be a linear space and let \((Z,N') \) be a fuzzy normed space. Let \(\psi : X \times X \to Z \) be a function such that for some \(0 < \alpha < 2 \),
\[
N'(\psi(2x, 2y), t) \geq N'(\alpha \psi(x,y), t)
\]
for all \(x,y \in X \) and \(t > 0 \). Let \((Y,N) \) be a fuzzy Banach space and let \(f : X \to Y \) be a mapping in the sense that
N(f(x + y) − f(x) − f(y), t) ≥ N(ψ(x, y), t)
for each t > 0 and x, y ∈ X. Then there exists a unique additive mapping T : X → Y such that
\[N(f(x) − T(x), t) \geq N(\frac{2\psi(x,x)}{2-\alpha}, t), \]
where x ∈ X and t > 0.

3. Stability and super stability of fuzzy approximately *-homomorphisms on a fuzzy Banach *-algebra in uniform version

We start our work with definition of fuzzy Banach *-algebra.

Definition 3.1. A fuzzy Banach *-algebra \(A \) is a *-algebra \(A \) with a fuzzy complete \(N \)-norm \(N \) such that \(N(a, t) = N(a^*, t) \) for all \(a ∈ A \).

Throughout this paper, let \(A_{sa} \) be the set of self-adjoint elements of \(A \) and \(U(A) \) the set of unitary elements in \(A \).

Lemma 3.2. Let \(X \) be a fuzzy normed *-algebra and \(N - \lim_{n→∞} x_n = x \). Then \(N - \lim_{n→∞} x_n^* = x^* \).

Proof. By Definition 2.3 we have \(\lim_{t→∞} N(x_n − x, t) = 1 \). So \(\lim_{t→∞} N(x_n^* − x^*, t) = \lim_{t→∞} N((x_n − x)^*, t) = 1 \). It means that \(N - \lim_{n→∞} x_n^* = x^* \). \(\square \)

Theorem 3.3. Let \(A \) be a fuzzy Banach *-algebra and let \(ϕ : A × A → [0, ∞) \) be a control function and suppose that \(f : A → A \) is a function such that
\[\lim_{t→∞} N(f(μx + μy) − μf(x) − μf(y), tϕ(x, y)) = 1, \quad (3.1) \]
uniformly on \(A × A \),
\[\lim_{t→∞} N(f(x^*) − f(x)^*, tϕ(x, x)) = 1, \quad (3.2) \]
uniformly on \(A \), and
\[\lim_{t→∞} N(f(zw) − f(z)f(w), tϕ(z, w)) = 1, \quad (3.3) \]
uniformly on \(A × A \) for all \(μ ∈ T^1 = \{ λ ∈ ℂ : |λ| = 1 \} \), all \(z, w ∈ A_{sa} \), and all \(x, y ∈ A \). Then there exists a unique algebra *-homomorphism \(H : A → A \) such that
\[\lim_{t→∞} N(H(x) − f(x), tϕ(x, x)) = 1 \quad (3.4) \]
uniformly on \(A \).

Proof. Put \(μ = 1 ∈ T^1 \). It follows from Theorem 2.6 and Corollary 2.7 that, there exists a unique additive mapping \(H : A → A \) such that the equality (3.4) holds. The additive mapping \(H : A → A \) is given by \(H(x) = N - \lim_{n→∞} \frac{1}{2^n} f(2^n x) \) for all \(x ∈ A \).

