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UNIT DUAL SPLIT QUATERNIONS AND ARCS OF DUAL
HYPERBOLIC SPHERICAL TRIANGLES

HESNA KABADAYI

Abstract. In this paper we obtain the cosine hyperbolic and sine hyperbolic
rules for a dual hyperbolic spherical triangle T (Ã, B̃, C̃) whose arcs are repre-
sented by dual split quaternions.

1. INTRODUCTION

The dual hyperbolic unit sphere H̃2
0 is the set of all time-like unit vectors in

the dual Lorentzian space D3
1 with signature (−,+,+). Dual hyperbolic spherical

geometry which is studied by means of dual time-like unit vectors is analogous to
real hyperbolic spherical geometry which is studied by means of real time-like unit
vectors. Quaternions and split quaternions have many applications in mathematics
(see [1], [2], [3]). Some of the recent works include [4], [5]. Great circle arcs on a
unit sphere represented by a unit quaternion and sine and cosine rules are obtained
by J. P. Ward (see [6] pp.98-102). A similar correspondence is possible with unit
dual split quaternions and arcs of a dual hyperbolic spherical triangle on the dual
hyperbolic unit sphere H̃2

0 . The hyperbolic sine and hyperbolic cosine rules for dual
and real spherical trigonometry have been well known for a long time (see [7], [8],
[9], [10], [11]). Here in this paper we obtain hyperbolic sine and hyperbolic cosine
rules by means of the correspondence between arcs of the dual hyperbolic spherical
triangle on H̃2

0 and dual split quaternions.

2. PRELIMINARIES

A dual number has the form q = λ+ ελ∗, where λ and λ∗ are real numbers and
ε is the dual unit which satisfies the rules:

ε 6= 0, 0ε = ε0 = 0, 1ε = ε1 = ε, ε2 = 0.

The set of dual numbers is a ring denoted by D.
The Lorentzian inner product of dual vectors Ã = r + εr∗, B̃ = s + εs∗ is defined
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by

〈Ã, B̃〉 = 〈r, s〉+ ε(〈r, s∗〉+ 〈r∗, s〉)
where 〈r, s〉 is the Lorentzian inner product of the vectors r and s in R3

1, (see [12])
given by

〈r, s〉 = −r1s1 + r2s2 + r3s3

A dual vector Ã = r + εr∗ is said to be time-like if the vector r is time-like, (resp.
space-like if the vector r is space-like and light-like if the vector r is light-like). The
set D3

1 = {Ã = r + εr∗|r, r∗ ∈ R3
1} is called dual Lorentzian space. The Lorentzian

cross product of dual vectors Ã and B̃ ∈ D3
1 is given by

ÃΛB̃ = rΛs+ ε(r∗Λs+ rΛs∗)

where rΛs is the Lorentzian cross product in R3
1 given by

rΛs =

∣∣∣∣∣∣
−e1 e2 e3

r1 r2 r3

s1 s2 s3

∣∣∣∣∣∣ .
Lemma 1. Let Ã, B̃, C̃, D̃ ∈ D3

1. Then we have

〈ÃΛB̃, C̃〉 = det(Ã, B̃, C̃) (2.1)

ÃΛB̃ = −B̃ΛÃ (2.2)

(ÃΛB̃)ΛC̃ = −〈Ã, C̃〉B̃ + 〈B̃, C̃〉Ã (2.3)

〈ÃΛB̃, C̃ΛD̃〉 = −〈Ã, C̃〉〈B̃, D̃〉+ 〈Ã, D̃〉〈B̃, C̃〉 (2.4)

〈ÃΛB̃, Ã〉 = 0 and 〈ÃΛB̃, B̃〉 = 0. (2.5)

The set of all dual time-like unit vectors is called dual hyperbolic unit sphere
and denoted by H̃2

0 . There are two components of the dual hyperbolic unit sphere
H̃2

0 .
∼

H+2
0 =

{
Ã = r + εr∗ ∈ D3

1 : |Ã| = 1, r, r∗ ∈ R3
1 and r is future pointing time-like vector

}
is called future dual hyperbolic unit sphere,
∼

H−2
0 =

{
Ã = r + εr∗ ∈ D3

1 : |Ã| = 1, r, r∗ ∈ R3
1 and r is past pointing time-like vector

}
is called past dual hyperbolic unit sphere (see [12])., where ‖Ã‖ =

√
〈Ã, Ã〉 =

|r| + ε 〈r,r
∗〉

|r|2 with |r| 6= 0. Since we work on H̃+2
0 in this paper without loss of

generality we use
∼
H2

0 instead of
∼

H+2
0 .
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Definition 1. Let x and y be distinct points of Hn. Then x and y span a 2−dimen-
sional time-like subspace V (x, y) of Rn+1 and so

L(x, y) = Hn ∩ V (x, y)

is the unique hyperbolic line of Hn containing x and y. Note that L(x, y) is a branch
of a hyperbola (see [13] pp. 68)

Definition 2. Let x, y, z be three hyperbolically non-collinear points of H2. Let
L(x, y) be the unique hyperbolic line of H2 containing x and y, and let H(x, y, z)
be the closed half-plane of H2 with L(x, y) as its boundary and z in its interior.
The hyperbolic triangle with vertices x, y, z is defined to be

T (x, y, z) = H(x, y, z) ∩H(y, z, x) ∩H(z, x, y).

