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ABSTRACT. The Extended Kalman Filter (EKF) is the often used filtering algorithm for 

nonlinear systems. But it does not usually produce desirable results. Recently a new nonlinear 
filtering algorithm named as Unscented Kalman Filter (UKF) is introduced.  In this paper, we 

propose a new modified Unscented Kalman Filter (MUKF) algorithm for nonlinear stochastic 

systems that are linear in some components. These nonlinear systems can be considered as 
having linear subsystems with parameters and aim is to estimate the system parameters. In 

simulation study, performance of the EKF, its known variant Modified Extended Kalman Filter 

(MEKF), UKF and the proposed MUKF is demonstrated for a nonlinear system that is linear in 
some components. The results show that MUKF gives the best solution for parameter 

identification problem. 

 

 
1. INTRODUCTION 

 
Discrete-time filtering for nonlinear dynamic system is an important research area and attracted 

considerable interest [1]. The most common way of applying the Kalman Filter to a nonlinear system 

is in the form of the Extended Kalman Filter (EKF). EKF is based on linearization of the state 

equations at each time step and on the use of linear estimation theory [2]. However, it has two known 

drawbacks: (1) the first-order linearization can introduce large errors in mean and covairance of the 

state vector and (2) the derivation of Jacobian matrices is nontrivial in many applications [2].  

 

Recently, a relatively new nonlinear filtering algorithm named Unscented Kalman Filter (UKF) 

is proposed as an improvement to EKF [3]. UKF is based on the unscented transformation, which 

uses a set of appropriately chosen weighted sigma points to estimate the means and covariances of 

probability distributions. It is not necessary to calculate Jacobians and so the algorithm has superior 

implementation properties to the EKF [4].  

 

The UKF is widely used in practice: target tracking [3], position determination [5], multi-sensor 

fusion [6] and training of neural networks [7]. 
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In [8] it is shown that for a nonlinear system that is linear in some components, a modification 

of the EKF improves the filter performance. This filter has two parallel algorithms and the 

modification is achieved by an improved linearization. Algorithm I is a modification of the EKF, in 

which the real-time linear Taylor approximation is taken at the optimal state estimate which is given 

by the standard KF of the linear subsystem from Algorithm II. The standard KF is obtained by 

plugging parameter values estimated by Algorithm I. The MUKF is motivated by the MEKF. In this 

paper we want to investigate whether similar modification of the UKF improves the filter 

performance or not.  

 

This paper is organized as follows. In Section 2 nonlinear state-space models are described and 

brief summary of the UKF algorithm is given. In Section 3 MUKF procedure is introduced. In Section 

4 the performance of the EKF, MEKF, UKF and the proposed MUKF is analyzed with a simulation 

example. Section 5 is the conclusion. 

 

2. UNSCENTED KALMAN FILTER 

 
Consider the following nonlinear discrete-time stochastic system 

𝑥(𝑘) = 𝑓(𝑥(𝑘 − 1)) + 𝑤(𝑘) 

                                          𝑧(𝑘) = ℎ(𝑥(𝑘)) + 𝑣(𝑘) 

      (1) 

 

 

where 𝑥(𝑘) (𝑛 − vector) and 𝑧(𝑘) (𝑚 − vector) denote the state and measurement vectors at time 

instant 𝑘, 𝑤(𝑘) and 𝑣(𝑘) are uncorrelated zero-mean Gaussian white noise processes with covariance  

 

𝐸(𝑤(𝑘)𝑤𝑇(𝑘)) = 𝑄(𝑘), 𝐸(𝑣(𝑘)𝑣𝑇(𝑘)) = 𝑅(𝑘).                              (2) 

 

UKF is using a minimal set of determinate sample points (sigma points) to completely 

capture the true mean and covariance of the states via Unscented Transformation (UT). UKF 

equations are summarized as follows [9]: 

 

A1. Given the state estimate �̂�(𝑘 − 1) and the error covariance matrix 𝑃(𝑘 − 1), the sigma points are 

formed by  

 

{
 
 