By the assumption we have,
\[\lim_{t→∞} N(f(2^n μx) − 2μf(2^{n−1}x), tϕ(2^{n−1}x, 2^{n−1}x)) = 1, \]
for all $\mu \in T^1$ and all $x \in A$. We have
\[
N(\mu f(2^n x) - 2\mu f(2^{n-1} x), t\varphi(2^{n-1} x, 2^n x))
= N(f(2^n x) - 2f(2^{n-1} x), |\mu|^{-1} t\varphi(2^{n-1} x, 2^n x))
= N(f(2^n x) - 2f(2^{n-1} x), t\varphi(2^{n-1} x, 2^n x)),
\]
for all $\mu \in T^1$ and all $x \in A$. On the other hand
\[
N(f(2^n \mu x) - \mu f(2^n x), t\varphi(2^{n-1} x, 2^n x))
\geq \min \{N(f(2^n \mu x) - 2\mu f(2^{n-1} x), t/2\varphi(2^{n-1} x, 2^n x)),
N(2\mu f(2^{n-1} x) - \mu f(2^n x), t/2\varphi(2^{n-1} x, 2^n x))\},
\]
for all $\mu \in T^1$ and $x \in A$. Thus
\[
limit_{n \to \infty} N(f(2^n \mu x) - \mu f(2^n x), t\varphi(2^{n-1} x, 2^n x)) = 1.
\]
So
\[
limit_{n \to \infty} N(2^{-n} f(2^n \mu x) - 2^{-n} \mu f(2^n x), 2^{-n} t\varphi(2^{n-1} x, 2^n x)) = 1.
\]
Since $\lim_{n \to \infty} 2^{-n} t\varphi(2^{n-1} x, 2^n x) = 0$, there is some $n_0 > 0$ such that
\[
2^{-n} t\varphi(2^{n-1} x, 2^n x) < t,
\]
for all $n \geq n_0$ and $t > 0$. Hence
\[
N(2^{-n} f(2^n \mu x) - 2^{-n} \mu f(2^n x), t) \geq N(2^{-n} f(2^n \mu x) - 2^{-n} \mu f(2^n x), 2^{-n} t\varphi(2^{n-1} x, 2^n x)).
\]
Given $\varepsilon > 0$ we can find some $t_0 > 0$ such that
\[
N(2^{-n} f(2^n \mu x) - 2^{-n} \mu f(2^n x), 2^{-n} t\varphi(2^{n-1} x, 2^n x)) \geq 1 - \varepsilon,
\]
for all $x \in A$ and all $t \geq t_0$. So $N(2^{-n} f(2^n \mu x) - 2^{-n} \mu f(2^n x), t) = 1$ for all $t > 0$.
Hence by items (N5) and (N2) of definition 2.1 we have
\[
N - \lim_{n \to \infty} 2^{-n} f(2^n \mu x) = N - \lim_{n \to \infty} 2^{-n} \mu f(2^n x),
\]
for all $\mu \in T^1$ and all $x \in A$. Hence
\[
H(\mu x) = N - \lim_{n \to \infty} f(2^n \mu x) = N - \lim_{n \to \infty} \frac{\mu f(2^n x)}{2^n} = \mu H(x),
\]
for all $\mu \in T^1$ and all $x \in A$.

Now let $\lambda \in \mathbb{C}$ ($\lambda \neq 0$) and let M be an integer greater than $4|\lambda|$. Then
\[
|\frac{\lambda}{2^n}| < 1/4 < 1/3. \text{ By (5), Theorem 1), there exist three elements } \mu_1, \mu_2, \mu_3 \in T^1
\]
such that $3\frac{\lambda}{2^n} = \mu_1 + \mu_2 + \mu_3$. We have $H(x) = H(3.1/3x) = 3H(1/3x)$ for all $x \in A$. So $H(1/3x) = 1/3H(x)$ for all $x \in A$. Thus
\[
H(\lambda x) = H(\frac{3\lambda}{3} \frac{1}{3} x) = MH(1/3.3 \frac{1}{3} x) = M/3H(\mu_1 x + \mu_2 x + \mu_3 x)
= M/3H(\mu_1 x) + H(\mu_2 x) + H(\mu_3 x)) = M/3(\mu_1 + \mu_2 + \mu_3)H(x) = \frac{M}{3} \lambda H(x) = \lambda H(x),
\]
for all $x \in A$. Hence
\[
H(\zeta x + \eta y) = H(\zeta x) + H(\eta y) = \zeta H(x) + \eta H(y),
\]
for all $\zeta, \eta \in \mathbb{C}$ ($\zeta, \eta \neq 0$) and all $x, y \in A$, and $H(0x) = 0H(x)$ for all $x \in A$.
So the unique additive mapping $H : A \to A$ is a \mathbb{C}-linear mapping.