(see [13] pp. 83)

Definition 3. Let Ã and B̃ be distinct points of
∼
H2

0 . Then Ã and B̃ span a dual
timelike subspace V (Ã, B̃) of D3

1 and so

L(Ã, B̃) =
∼
H2

0 ∩ V (Ã, B̃)

is called a dual hyperbolic line of
∼
H2

0 . Note that this is the unique dual hyperbolic
line containing Ã and B̃.

Definition 4. Let Ã, B̃, C̃ be hyperbolically non -colinear points of
∼
H2

0 . Let

L(Ã, B̃) be the unique dual hyperbolic line of
∼
H2

0 containing Ã and B̃, and let

H(Ã, B̃, C̃) be the closed half-plane of
∼
H2

0 with L(Ã, B̃) as its boundary and C̃ is
in its interior. The dual hyperbolic triangle with vertices Ã, B̃, C̃ is defined to be

T (Ã, B̃, C̃) = H(Ã, B̃, C̃) ∩H(B̃, C̃, Ã) ∩H(C̃, Ã, B̃)

(See figure 1).

3. DUAL SPLIT QUATERNIONS AND ARCS

The elements of

H ′D = {Q = q0 + q1
−→e1 + q2

−→e2 + q3
−→e3 |q0, q1, q2, q3 ∈ D}
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Figure 1. Dual hyperbolic triangle.

with the following multiplication table

are called dual split quaternions (see [14]).
A dual split quaternion can be expressed as Q = SQ +

−→
V Q, where SQ = q0,−→

V Q = q1
−→e1 + q2

−→e2 + q3
−→e3 . The product rule of dual split quaternions is given as

follows:

QP = SQSP + 〈−→V Q,
−→
V P 〉+ SQ

−→
V P + SP

−→
V Q +

−→
V QΛ

−→
V P ,

where 〈−→V Q,
−→
V P 〉 = −q1p1 + q2p2 + q3p3, and

−→
V QΛ

−→
V P = (q3p2 − q2p3)−→e1 +

(q3p1 − q1p3)−→e2 + (q1p2 − q2p1)−→e3 . If

Q = q0 + q1
−→e1 + q2

−→e2 + q3
−→e3

= q + εq∗
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where q = λ0 + λ1
−→e1 + λ2

−→e2 + λ3
−→e3 and q∗ = λ∗0 + λ∗1

−→e1 + λ∗2
−→e2 + λ∗3

−→e3 , λi, λ
∗
i ∈ R,

0 ≤ i ≤ 3, then the norm of Q is given as

NQ = q2
0 + q2

1 − q2
2 − q2

3

= −〈q, q〉 − 2ε 〈q, q∗〉 .
If NQ = 1 then Q is said to be a unit dual split quaternion (see [14]). unit dual
split quaternion may be expressed as:

Q = 〈Ã, B̃〉 − ÃΛB̃

= − coshφ+ Q̂ sinhφ

= − cosh(ϕ+ εϕ∗) + Q̂ sinh(ϕ+ εϕ∗)

where Ã, B̃ are unit dual time-like vectors. We may associate this unit dual split
quaternion to the dual hyperbolic arc L(Ã, B̃) = arcÃB̃ which is obtained by
dual time-like subspace V (Ã, B̃) with normal Q̂ intersect the unit dual hyperbolic

sphere
∼
H2

0 . Let Ã, B̃ and C̃ be future pointing time-like unit dual vectors in dual
Lorentzian space D3

1 and Q = 〈Ã, B̃〉 − ÃΛB̃ and P = 〈B̃, C̃〉 − B̃ΛC̃ be unit dual
split quaternions. The dual split quaternion product of P and Q is

PQ = 〈B̃, C̃〉〈Ã, B̃〉+〈B̃ΛC̃, ÃΛB̃〉−〈B̃, C̃〉ÃΛB̃−〈Ã, B̃〉B̃ΛC̃+(−B̃ΛC̃)Λ(−ÃΛB̃).

From Lemma 1, (2.4) and since B̃ is a unit dual vector we have

〈B̃ΛC̃, ÃΛB̃〉 = −〈C̃, B̃〉〈B̃, Ã〉+ 〈C̃, Ã〉.
From Lemma 1 (2.3), (2.5) and (2.1) we get,(

C̃ΛB̃
)

Λ
(
B̃ΛÃ

)
= −〈C̃ΛB̃, Ã〉B̃ = −det

(
B̃, Ã, C̃

)
B̃ = −〈B̃ΛÃ, C̃〉B̃.

