UNIT DUAL SPLIT QUATERNIONS AND ARCS OF DUAL HYPERBOLIC SPHERICAL TRIANGLES #### HESNA KABADAYI ABSTRACT. In this paper we obtain the cosine hyperbolic and sine hyperbolic rules for a dual hyperbolic spherical triangle $T(\tilde{A}, \tilde{B}, \tilde{C})$ whose arcs are represented by dual split quaternions. ## 1. INTRODUCTION The dual hyperbolic unit sphere \tilde{H}_0^2 is the set of all time-like unit vectors in the dual Lorentzian space \mathbb{D}_1^3 with signature (-,+,+). Dual hyperbolic spherical geometry which is studied by means of dual time-like unit vectors is analogous to real hyperbolic spherical geometry which is studied by means of real time-like unit vectors. Quaternions and split quaternions have many applications in mathematics (see [1], [2], [3]). Some of the recent works include [4], [5]. Great circle arcs on a unit sphere represented by a unit quaternion and sine and cosine rules are obtained by J. P. Ward (see [6] pp.98-102). A similar correspondence is possible with unit dual split quaternions and arcs of a dual hyperbolic spherical triangle on the dual hyperbolic unit sphere \tilde{H}_0^2 . The hyperbolic sine and hyperbolic cosine rules for dual and real spherical trigonometry have been well known for a long time (see [7], [8], [9], [10], [11]). Here in this paper we obtain hyperbolic sine and hyperbolic cosine rules by means of the correspondence between arcs of the dual hyperbolic spherical triangle on \tilde{H}_0^2 and dual split quaternions. #### 2. PRELIMINARIES A dual number has the form $q = \lambda + \varepsilon \lambda^*$, where λ and λ^* are real numbers and ε is the dual unit which satisfies the rules: $$\varepsilon \neq 0$$, $0\varepsilon = \varepsilon 0 = 0$, $1\varepsilon = \varepsilon 1 = \varepsilon$, $\varepsilon^2 = 0$. The set of dual numbers is a ring denoted by \mathbb{D} . The Lorentzian inner product of dual vectors $\tilde{A} = r + \varepsilon r^*$, $\tilde{B} = s + \varepsilon s^*$ is defined Received by the editors: March, 03, 2015; Accepted: June 14, 2015. $2000\ Mathematics\ Subject\ Classification.\quad 51M10,\ 53C50.$ $Key\ words\ and\ phrases.$ Hyperbolic spherical trigonometry, split quaternion, Lorentzian space. ©2015 Ankara University by $$\langle \tilde{A}, \tilde{B} \rangle = \langle r, s \rangle + \varepsilon (\langle r, s^* \rangle + \langle r^*, s \rangle)$$ where $\langle r, s \rangle$ is the Lorentzian inner product of the vectors r and s in \mathbb{R}^3_1 , (see [12]) given by $$\langle r, s \rangle = -r_1 s_1 + r_2 s_2 + r_3 s_3$$ A dual vector $\tilde{A} = r + \varepsilon r^*$ is said to be time-like if the vector r is time-like, (resp. space-like if the vector r is space-like and light-like if the vector r is light-like). The set $\mathbb{D}_1^3 = \{\tilde{A} = r + \varepsilon r^* | r, r^* \in \mathbb{R}_1^3 \}$ is called dual Lorentzian space. The Lorentzian cross product of dual vectors \tilde{A} and $\tilde{B} \in \mathbb{D}_1^3$ is given by $$\tilde{A}\Lambda\tilde{B} = r\Lambda s + \varepsilon(r^*\Lambda s + r\Lambda s^*)$$ where $r\Lambda s$ is the Lorentzian cross product in \mathbb{R}^3_1 given by $$r\Lambda s = \left| egin{array}{ccc} -e_1 & e_2 & e_3 \\ r_1 & r_2 & r_3 \\ s_1 & s_2 & s_3 \end{array} ight|.