By using (3.2) we have
\[
\lim_{n \to \infty} N(2^{-n} f(2^n x^*) - 2^{-n} f(2^n x^*), 2^{-n} t\varphi(x, x)) = 1.
\]
Since $\lim_{n \to \infty} 2^{-n} t\varphi(x, x) = 0$, there is some $n_0 > 0$ such that $2^{-n} t\varphi(x, x) < t$
for all $n \geq n_0$ and $t > 0$. Hence
\[
N(2^{-n} f(2^n x^*) - 2^{-n} f(2^n x^*), t) \geq N(2^{-n} f(2^n x^*) - 2^{-n} f(2^n x^*), 2^{-n} t\varphi(x, x)).
\]
Given $\varepsilon > 0$ we can find some $t_0 > 0$ such that
\[N(2^{-n}f(2^n x^*) - 2^{-n}f(2^n x^*), 2^{-n}t\varphi(x, x)) \geq 1 - \varepsilon, \]
for all $x \in A$ and all $t \geq t_0$. So $N(2^{-n}f(2^n x^*), 2^{-n}f(2^n x^*), t) = 1$ for all $t > 0$.

Hence by items (N5) and (N2) of Definition 2.1 we have
\[N - \lim_{n \to \infty}(2^{-n}f(2^n x^*)) = N - \lim_{n \to \infty}2^{-n}f(2^n x^*). \quad (3.5) \]

By (3.5) and Lemma 3.2, we get
\[H(x^*) = N - \lim_{n \to \infty}f(2^n x^*) = N - \lim_{n \to \infty}(f(2^n x)^*) = (N - \lim_{n \to \infty}f(2^n x))^* = H(x)^*, \]
for all $x \in A$.

Now it follows from (3.3) that
\[\lim_{n \to \infty}N(4^{-n}f(2^{-n}z2^{-n}w) - 4^{-n}f(2^{-n}z)f(2^{-n}w), 4^{-n}t\varphi(2^{-n}z, 2^{-n}w)) = 1. \]

Since $\lim_{n \to \infty}4^{-n}t\varphi(2^{-n}z, 2^{-n}w) = 0$, there is some $n_0 > 0$ such that
\[4^{-n}t\varphi(2^{-n}z, 2^{-n}w) < t, \]
for all $n \geq n_0$ and $t > 0$. Hence
\[N(4^{-n}f(2^{-n}z2^{-n}w) - 4^{-n}f(2^{-n}z)f(2^{-n}w), 4^{-n}t\varphi(2^{-n}z, 2^{-n}w)). \]

Given $\varepsilon > 0$ we can find some $t_0 > 0$ such that
\[N(4^{-n}f(2^{-n}z2^{-n}w) - 4^{-n}f(2^{-n}z)f(2^{-n}w), 4^{-n}t\varphi(2^{-n}z, 2^{-n}w)) \geq 1 - \varepsilon, \]
for all $x \in A$ and all $t \geq t_0$. So $N(4^{-n}f(2^{-n}z2^{-n}w) - 4^{-n}f(2^{-n}z)f(2^{-n}w), t) = 1$
for all $t > 0$. Hence by items (N5) and (N2) of definition 2.1 we have
\[N - \lim_{n \to \infty}4^{-n}f(2^{-n}z2^{-n}w) = N - \lim_{n \to \infty}4^{-n}f(2^{-n}z)f(2^{-n}w), \]
for all $z, w \in A_{sa}$; but $\sum_{j=0}^{\infty}4^{-j}\varphi(2^j z, 2^j w) \leq \sum_{j=0}^{\infty}2^{-j}\varphi(2^j z, 2^j w)$ for all $z, w \in A_{sa}$. So
\[H(zw) = N - \lim_{n \to \infty}f(2^n zw) = N - \lim_{n \to \infty}f(2^n z)f(2^n w) = N - \lim_{n \to \infty}f(2^n z), \]
for all $z, w \in A_{sa}$.