From lemma 1 (2.3) and (2.2) we obtain,

−〈B̃ΛÃ, C̃〉B̃ + 〈B̃, C̃〉B̃ΛÃ =
[(
B̃ΛÃ

)
ΛB̃
]

ΛC̃ = −ÃΛC̃ + 〈Ã, B̃〉B̃ΛC̃.

Thus from the above calculations we have,

PQ = 〈Ã, C̃〉 − ÃΛC̃.

3.0.1. Geometrical Interpretation of Q. Let Ã =
→
r + ε

→
r∗, B̃ =

→
s + ε

→
s∗, with

∥∥∥Ã∥∥∥
=
∥∥∥B̃∥∥∥ = 1, where

→
r ,
→
r∗ ∈ R3,

→
s ,
→
s∗ ∈ R3, i.e. Ã, B̃ ∈ H̃2

0 . Using the product rule

for dual split quaternions we have,

B̃Ã =
〈
Ã, B̃

〉
− ÃΛB̃ = Q.

Note that QÃ = B̃. Since Q = − coshφ+Q̂ sinhφ = − cosh(ϕ+εϕ∗)+Q̂ sinh(ϕ+

εϕ∗), then Q̂ = B̃ΛÃ

‖B̃ΛÃ‖ is the unit dual vector.(QÃ = B̃ means that the operator

Q transforms the line Ã into the line B̃. See the below figure.)



40 HESNA KABADAYI

Remark 1. Multiplying the unit dual vector Ã from the left by Q means that,
rotating the line corresponding to Ã by ϕ about (E. Study) the line corresponding
to Q̂ and translating it by ϕ∗ along the line corresponding to Q̂.

Considering that P and Q are unit dual split quaternions, they are screw oper-
ators at the same time. Hence Q(Ã) = B̃, P (B̃) = C̃ implies that PQ(Ã) = C̃.
This means that the line d1 which corresponds Ã transforms into the line d2 which
corresponds C̃. Consider a unit dual split quaternion Q = 〈Ã, B̃〉 − ÃΛB̃ =

− coshφ + Q̂ sinhφ. We may associate this unit dual split quaternion to a great

circle arc (hyperbolic line ) of
∼
H2

0 which is obtained when diametral plane with

normal Q̂ intersect
∼
H2

0 . Clearly the position of the arc along the circle is arbitrary
and so the arcÃB̃ is free to slide on this great circle as long as its length (which
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is the measure of the dual angle corresponding to the arc) and direction are main-
tained. For fixed Q̂ algebra of dual split quaternions is identical to the algebra of
quaternions.
We write using ∼ to specify the geometrical correspondence,
arcÃB̃ ∼ Q = 〈Ã, B̃〉 − ÃΛB̃

= − coshφ+ Q̂ sinhφ

= − cosh(ϕ+ εϕ∗) + Q̂ sinh(ϕ+ εϕ∗)

Q̂ = − (ÃΛB̃)

‖ÃΛB̃‖
is a dual space-like vector and

arcB̃C̃ ∼ P = 〈B̃, C̃〉 − B̃ΛC̃

= − coshψ + P̂ sinhψ

= − cosh(θ + εθ∗) + P̂ sinh(θ + εθ∗)

arcÃC̃ ∼ PQ = 〈Ã, C̃〉 − ÃΛC̃.

Therefore
arcÃB̃ + arcB̃C̃ = arcÃC̃ or arcQ+ arcP = arcPQ.

As a trivial consequence of the argument above we have the following theorem:

Theorem 1. Let Ã1, Ã2, . . . , Ãn be future pointing dual time-like unit vectors.
Then

arcÃ1Ã2 + arcÃ2Ã3 + · · ·+ arcÃn−1Ãn = arcÃ1Ãn.

4. THE HYPERBOLIC SINE AND COSINE RULES FOR DUAL
HYPERBOLIC SPHERICAL TRIANGLES

Let Ã, B̃, C̃ be three points on the dual hyperbolic unit sphere
∼
H2

0 , given by the
linearly independent dual time-like unit vectors,

r̃ = r + εr∗, s̃ = s+ εs∗, t̃ = t+ εt∗.