$$ **Lemma 1.** Let $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D} \in \mathbb{D}^3_1$. Then we have $$\langle \tilde{A}\Lambda \tilde{B}, \tilde{C} \rangle = \det(\tilde{A}, \tilde{B}, \tilde{C})$$ (2.1) $$\tilde{A}\Lambda\tilde{B} = -\tilde{B}\Lambda\tilde{A} \tag{2.2}$$ $$(\tilde{A}\Lambda\tilde{B})\Lambda\tilde{C} = -\langle \tilde{A}, \tilde{C}\rangle \tilde{B} + \langle \tilde{B}, \tilde{C}\rangle \tilde{A}$$ (2.3) $$\langle \tilde{A}\Lambda \tilde{B}, \tilde{C}\Lambda \tilde{D}\rangle = -\langle \tilde{A}, \tilde{C}\rangle \langle \tilde{B}, \tilde{D}\rangle + \langle \tilde{A}, \tilde{D}\rangle \langle \tilde{B}, \tilde{C}\rangle \tag{2.4}$$ $$\langle \tilde{A}\Lambda \tilde{B}, \tilde{A} \rangle = 0 \text{ and } \langle \tilde{A}\Lambda \tilde{B}, \tilde{B} \rangle = 0.$$ (2.5) The set of all dual time-like unit vectors is called dual hyperbolic unit sphere and denoted by \tilde{H}_0^2 . There are two components of the dual hyperbolic unit sphere \tilde{H}_0^2 . $\overset{\sim}{H_0^{+2}} = \left\{ \tilde{A} = r + \varepsilon r^* \in \mathbb{D}_1^3 : |\tilde{A}| = 1, \ r, \ r^* \in \mathbb{R}_1^3 \text{ and } r \text{ is future pointing time-like vector} \right\}$ is called future dual hyperbolic unit sphere, $$\overset{\sim}{H_0^{-2}} = \left\{ \tilde{A} = r + \varepsilon r^* \in \mathbb{D}_1^3 : |\tilde{A}| = 1, \ r, \ r^* \in \mathbb{R}_1^3 \text{ and } r \text{ is past pointing time-like vector} \right\}$$ is called past dual hyperbolic unit sphere (see [12])., where $\|\tilde{A}\| = \sqrt{\langle \tilde{A}, \tilde{A} \rangle} = |r| + \varepsilon \frac{\langle r, r^* \rangle}{|r|^2}$ with $|r| \neq 0$. Since we work on \tilde{H}_0^{+2} in this paper without loss of generality we use \tilde{H}_0^2 instead of H_0^{+2} . **Definition 1.** Let x and y be distinct points of H^n . Then x and y span a 2-dimensional time-like subspace V(x,y) of R^{n+1} and so $$L(x,y) = H^n \cap V(x,y)$$ is the unique hyperbolic line of H^n containing x and y. Note that L(x,y) is a branch of a hyperbola (see [13] pp. 68) **Definition 2.** Let x, y, z be three hyperbolically non-collinear points of H^2 . Let L(x,y) be the unique hyperbolic line of H^2 containing x and y, and let H(x,y,z) be the closed half-plane of H^2 with L(x,y) as its boundary and z in its interior. The hyperbolic triangle with vertices x, y, z is defined to be $$T(x, y, z) = H(x, y, z) \cap H(y, z, x) \cap H(z, x, y).