For elements $x, y \in A, x = \frac{x + x^* + i\bar{x} - x^*}{2}$ and $y = \frac{y + y^* + i\bar{y} - y^*}{2}$, where $x_1 = \frac{x + x^*}{2}$, $x_2 = \frac{x - x^*}{2}, y_1 = \frac{y + y^*}{2}$ and $y_2 = \frac{-y + y^*}{2}$ are self-adjoint. Since H is C-linear, $H(xy) = H(x_1y_1 - x_2y_2 + i(x_1y_2 + x_2y_1)) = H(x_1y_1) - H(x_2y_2) + iH(x_1y_2) + iH(x_2y_1)$, for all $x, y \in A$. Hence the additive mapping H is an algebra $*$-homomorphism satisfying the inequality (3.4), as desired.

The proof of the uniqueness property of H is similar to the proof of Corollary 2.7.
Corollary 3.4. Let A be a fuzzy Banach *-algebra, $\theta \geq 0$ and $q > 0$, $q \neq 1$. Suppose that $f : A \to A$ is a function such that

$$\lim_{t \to \infty} N(f(\mu x + \mu y) - \mu f(x) - \mu f(y), t\theta(||x||^q + ||y||^q)) = 1,$$

(3.6)

uniformly on $A \times A$,

$$\lim_{t \to \infty} N(f(x^*) - f(x)^*, 2t\theta||x||^q) = 1,$$

(3.7)

uniformly on A, and

$$\lim_{t \to \infty} N(f(zw) - f(z)f(w), t\theta(||z||^q + ||w||^q)) = 1,$$

(3.8)

uniformly on $A \times A$ for all $\mu \in T^1 = \{\lambda \in \mathbb{C} : |\lambda| = 1\}$, all $z, w \in A_{sa}$, and all $x, y \in A$. Then there exists a unique algebra *-homomorphism $H : A \to A$ such that

$$\lim_{t \to \infty} N(H(x) - f(x), \frac{2\theta t||x||^q}{1 - 2^{q-1}}) = 1,$$

(3.9)

uniformly on A.

Proof. Considering the control function $\varphi(x, y) = \theta(||x||^q + ||y||^q)$ for some $\theta > 0$, we obtain this corollary. □

In the following example we will show that Corollary 3.4 does not necessarily hold for $q = 1$.

Example 3.5. Let X be a Banach *-algebra, $x_0 \in X$ and α, β are real numbers such that $|\alpha| \geq 1 - (||x|| + ||y||)$ and $|\beta| \leq ||x|| + ||y||$ for every $x, y \in X$. Put

$f(x) = \alpha x + \beta x_0||x||$, $(x \in X)$.

Moreover for each fuzzy norm N on X, we have

$N(f(x + y) - f(x) - f(y), t(||x|| + ||y||))$

$= N(\beta x_0(||x + y|| - ||x|| - ||y||), t(||x|| + ||y||))$

$= N(\beta x_0, \frac{t(||x|| + ||y||)}{||x + y|| - ||x|| - ||y||}) \geq N(\beta x_0, t) (x, y \in X, t \in \mathbb{R}).$

Therefore by the item (N5) of the Definition 2.1, we get

$$\lim_{t \to \infty} N(f(x + y) - f(x) - f(y), t(||x|| + ||y||)) = 1,$$

uniformly on $X \times X$.
Also
\[N(f(xy) - f(x)f(y), t(||x|| + ||y||)) = N(\alpha xy + \beta x_0||xy|| - (\alpha x + \beta x_0||x||)(\alpha y + \beta x_0||y||), t(||x|| + ||y||)) \]
\[= N(\alpha xy + \beta x_0||xy|| - \alpha^2 xy - \alpha \beta x_0||y|| - \alpha \beta x_0 y||x|| - \beta^2 x_0^2||x||y||, t(||x|| + ||y||)) \]
\[\geq \min\{N((1 - \alpha)\alpha xy, t(||x|| + ||y||)/5), N(||xy||\beta x_0, t(||x|| + ||y||)/5), N(\beta^2 x_0^2||x||y||, t(||x|| + ||y||)/5), N(\alpha \beta x_0 y||x||, t(||x|| + ||y||)/5)\} \]

where \(x \in X \) and \(t \in \mathbb{R} \).