These points together with arcÃB̃, arcB̃C̃, arcC̃Ã form a dual hyperbolic spherical
triangle T (Ã, B̃, C̃). Having defined a dual hyperbolic spherical triangle there is
naturally defined six dual angles

ao = a+ εa∗, bo = b+ εb∗, co = c+ εc∗

called arc angles and

Ao = u+ εu∗, Bo = v + εv∗, Co = w + εw∗

called vertex angles (see figure 2).
We represent arcs of a dual hyperbolic spherical triangle by dual split quater-

nions. If Q = − cosh ao + Q̂ sinh ao, P = − cosh co + P̂ sinh co then

QP = cosh ao cosh co + 〈Q̂, P̂ 〉 sinh ao sinh co

−P̂ cosh ao sinh co − Q̂ cosh co sinh ao + Q̂ΛP̂ sinh ao sinh co.
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Figure 2. Dual hyperbolic spherical triangle on
∼
H2

0 .

On the other hand arcÃB̃ ∼ P, arcB̃C̃ ∼ Q, arcÃC̃ ∼ QP and writing

arcÃC̃ ∼ − cosh bo + M̂ sinh bo,

we get, by equating scalar and vector parts,

cosh ao cosh co + 〈Q̂, P̂ 〉 sinh ao sinh co = − cosh bo (4.1)

−P̂ cosh ao sinh co − Q̂ cosh co sinh ao + Q̂ΛP̂ sinh ao sinh co = M̂ sinh bo. (4.2)

Note that P̂ , Q̂, M̂ are space-like unit dual vectors in the direction of ÃΛB̃, B̃ΛC̃
and ÃΛC̃ respectively, i.e.

P̂ = − ÃΛB̃

‖ÃΛB̃‖
, Q̂ = − B̃ΛC̃

‖B̃ΛC̃‖
, M̂ = − ÃΛC̃

‖ÃΛC̃‖
.

We have 〈Ã, C̃〉 = − cosh bo, ÃΛC̃ = M̂ sinh bo, 〈B̃, C̃〉 = − cosh ao, B̃ΛC̃ =

Q̂ sinh ao, 〈Ã, B̃〉 = − cosh co, ÃΛB̃ = P̂ sinh co.
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The dual angles Ao, Bo, Co satisfy:

〈P̂ , M̂〉 = − coshAo, P̂ΛM̂ = Ã sinhAo,

〈P̂ , Q̂〉 = − coshBo, P̂ΛQ̂ = B̃ sinhBo,

〈M̂, Q̂〉 = − coshCo, M̂ΛQ̂ = C̃ sinhCo.

Now (4.1) implies

cosh ao cosh co − coshBo sinh ao sinh co = − cosh bo.

Thus we have the hyperbolic cosine rule as follows:

Theorem 2. Let T (Ã, B̃, C̃) be a dual hyperbolic spherical triangle on
∼
H2

0 , then

coshBo =
cosh ao cosh co + cosh bo

sinh ao sinh co
(4.3)

coshAo =
cosh bo cosh co + cosh ao

sinh bo sinh co
(4.4)

coshCo =
cosh ao cosh bo + cosh co

sinh ao sinh bo
(4.5)

Corollary 1. The real and dual parts of the Formula(4.3), (4.4), (4.5) are given
by

cosh v =
cosh a cosh c+ cosh b

sinh a sinh c

sinh v =
sinh b

v∗ sinh a sinh c
(−a∗ coshw − c∗ coshu+ b∗) ,

coshu =
cosh b cosh c+ cosh a

sinh b sinh c

sinhu =
sinh a

u∗ sinh b sinh c
(−b∗ coshw − c∗ cosh v + a∗) ,

coshw =
cosh a cosh b+ cosh c

sinh a sinh b

sinhw =
sinh c

w∗ sinh a sinh b
(−a∗ cosh v − b∗ coshu+ c∗) ,

By taking scalar product with B̃, since 〈P̂ , B̃〉 = 0, 〈Q̂, B̃〉 = 0, Q̂ΛP̂ =

−B̃ sinhBo, then we get from (4.2)

− sinhBo sinh ao sinh co = 〈M̂, B̃〉 sinh bo.

Therefore

sinhBo

sinh bo
=

〈B̃, ÃΛC̃〉
sinh ao sinh bo sinh co

=
−〈Ã, B̃ΛC̃〉

sinh ao sinh bo sinh co

=
−det(Ã, B̃, C̃)

sinh ao sinh bo sinh co
.
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But the right hand side is unchanged on cyclic interchange and so we deduce

Theorem 3. Let T (Ã, B̃, C̃) be a dual hyperbolic spherical triangle on
∼
H2

0 , then

sinhAo

sinh ao
=

sinhBo

sinh bo
=

sinhCo

sinh co
(4.6)

Corollary 2. The real and dual part of the Formula (4.6) is given by,

sinhu

sinh a
=

sinh v

sinh b
=

sinhw

sinh c
,

and

u∗
coshu

sinh a
− a∗ coth a

sinhu

sinh a
= v∗

cosh v

sinh b
− b∗ coth b

sinh v

sinh b

= w∗
coshw

sinh c
− c∗ coth c

sinhw

sinh c
.
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