$$ (see [13] pp. 83) **Definition 3.** Let \tilde{A} and \tilde{B} be distinct points of H_0^2 . Then \tilde{A} and \tilde{B} span a dual timelike subspace $V(\tilde{A}, \tilde{B})$ of \mathbb{D}_1^3 and so $$L(\tilde{A}, \tilde{B}) = \overset{\sim}{H_0^2} \cap V(\tilde{A}, \tilde{B})$$ is called a dual hyperbolic line of H_0^2 . Note that this is the unique dual hyperbolic line containing \tilde{A} and \tilde{B} . **Definition 4.** Let \tilde{A} , \tilde{B} , \tilde{C} be hyperbolically non -colinear points of H_0^2 . Let $L(\tilde{A}, \tilde{B})$ be the unique dual hyperbolic line of H_0^2 containing \tilde{A} and \tilde{B} , and let $H(\tilde{A}, \tilde{B}, \tilde{C})$ be the closed half-plane of H_0^2 with $L(\tilde{A}, \tilde{B})$ as its boundary and \tilde{C} is in its interior. The dual hyperbolic triangle with vertices \tilde{A} , \tilde{B} , \tilde{C} is defined to be $$T(\tilde{A},\tilde{B},\tilde{C}) = H(\tilde{A},\tilde{B},\tilde{C}) \cap H(\tilde{B},\tilde{C},\tilde{A}) \cap H(\tilde{C},\tilde{A},\tilde{B})$$ (See figure 1). ### 3. DUAL SPLIT QUATERNIONS AND ARCS The elements of $$H_{\mathbb{D}}' = \{Q = q_0 + q_1 \overrightarrow{e_1} + q_2 \overrightarrow{e_2} + q_3 \overrightarrow{e_3} | q_0, \ q_1, \ q_2, \ q_3 \in \mathbb{D}\}$$ FIGURE 1. Dual hyperbolic triangle. with the following multiplication table | _ | 1 | $\overrightarrow{e_1}$ | $\overrightarrow{e_2}$ | $\overrightarrow{e_3}$ | |------------------------|------------------------|-------------------------|------------------------|-------------------------| | 1 | 1 | $\overrightarrow{e_1}$ | $\overrightarrow{e_2}$ | $\overrightarrow{e_3}$ | | $\overrightarrow{e_1}$ | $\overrightarrow{e_1}$ | -1 | $\overrightarrow{e_3}$ | $-\overrightarrow{e_2}$ | | $\overrightarrow{e_2}$ | $\overrightarrow{e_2}$ | $\overrightarrow{-e_3}$ | 1 | $\overrightarrow{-e_1}$ | | $\overrightarrow{e_3}$ | $\overrightarrow{e_3}$ | $\overrightarrow{e_2}$ | $\overrightarrow{e_1}$ | 1 | are called dual split quaternions (see [14]). A dual split quaternion can be expressed as $Q = S_Q + \overrightarrow{V}_Q$, where $S_Q = q_0$, $\overrightarrow{V}_Q = q_1 \overrightarrow{e_1} + q_2 \overrightarrow{e_2} + q_3 \overrightarrow{e_3}$. The product rule of dual split quaternions is given as follows: $$QP = S_Q S_P + \langle \overrightarrow{V}_Q, \overrightarrow{V}_P \rangle + S_Q \overrightarrow{V}_P + S_P \overrightarrow{V}_Q + \overrightarrow{V}_Q \Lambda \overrightarrow{V}_P,$$ where $\langle \overrightarrow{V}_Q, \overrightarrow{V}_P \rangle = -q_1p_1 + q_2p_2 + q_3p_3$, and $\overrightarrow{V}_Q \Lambda \overrightarrow{V}_P = (q_3p_2 - q_2p_3) \overrightarrow{e_1} + (q_3p_1 - q_1p_3) \overrightarrow{e_2} + (q_1p_2 - q_2p_1) \overrightarrow{e_3}$. If $$Q = q_0 + q_1 \overrightarrow{e_1} + q_2 \overrightarrow{e_2} + q_3 \overrightarrow{e_3}$$ $$= q + \varepsilon q^*$$ where $q = \lambda_0 + \lambda_1 \overrightarrow{e_1} + \lambda_2 \overrightarrow{e_2} + \lambda_3 \overrightarrow{e_3}$ and $q^* = \lambda_0^* + \lambda_1^* \overrightarrow{e_1} + \lambda_2^* \overrightarrow{e_2} + \lambda_3^* \overrightarrow{e_3}$, λ_i , $\lambda_i^* \in \mathbb{R}$, $0 \le i \le 3$, then the norm of Q is given as $$N_Q = q_0^2 + q_1^2 - q_2^2 - q_3^2$$ = $-\langle q, q \rangle - 2\varepsilon \langle q, q^* \rangle$. If $N_Q = 1$ then Q is said to be a unit dual split quaternion (see [14]). unit dual split quaternion may be expressed as: $$Q = \langle \tilde{A}, \tilde{B} \rangle - \tilde{A}\Lambda \tilde{B}$$ $$= -\cosh \phi + \hat{Q} \sinh \phi$$ $$= -\cosh(\varphi + \varepsilon \varphi^*) + \hat{Q} \sinh(\varphi + \varepsilon \varphi^*)$$ where \tilde{A} , \tilde{B} are unit dual time-like vectors. We may associate this unit dual split quaternion to the dual hyperbolic arc $L(\tilde{A}, \tilde{B}) = arc\tilde{A}\tilde{B}$ which is obtained by dual time-like subspace $V(\tilde{A}, \tilde{B})$ with normal \hat{Q} intersect the unit dual hyperbolic sphere H_0^2 . Let \tilde{A}, \tilde{B} and \tilde{C} be future pointing time-like unit dual vectors in dual Lorentzian space \mathbb{D}_1^3 and $Q = \langle \tilde{A}, \tilde{B} \rangle - \tilde{A}\Lambda \tilde{B}$ and $P = \langle \tilde{B}, \tilde{C} \rangle - \tilde{B}\Lambda \tilde{C}$ be unit dual split quaternions. The dual split quaternion product of P and Q is $$PQ = \langle \tilde{B}, \tilde{C} \rangle \langle \tilde{A}, \tilde{B} \rangle + \langle \tilde{B}\Lambda \tilde{C}, \tilde{A}\Lambda \tilde{B} \rangle - \langle \tilde{B}, \tilde{C} \rangle \tilde{A}\Lambda \tilde{B} - \langle \tilde{A}, \tilde{B} \rangle \tilde{B}\Lambda \tilde{C} + (-\tilde{B}\Lambda \tilde{C})\Lambda(-\tilde{A}\Lambda \tilde{B}).$$ From Lemma 1, (2.4) and since \tilde{B} is a unit dual vector we have $$\langle \tilde{B}\Lambda \tilde{C}, \tilde{A}\Lambda \tilde{B} \rangle = -\langle \tilde{C}, \tilde{B} \rangle \langle \tilde{B}, \tilde{A} \rangle + \langle \tilde{C}, \tilde{A} \rangle.$$ From Lemma 1 (2.3), (2.5) and (2.1) we get, $$\left(\tilde{C}\Lambda\tilde{B}\right)\Lambda\left(\tilde{B}\Lambda\tilde{A}\right) = -\langle\tilde{C}\Lambda\tilde{B},\tilde{A}\rangle\tilde{B} = -\det\left(\tilde{B},\tilde{A},\tilde{C}\right)\tilde{B} = -\langle\tilde{B}\Lambda\tilde{A},\tilde{C}\rangle\tilde{B}.$$ From lemma 1 (2.3) and (2.2) we obtain, $$-\langle \tilde{B}\Lambda\tilde{A},\tilde{C}\rangle \tilde{B}+\langle \tilde{B},\tilde{C}\rangle \tilde{B}\Lambda\tilde{A}=\left[\left(\tilde{B}\Lambda\tilde{A}\right)\Lambda\tilde{B}\right]\Lambda\tilde{C}=-\tilde{A}\Lambda\tilde{C}+\langle \tilde{A},\tilde{B}\rangle \tilde{B}\Lambda\tilde{C}.$$ Thus from the above calculations we have, $$PQ = \langle \tilde{A}, \tilde{C} \rangle - \tilde{A}\Lambda \tilde{C}.