Taking into account the following inequalities

\[N((1 - \alpha)\alpha xy, t(||x|| + ||y||)/5) = N(\alpha xy, t(||x|| + ||y||)/5(1 - \alpha)) \geq N(\alpha xy, t/5), \quad (3.10) \]
\[N(||xy||\beta x_0, t(||x|| + ||y||)/5) = N(||xy||x_0, t(||x|| + ||y||)/5|\beta|) \geq N(||xy||x_0, t/5), \quad (3.11) \]
\[N(\beta^2 x_0^2||x||y||, t(||x|| + ||y||)/5) = N(\beta||x||y||x^2_0, t/5|\beta|) \geq N(\beta||x||y||x^2_0, t/5), \quad (3.12) \]
\[N(\alpha \beta x_0 y||x||, t(||x|| + ||y||)/5) = N(\alpha xx_0||y||, t(||x|| + ||y||)/5|\beta|) \geq N(\alpha xx_0||y||, t/5), \quad (3.13) \]
\[N(\alpha \beta x_0 y||x||, t(||x|| + ||y||)/5) = N(\alpha x_0 y||x||, t(||x|| + ||y||)/5|\beta|) \geq N(\alpha x_0 y||x||, t/5), \quad (3.14) \]
it can be easily seen that \(\lim_{t\to\infty} N(f(xy) - f(x)f(y), t(||x|| + ||y||)) = 1 \) uniformly on \(X \times X \).

Also we have

\[N(f(x^*) - f(x)^*, 2t||x||) = N(\alpha x^* - \alpha x^* + \beta x_0 ||x^*|| - \beta x_0^* ||x||, 2t||x||) \]
\[\geq \min\{N(\beta x_0, 2t||x||/||x^*||), N(\beta x_0^*, 2t||x||/||x||)\}. \]
So \(\lim_{t \to \infty} N(f(x^*) - f(x)^*, 2t|x||) = 1 \) uniformly on \(X \) and therefore the conditions of Corollary 3.4 are fulfilled.

Now we suppose that there exists a unique \(*\)-homomorphism \(H \) satisfying the conditions of Corollary 3.4. By the equation

\[
\lim_{t \to \infty} N(f(x + y) - f(x) - f(y), t(||x|| + ||y||)) = 1,
\]

for given \(\varepsilon > 0 \), we can find some \(t_0 > 0 \) such that

\[
N(f(x + y) - f(x) - f(y), t(||x|| + ||y||)) \geq 1 - \varepsilon,
\]

for all \(x, y \in X \) and all \(t \geq t_0 \). By using the simple induction on \(n \), we shall show that

\[
N(f(2^n x) - 2^n f(x), tn2^n||x||) \geq 1 - \varepsilon.
\]

Putting \(y = x \) in (3.15), we get (3.16) for \(n = 1 \). Let (3.16) holds for some positive integer \(n \). Then

\[
N(f(2^{n+1} x) - 2^{n+1} f(x), t(n + 1)2^{n+1}||x||) \\
\geq \min\{N(f(2^{n+1} x) - 2f(2^n x), t(||2^n x|| + ||2^n x||)), \\
N(2f(2^n x) - 2^{n+1} f(x), 2tn(||2^{n-1} x|| + ||2^{n-1} x||)) \\
\geq 1 - \varepsilon.
\]

This completes the induction argument. We observe that

\[
\lim_{n \to \infty} N(H(x) - f(x), nt||x||) \geq 1 - \varepsilon.
\]

Hence

\[
\lim_{n \to \infty} N(H(x) - f(x), nt||x||) = 1.
\]

One may regard \(N(x, t) \) as the truth value of the statement 'the norm of \(x \) is less than or equal to the real number \(t \). So (3.17) is a contradiction with the non-fuzzy sense. This means that there is no such the \(H \).