 
 𝜒𝑖(𝑘 − 1) = �̂�(𝑘 − 1)   ,   𝑖 = 0

     𝜒𝑖(𝑘 − 1) = �̂�(𝑘 − 1) + 𝑎 (√𝑛𝑃(𝑘 − 1))
𝑖
 ,   𝑖 = 1,… , 𝑛

 𝜒𝑖(𝑘 − 1) = �̂�(𝑘 − 1) − 𝑎 (√𝑛𝑃(𝑘 − 1))
𝑖
   , 𝑖 = 𝑛 + 1,… ,2𝑛 

                                       (3) 

 

where 𝑎 determines the spread of the sigma points around      �̂�(𝑘 − 1) and usually set to a small 

positive value. (√𝑛𝑃(𝑘 − 1))
𝑖
 is the 𝑖 − th row or column of the matrix square root of 𝑛𝑃(𝑘 − 1). 

 

A2. Prediction: These sigma points are instantiated through the process model to yield a set of 

transformed samples 

 

𝜒𝑖(𝑘|𝑘 − 1) = 𝑓(𝜒𝑖(𝑘 − 1))                                               (4) 
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The predicted mean and covariance are computed by  

 

�̂�(𝑘|𝑘 − 1) =∑𝑤𝑖

2𝑛

𝑖=0

𝜒𝑖(𝑘|𝑘 − 1) 
 

(5) 

 

 

𝑃(𝑘|𝑘 − 1) =  ∑𝑤𝑖

2𝑛

𝑖=0

(𝜒𝑖(𝑘|𝑘 − 1) − �̂�(𝑘|𝑘 − 1)) 

                × (𝜒𝑖(𝑘|𝑘 − 1) − �̂�(𝑘|𝑘 − 1))
𝑇
+ 𝑄(𝑘)      (6) 

 

with weights 𝑤0, 𝑤1, … , 𝑤2𝑛 ∈ 𝑅
2𝑛+1 satisfying ∑ 𝑤𝑖

2𝑛
𝑖=0 = 1 given by 

 

            {
𝑤𝑖 = 1 −

1

𝑎2
, 𝑖 = 0

𝑤𝑖 =
1

2𝑛𝑎2
, 𝑖 = 1, … ,2𝑛

  .                            (7) 

 

A3. Update: Given the weighted mean of these transformed sigma points �̂�(𝑘|𝑘 − 1) and the 

prediction covariance matrix 𝑃(𝑘|𝑘 − 1), the new sigma points 𝜒𝑖
′(𝑘|𝑘 − 1) are computed as 

 

{
 
 

 
 

𝜒𝑖
′(𝑘|𝑘 − 1) = �̂�(𝑘|𝑘 − 1)   , 𝑖 = 0

𝜒𝑖
′(𝑘|𝑘 − 1) = �̂�(𝑘|𝑘 − 1) + 𝑎 (√𝑛𝑃(𝑘|𝑘 − 1))

𝑖
   , 𝑖 = 1,2, … , 𝑛  

                     

𝜒𝑖
′(𝑘|𝑘 − 1) = �̂�(𝑘|𝑘 − 1) − 𝑎 (√𝑛𝑃(𝑘|𝑘 − 1))

𝑖−𝑛
    , 𝑖 = 𝑛 + 1, 𝑛 + 2,… ,2𝑛     

                

        (8) 

 

The sigma points for the measurements are 

 

𝒵𝑖(𝑘) = ℎ(𝜒𝑖
′(𝑘|𝑘 − 1)).                                      (9) 

 

The weighted mean and covariance matrix of the predicted observation is given by 

 

�̂�(𝑘) =∑𝑤𝑖

2𝑛

𝑖=0

𝒵𝑖(𝑘) 
 

(10) 

 

𝑃𝑧𝑧(𝑘) =∑𝑤𝑖

2𝑛

𝑖=0

(𝒵𝑖(𝑘) − �̂�(𝑘))(𝒵𝑖(𝑘) − �̂�(𝑘))
𝑇
+ 𝑅(𝑘) 

 

(11) 

 

and the covariance matrix between the state and the measurement is computed as follows 

 