$$ 3.0.1. Geometrical Interpretation of Q. Let $\tilde{A} = \overrightarrow{r} + \varepsilon \overrightarrow{r^*}$, $\tilde{B} = \overrightarrow{s} + \varepsilon \overrightarrow{s^*}$, with $\|\tilde{A}\|$ $= \|\tilde{B}\| = 1$, where \vec{r} , $\vec{r^*} \in \mathbb{R}^3$, \vec{s} , $\vec{s^*} \in \mathbb{R}^3$, i.e. \tilde{A} , $\tilde{B} \in \tilde{H}_0^2$. Using the product rule for dual split quaternions we have, $$\tilde{B}\tilde{A} = \left\langle \tilde{A}, \tilde{B} \right\rangle - \tilde{A}\Lambda\tilde{B} = Q.$$ Note that $Q\tilde{A} = \tilde{B}$. Since $Q = -\cosh\phi + \hat{Q}\sinh\phi = -\cosh(\varphi + \varepsilon\varphi^*) + \hat{Q}\sinh(\varphi + \varepsilon\varphi^*)$, then $\hat{Q} = \frac{\tilde{B}\Lambda\tilde{A}}{\|\tilde{B}\Lambda\tilde{A}\|}$ is the unit dual vector. $(Q\tilde{A} = \tilde{B} \text{ means that the operator } Q \text{ transforms the line } \tilde{A} \text{ into the line } \tilde{B}$. See the below figure.) **Remark 1.** Multiplying the unit dual vector \tilde{A} from the left by Q means that, rotating the line corresponding to \tilde{A} by φ about (E. Study) the line corresponding to \hat{Q} and translating it by φ^* along the line corresponding to \hat{Q} . Considering that P and Q are unit dual split quaternions, they are screw operators at the same time. Hence $Q(\tilde{A}) = \tilde{B}$, $P(\tilde{B}) = \tilde{C}$ implies that $PQ(\tilde{A}) = \tilde{C}$. This means that the line d_1 which corresponds \tilde{A} transforms into the line d_2 which corresponds \tilde{C} . Consider a unit dual split quaternion $Q = \langle \tilde{A}, \tilde{B} \rangle - \tilde{A}\Lambda \tilde{B} = -\cosh\phi + \hat{Q}\sinh\phi$. We may associate this unit dual split quaternion to a great circle arc (hyperbolic line) of H_0^2 which is obtained when diametral plane with normal \hat{Q} intersect H_0^2 . Clearly the position of the arc along the circle is arbitrary and so the $arc\tilde{A}\tilde{B}$ is free to slide on this great circle as long as its length (which is the measure of the dual angle corresponding to the arc) and direction are maintained. For fixed \hat{Q} algebra of dual split quaternions is identical to the algebra of quaternions. We write using \sim to specify the geometrical correspondence, $$arc\tilde{A}\tilde{B} \sim Q = \langle \tilde{A}, \tilde{\tilde{B}} \rangle - \tilde{A}\Lambda \tilde{B}$$ $$= -\cosh \phi + \hat{Q} \sinh \phi$$ $$= -\cosh(\varphi + \varepsilon \varphi^*) + \hat{Q} \sinh(\varphi + \varepsilon \varphi^*)$$ $$\hat{Q} = -\frac{(\tilde{A}\Lambda \tilde{B})}{\|\tilde{A}\Lambda \tilde{B}\|}$$ is a dual space-like vector and $$arc\tilde{B}\tilde{C} \sim P = \langle \tilde{B}, \tilde{C} \rangle - \tilde{B}\Lambda \tilde{C}$$ $$= -\cosh \psi + \hat{P} \sinh \psi$$ $$= -\cosh(\theta + \varepsilon \theta^*) + \hat{P} \sinh(\theta + \varepsilon \theta^*)$$ $$arc\tilde{A}\tilde{C} \sim PQ = \langle \tilde{A}, \tilde{C} \rangle - \tilde{A}\Lambda \tilde{C}.