Theorem 3.6. Let \(A \) be a \(C^* \)-algebra and let \(f : A \to A \) be a bijective mapping satisfying \(f(xy) = f(x)f(y) \) and \(f(0) = 0 \) for which there exists function \(\varphi : A \times A \to [0, \infty) \) satisfying (3.1) and (3.3) such that

\[
\lim_{t \to \infty} N(f(u^*) - f(u)^*, t\varphi(u, u)) = 1,
\]

for all \(u \in U(A) \). Assume that \(N - \lim_{n \to \infty} \frac{f(2^n x)}{2^n} \) is invertible, where \(e \) is the identity of \(A \). Then the bijective mapping \(f \) is a bijective \(*\)-homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3.3 there exists a unique \(\mathbb{C} \)-linear mapping \(H : A \to A \) such that

\[
\lim_{t \to \infty} N(H(x) - f(x), t\varphi(x, x)) = 1,
\]

for all \(x \in A \). The \(\mathbb{C} \)-linear mapping \(H : A \to A \) is given by

\[
H(x) = N - \lim_{n \to \infty} \frac{f(2^n x)}{2^n},
\]
for all \(x \in A \).

By using (3.18) we have
\[
\lim_{t \to \infty} N(2^{-n}f(2^n u^*) - 2^{-n} f(2^n u^*), 2^{-n}t \varphi(u, u)) = 1.
\]
Since \(\lim_{n \to \infty} 2^{-n}t \varphi(u, u) = 0 \), there is some \(n_0 > 0 \) such that \(2^{-n}t \varphi(u, u) < t \) for all \(n \geq n_0 \) and \(t > 0 \). Hence
\[
N(2^{-n}f(2^n u^*) - 2^{-n} f(2^n u^*), t) \geq N(2^{-n}f(2^n u^*) - 2^{-n} f(2^n u^*), 2^{-n}t \varphi(u, u)).
\]

Given \(\varepsilon > 0 \) we can find some \(t_0 > 0 \) such that
\[
N(2^{-n}f(2^n u^*) - 2^{-n} f(2^n u^*), 2^{-n}t \varphi(u, u)) \geq 1 - \varepsilon,
\]
for all \(x \in A \) and all \(t \geq t_0 \). So \(N(2^{-n} f(2^n u^*) - 2^{-n} f(2^n u^*), t) = 1 \) for all \(t > 0 \).

Hence by items (N5) and (N2) of definition 2.1 we have
\[
N - \lim_{n \to \infty} (2^{-n} f(2^n u^*)) = N - \lim_{n \to \infty} 2^{-n} f(2^n u^*). \tag{3.20}
\]

By (3.20) and Lemma 3.2, we get
\[
H(u^*) = N - \lim_{n \to \infty} \frac{(f(2^n u^*))}{2^n} = N - \lim_{n \to \infty} \frac{(f(2^n u^*))^*}{2^n} = H(u^*),
\]
for all \(u \in U(A) \).

Since \(H \) is \(\mathbb{C} \)-linear and each \(x \in A \) is a finite linear combination of unitary elements [6],
\[
H(x^*) = H(\sum_{j=1}^{m} \lambda_j u_j^*) = \sum_{j=1}^{m} \lambda_j H(u_j^*) = \sum_{j=1}^{m} \lambda_j H(u_j)^* = (\sum_{j=1}^{m} \lambda_j H(u_j))^* = H(\sum_{j=1}^{m} \lambda_j u_j)^* = H(x)^*,
\]
for all \(x \in A \).