$$ Therefore $$arc\tilde{A}\tilde{B} + arc\tilde{B}\tilde{C} = arc\tilde{A}\tilde{C} \text{ or } arcQ + arcP = arcPQ.$$ As a trivial consequence of the argument above we have the following theorem: **Theorem 1.** Let $\tilde{A}_1, \tilde{A}_2, \dots, \tilde{A}_n$ be future pointing dual time-like unit vectors. Then $$arc\tilde{A}_1\tilde{A}_2 + arc\tilde{A}_2\tilde{A}_3 + \dots + arc\tilde{A}_{n-1}\tilde{A}_n = arc\tilde{A}_1\tilde{A}_n.$$ # 4. THE HYPERBOLIC SINE AND COSINE RULES FOR DUAL HYPERBOLIC SPHERICAL TRIANGLES Let $\tilde{A}, \tilde{B}, \tilde{C}$ be three points on the dual hyperbolic unit sphere H_0^2 , given by the linearly independent dual time-like unit vectors, $$\tilde{r} = r + \varepsilon r^*, \ \tilde{s} = s + \varepsilon s^*, \ \tilde{t} = t + \varepsilon t^*.$$ These points together with $arc\tilde{A}\tilde{B}$, $arc\tilde{B}\tilde{C}$, $arc\tilde{C}\tilde{A}$ form a dual hyperbolic spherical triangle $T(\tilde{A}, \tilde{B}, \tilde{C})$. Having defined a dual hyperbolic spherical triangle there is naturally defined six dual angles $$a^o = a + \varepsilon a^*, \ b^o = b + \varepsilon b^*, \ c^o = c + \varepsilon c^*$$ called arc angles and $$A^o = u + \varepsilon u^*, B^o = v + \varepsilon v^*, C^o = w + \varepsilon w^*$$ called vertex angles (see figure 2). We represent arcs of a dual hyperbolic spherical triangle by dual split quaternions. If $Q = -\cosh a^o + \hat{Q} \sinh a^o$, $P = -\cosh c^o + \hat{P} \sinh c^o$ then $$\begin{split} QP &= \cosh a^o \cosh c^o + \langle \hat{Q}, \hat{P} \rangle \sinh a^o \sinh c^o \\ &- \hat{P} \cosh a^o \sinh c^o - \hat{Q} \cosh c^o \sinh a^o + \hat{Q} \Lambda \hat{P} \sinh a^o \sinh c^o. \end{split}$$ Figure 2. Dual hyperbolic spherical triangle on $\overset{\sim}{H_0^2}$. On the other hand $arc\tilde{A}\tilde{B}\sim P,\, arc\tilde{B}\tilde{C}\sim Q,\, arc\tilde{A}\tilde{C}\sim QP$ and writing $arc\tilde{A}\tilde{C}\sim -\cosh b^o+\hat{M}\sinh b^o,$ we get, by equating scalar and vector parts, $$\cosh a^{o} \cosh c^{o} + \langle \hat{Q}, \hat{P} \rangle \sinh a^{o} \sinh c^{o} = -\cosh b^{o}$$ (4.1) $$-\hat{P}\cosh a^o \sinh c^o - \hat{Q}\cosh c^o \sinh a^o + \hat{Q}\Lambda\hat{P}\sinh a^o \sinh c^o = \hat{M}\sinh b^o. \tag{4.2}$$ Note that $\hat{P}, \hat{Q}, \hat{M}$ are space-like unit dual vectors in the direction of $\tilde{A}\Lambda\tilde{B}, \tilde{B}\Lambda\tilde{C}$ and $\tilde{A}\Lambda\tilde{C}$ respectively, i.e. $$\hat{P} = -\frac{\tilde{A}\Lambda\tilde{B}}{\|\tilde{A}\Lambda\tilde{B}\|}, \ \hat{Q} = -\frac{\tilde{B}\Lambda\tilde{C}}{\|\tilde{B}\Lambda\tilde{C}\|}, \ \hat{M} = -\frac{\tilde{A}\Lambda\tilde{C}}{\|\tilde{A}\Lambda\tilde{C}\|}.$$ We have $\langle \tilde{A}, \tilde{C} \rangle = -\cosh b^o$, $\tilde{A}\Lambda \tilde{C} = \hat{M} \sinh b^o$, $\langle \tilde{B}, \tilde{C} \rangle = -\cosh a^o$, $\tilde{B}\Lambda \tilde{C} = \hat{Q} \sinh a^o$, $\langle \tilde{A}, \tilde{B} \rangle = -\cosh c^o$, $\tilde{A}\Lambda \tilde{B} = \hat{P} \sinh c^o$. The dual angles A^o , B^o , C^o satisfy: $$\begin{split} \langle \hat{P}, \hat{M} \rangle &= -\cosh A^o, \ \hat{P}\Lambda \hat{M} = \tilde{A}\sinh A^o, \\ \langle \hat{P}, \hat{Q} \rangle &= -\cosh B^o, \hat{P}\Lambda \hat{Q} = \tilde{B}\sinh B^o, \\ \langle \hat{M}, \hat{Q} \rangle &= -\cosh C^o, \ \hat{M}\Lambda \hat{Q} = \tilde{C}\sinh C^o. \end{split}$$ Now (4.1) implies $$\cosh a^{o} \cosh c^{o} - \cosh B^{o} \sinh a^{o} \sinh c^{o} = -\cosh b^{o}.$$ Thus we have the hyperbolic cosine rule as follows: **Theorem 2.** Let $T(\tilde{A}, \tilde{B}, \tilde{C})$ be a dual hyperbolic spherical triangle on H_0^2 , then $$\cosh B^{o} = \frac{\cosh a^{o} \cosh c^{o} + \cosh b^{o}}{\sinh a^{o} \sinh c^{o}} \tag{4.3}$$ $$\cosh A^{o} = \frac{\cosh b^{o} \cosh c^{o} + \cosh a^{o}}{\sinh b^{o} \sinh c^{o}}$$ $$\cosh C^{o} = \frac{\cosh a^{o} \cosh b^{o} + \cosh c^{o}}{\sinh a^{o} \sinh b^{o}}$$ (4.4) $$\cosh C^o = \frac{\cosh a^o \cosh b^o + \cosh c^o}{\sinh a^o \sinh b^o} \tag{4.5}$$ Corollary 1. The real and dual parts of the Formula (4.3), (4.4), (4.5) are given by $$\cosh v = \frac{\cosh a \cosh c + \cosh b}{\sinh a \sinh c}$$ $$\sinh v = \frac{\sinh b}{v^* \sinh a \sinh c} \left(-a^* \cosh w - c^* \cosh u + b^* \right),$$ $$\cosh u = \frac{\cosh b \cosh c + \cosh a}{\sinh b \sinh c}$$ $$\sinh u = \frac{\sinh a}{u^* \sinh b \sinh c} \left(-b^* \cosh w - c^* \cosh v + a^* \right),$$ $$\cosh w = \frac{\cosh a \cosh b + \cosh c}{\sinh a \sinh b}$$ $$\sinh w = \frac{\sinh c}{w^* \sinh a \sinh b} \left(-a^* \cosh v - b^* \cosh u + c^* \right),$$ By taking scalar product with \tilde{B} , since $\langle \hat{P}, \tilde{B} \rangle = 0$, $\langle \hat{Q}, \tilde{B} \rangle = 0$, $\hat{Q}\Lambda\hat{P} = 0$ $-\tilde{B}\sinh B^{o}$, then we get from (4.2) $$-\sinh B^o \sinh a^o \sinh c^o = \langle \hat{M}, \tilde{B} \rangle \sinh b^o.$$ Therefore $$\begin{array}{ll} \frac{\sinh B^o}{\sinh b^o} & = & \frac{\langle \tilde{B}, \tilde{A}\Lambda \tilde{C} \rangle}{\sinh a^o \sinh b^o \sinh c^o} \\ & = & \frac{-\langle \tilde{A}, \tilde{B}\Lambda \tilde{C} \rangle}{\sinh a^o \sinh b^o \sinh c^o} \\ & = & \frac{-\det(\tilde{A}, \tilde{B}, \tilde{C})}{\sinh a^o \sinh b^o \sinh c^o}. \end{array}$$ But the right hand side is unchanged on cyclic interchange and so we deduce **Theorem 3.