Since \(f(xy) = f(x)f(y) \) for all \(x, y \in A \),
\[
H(xy) = N - \lim_{n \to \infty} f(2^n xy) = N - \lim_{n \to \infty} \frac{f(2^n x)f(y)}{2^n} = H(x)f(y), \tag{3.21}
\]
for all \(x, y \in A \). By the additivity of \(H \) and (3.21),
\[
2^n H(xy) = H(2^n xy) = H(x(2^n y)) = H(x)f(2^n y),
\]
for all \(x, y \in A \). Hence
\[
H(xy) = \frac{H(x)f(2^n y)}{2^n} = H(x)\frac{f(2^n y)}{2^n}, \tag{3.22}
\]
for all \(x, y \in A \). Taking the \(N \)-limit in (3.22) as \(n \to \infty \), we obtain
\[
H(xy) = H(x)H(y),
\]
for all \(x, y \in A \). By (3.21) we have,
\[
H(x) = H(ex) = H(e)f(x), \tag{3.23}
\]
for all \(x \in A \). Since \(H(e) = N - \lim_{n \to \infty} \frac{2^n}{2^n} \) is invertible and the mapping \(f \) is bijective, the \(\mathbb{C} \)-linear mapping \(H \) is a bijective *-homomorphism.

Now we have,
\[
H(e)H(x) = H(ex) = H(x) = H(e)f(x),
\]
for all \(x \in A \). Since \(H(e) \) is invertible, \(H(x) = f(x) \) for all \(x \in A \). Hence the bijective mapping \(f \) is a bijective *-homomorphism. \(\square \)
4. Non-uniform type of Stability and super stability of fuzzy approximately *-homomorphisms

We are in a position to give non-uniform type of Theorems 3.3 and 3.6.

Theorem 4.1. Let (B, N') be a fuzzy normed algebra, A a fuzzy Banach *-algebra and let $\varphi : A \times A \to B$ be a function such that for some $0 < \alpha < 2$,

$$N'(\varphi(2x, 2y), t) \geq N'(\varphi(x, y), t)$$

for all $x, y \in A$ and $t > 0$. Let $f : A \to A$ be a function such that

$$N(f(\mu x + \mu y) - \mu f(x) - \mu f(y), t) \geq N'(\varphi(x, y), t),$$

for all $x, y \in A$,

$$N(f(x^*) - f(x)^*, t) \geq N'(\varphi(x, x), t), \quad (4.1)$$

for all $x \in A$ and

$$N(f(zw) - f(z)f(w), t) \geq N'(\varphi(z, w), t), \quad (4.2)$$

for all $t > 0$, all $\mu \in T^1 = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \}$, and all $z, w \in A_{sa}$. Then there exists a unique algebra *-homomorphism $H : A \to A$ such that

$$N(H(x) - f(x), t) \geq N'(\frac{2\varphi(x, x)}{2 - \alpha}, t)$$

for all $x \in A$ and all $t > 0$.

Proof. Theorem 2.8 shows that there exists an additive function $H : A \to A$ such that

$$N(f(x) - T(x), t) \geq N'(\frac{2\varphi(x, x)}{2 - \alpha}, t),$$

where $x \in A$ and $t > 0$.

Put $\mu = 1 \in T^1$. The additive mapping $H : A \to A$ is given by $H(x) = N - \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$ for all $x \in A$.

By assumption for each $\mu \in T^1$,

$$N(f(2^n \mu x) - 2\mu f(2^{n-1} x), t) \geq N^{n-1} x, 2^{n-1} x, t),$$

for all $x \in A$. We have

$$N(\mu f(2^n x) - 2\mu f(2^{n-1} x), t) = N(f(2^n x) - 2f(2^{n-1} x), |\mu|^{-1} t) = N(f(2^n x) - 2f(2^{n-1} x), t) \geq N^{n-1} x, 2^{n-1} x, t),$$

for all $\mu \in T^1$ and all $x \in A$. So

$$N(f(2^n \mu x) - \mu f(2^n x), t) \geq \min\{N(f(2^n \mu x) - 2\mu f(2^{n-1} x), t/2),$$

$$N(2\mu f(2^{n-1} x) - \mu f(2^n x), t/2) \} \geq N^n x, 2^n x, t/2),$$

for all $\mu \in T^1$ and all $x \in A$. Taking n to infinity in (4.3) and using the items (N2) and (N5) of Definition 2.1, we see that

$$N - \lim_{n \to \infty} 2^{-n} f(2^n x) = N - \lim_{n \to \infty} 2^{-n} \mu f(2^n x),$$

for all $\mu \in T^1$ and all $x \in A$.