** Let $T(\tilde{A}, \tilde{B}, \tilde{C})$ be a dual hyperbolic spherical triangle on H_0^2 , then $$\frac{\sinh A^o}{\sinh a^o} = \frac{\sinh B^o}{\sinh b^o} = \frac{\sinh C^o}{\sinh c^o}$$ (4.6) Corollary 2. The real and dual part of the Formula (4.6) is given by, $$\frac{\sinh u}{\sinh a} = \frac{\sinh v}{\sinh b} = \frac{\sinh w}{\sinh c},$$ and $$u^* \frac{\cosh u}{\sinh a} - a^* \coth a \frac{\sinh u}{\sinh a} = v^* \frac{\cosh v}{\sinh b} - b^* \coth b \frac{\sinh v}{\sinh b}$$ $$= w^* \frac{\cosh w}{\sinh c} - c^* \coth c \frac{\sinh w}{\sinh c}.$$ #### References - [1] S. Altmann, "Rotations, Quaternions, and Double Groups". Clarendon Press, Oxford 1972. - [2] R. Ablamowicz and G. Sobczyky, "Lectures on Clifford (Geometric) Algebras and Applications" Birkhäuser, Boston 2004. - [3] C. Mladenova, "Robot problems over configurational manifold of vector-parameters and dual vector-parameters" J. Intelligent and Robotic systems 11 (1994) 117-133. - [4] E. Ata, Y. Yayli, "Split Quaternions and Semi-Euclidean Projective Spaces" Caos Solitons Fractals 41 (2009), no.4, 1910-1915. - [5] E. Ata, Y. Yayli, "Dual Quaternions and Dual Projective Spaces" Chaos Solitons Fractals 40 (2009), no.3, 1255-1263. - [6] J. P. Ward, "Quaternions and Cayley Numbers" Kluwer Academic Publisher, 1997. - [7] G. R. Veldkamp, "On the Use of Dual Numbers, Vectors and Matrices in instantaneous, spatial Kinematics", Mechanism and Machine Theory, 1976 vol. 11, pp. 141-156. - [8] A. F. Beardon, "The Geometry of Discrete Groups", Springer-Verlag, New York, Berlin 1983. - [9] H. H. Uğurlu and H. Gündoğan, "The Cosine Hyperbolic and Sine Hyperbolic Rules for Dual Hyperbolic Spherical Trigonometry", Mathematical and Computational Applications, Vol. 5, No.3, 185-190, 2000. - [10] M. Kazaz, H. H. Uğurlu, A. Özdemir, "The Cosine Rule II for a Spherical Triangle on the Dual Unit Sphere S^2 ", Math. Comput. Appl. 10(2005), no.3, 313-320. - [11] A. Özdemir, M. Kazaz, "Hyperbolic Sine and Cosine Rules for Geodesic Triangles on The Hyperbolic Unit Sphere $\overset{\sim}{H_0^2}$ ", Mathematical and Computational Applications, Vol. 10, No.2, 203-209, 2005. - [12] H. H. Uğurlu, A. Çalışkan, "The Study Mapping for Directed Space-like and Time-like lines in Minkowski 3-Space \mathbb{R}^3_1 ", Mathematical and Computational Applications, Vol. 1, No. 2 pp.142-148,1996. - [13] John G. Ratcliffe, "Foundation of hyperbolic Manifolds (Graduate Text in Mathematics)" Sipringer-Verlag Newyork, Berlin 1991 - [14] L. Kula and Y. Yayli, "Dual Split Quaternions and Screw Motions in Minkowski 3-Space" Iranian Journal of Sciences & Technology, Transaction A. Vol. 30, no. 3, 245-258. Address: Ankara University, Science Faculty, Mathematics Department, Tandoğan, Ankara, 06100, TURKEY $E\text{-}mail: \verb+kabadayi@science.ankara.edu.tr+, or+, hesnakabadayi@gmail.com+}$ $^{^0}$ Başlık: Birim dual ayrık kuaternions ve dual hiperbolik küresel üçgenlerin yayları Anahtar Kelimeler: Hiperbolik küresel trigonometri, ayrık kuaterniyon, Lorentz uzayı.