Now by using the similar proof of the Theorem 3.3 the unique additive mapping $H : A \to A$ is a C-linear mapping.

By using (4.1) we have
As same as the proof of the Theorems 3.6 and 4.1, we can prove this Theo-
Proof.

\begin{equation}
N(2^{-n} f(2^n x) - 2^{-n} f(2^n x)^*, t) \geq N''(x, 2^n x, 2^n t),
\end{equation}
for all \(x \in A \). Taking \(n \) to infinity in (4.4) and using the items (N2) and (N5) of Definition 2.1, we see that
\(N - \lim_{n \to \infty} 2^{-n} f(2^n x^*) = N - \lim_{n \to \infty} 2^{-n} f(2^n x)^* \).

Again by using the similar proof of the Theorem 3.3 we have \(H(x^*) = H(x)^* \).

Now it follows from (4.2) that
\begin{equation}
N(4^{-n} f(2^{-n} z 2^{-n} w) - 4^{-n} f(2^{-n} z) f(2^{-n} w), 4^n t).
\end{equation}
for all \(z, w \in A_{sa} \). Taking \(n \) to infinity in (4.5) and using the items (N2) and (N5) of Definition 2.1, we see that
\(N - \lim_{n \to \infty} 4^{-n} f(2^{-n} z 2^{-n} w) = N - \lim_{n \to \infty} 4^{-n} f(2^{-n} z) f(2^{-n} w), \)
for all \(z, w \in A_{sa} \). By the proof of Theorem 3.3, \(H \) is a *-homomorphism as desired.

To prove the uniqueness property of \(H \), assume that \(H^* \) is another *-homomorphism satisfying \(N(f(x) - H^*(x), t) \geq N'(\frac{2\varphi(x,x)}{2-a}, t) \). Since both \(H \) and \(H^* \) are additive we deduce that
\(N(H(a) - H^*(a), t) \geq \min\{N(H(a)-n^{-1} f(na), t/2), N(n^{-1} f(na) - H^*(a), t/2)\} \geq \)
\(N'(\frac{2\varphi(na,na)}{2-a}, nt/2) \)
for all \(a \in A \) and all \(t > 0 \). Letting \(n \) tend to infinity we get that \(H(a) = H^*(a) \)
for all \(a \in A \).

\[\Box \]

Theorem 4.2. Let \(A \) be a C*-algebra, \((B, N')\) a fuzzy normed algebra and let \(\varphi : A \times A \to B \) be a function such that for some \(0 < \alpha < 2 \),
\(N'(\varphi(2x,2y), t) \geq N'(\varphi(x,y), t) \)
for all \(x, y \in A \) and \(t > 0 \). Let \(f : A \to A \) be a bijective mapping satisfying \(f(xy) = f(x)f(y) \) and \(f(0) = 0 \) such that
\(N(f(\mu x + \mu y) - \mu f(x) - \mu f(y), t) \geq N'(\varphi(x,y), t) \),
and
\(\lim_{t \to \infty} N(f(u^*) - f(u)^*, t \varphi(u, u)) = 1, \)
for all \(x, y \in A \) and \(u \in U(A) \). Assume that \(N - \lim_{n \to \infty} \frac{f(2^n x)}{2^n} \) is invertible, where \(e \) is the identity of \(A \). Then the bijective mapping \(f \) is a bijective *-homomorphism.

Proof. As same as the proof of the Theorems 3.6 and 4.1, we can prove this Theorem.

\[\Box \]

References

Address: Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.
E-mail: nasrineghbali@gmail.com, eghbali@uma.ac.ir

Başlık: Bulanık yaklaşıklık *-homomorfizmin kararlılığı ve süper kararlılığı
Anahtar Kelimeler: Bulanık normlu uzay, yaklaşıklık *-homomorfizm, kararlılık