𝑃𝑥𝑧(𝑘) = ∑ 𝑤𝑖
2𝑛
𝑖=0 (𝜒𝑖(𝑘|𝑘 − 1) − �̂�(𝑘|𝑘 − 1)) × (𝒵𝑖(𝑘) − �̂�(𝑘))

𝑇
.                                   (12) 

 

Then the state estimate �̂�(𝑘) and the corresponding covariance matrix 𝑃(𝑘) can be updated by 
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�̂�(𝑘) = �̂�(𝑘|𝑘 − 1) + 𝑃𝑥𝑧(𝑘)𝑃𝑧𝑧
−1(𝑘)(𝑧(𝑘) − �̂�(𝑘))       (13) 

 

𝑃(𝑘) = 𝑃(𝑘|𝑘 − 1) − 𝑃𝑥𝑧(𝑘)𝑃𝑧𝑧
−1(𝑘)𝑃𝑥𝑧

′ (𝑘) .                 (14) 
 

A4. Repeat steps 1 to 3 for the next sample. 

 

3. MODIFIED UKF 

 
In this section, with motivation to improve the performance of the UKF for the special form of 

nonlinear systems having linear subsystems, we will describe a modification of the UKF similar to 

modification of the EKF which was recommended in [8]. It uses two parallel algorithms (Algorithm 

I and II). The nonlinear model assumed by MUKF is described as follows. Let 𝑥(𝑘) and 𝑦(𝑘) be 𝑛 −
vector and 𝑚 − vector, and the state vector of the system be the (𝑛 +𝑚) − vector [𝑥𝑇(𝑘)  𝑦𝑇(𝑘)]𝑇 

such that it satisfies  

 

[
𝑥(𝑘 + 1)

𝑦(𝑘 + 1)
] = [

𝐹𝑘(𝑦(𝑘))𝑥(𝑘)

𝐺𝑘(𝑥(𝑘), 𝑦(𝑘))
] + [

𝜉1(𝑘)

𝜉2(𝑘)
]  

          𝑧(𝑘) = [𝐻𝑘(𝑥(𝑘), 𝑦(𝑘)) 0] [
𝑥(𝑘)

𝑦(𝑘)
] + 𝜂(𝑘). 

 

   (15) 

 

[𝜉1
𝑇(𝑘)   𝜉2

𝑇(𝑘)]𝑇 and 𝜂(𝑘) are uncorrelated zero-mean Gaussian white noise sequences with variance 

matrices 
 

𝑄(𝑘) = 𝑉𝑎𝑟 ([
𝜉1(𝑘)  

𝜉2(𝑘)
]),    𝑅(𝑘) = 𝑉𝑎𝑟(𝜂(𝑘))                 (16) 

 

respectively. 𝐹𝑘 , 𝐺𝑘 , 𝐻𝑘 are nonlinear matrix valued functions.  

 

With motivation to improve the performance, in Algorithm I, the sigma points are evaluated at 

the optimal state estimation �̂�(𝑘 − 1) which is determined by the standard KF (Algorithm II) of the 

subsystem 

 

𝑥(𝑘 + 1) = 𝐹𝑘(�̃�(𝑘))𝑥(𝑘) + 𝜉
1(𝑘) 

                     𝑧(𝑘) = 𝐻𝑘(�̃�(𝑘), �̃�(𝑘))𝑥(𝑘) + 𝜂(𝑘) 

(17) 

 

of (15) evaluated at the estimate (�̃�(𝑘), �̃�(𝑘)) from Algorithm I. Two algorithms are applied in 

parallel starting with the same initial estimate. Algorithm I is used yielding the 

estimate [�̃�𝑇(𝑘)  �̃�𝑇(𝑘)]𝑇 with the input �̂�(𝑘 − 1) obtained from Algorithm II (Standard KF for the 

linear system) and Algorithm II is used for yielding the estimate �̂�(𝑘) with the inputs ỹ(𝑘 − 1) and 

[�̃�𝑇(𝑘|𝑘 − 1)  �̃�𝑇(𝑘|𝑘 − 1)]𝑇 obtained from Algorithm I. Algorithm I and Algorithm II are given 

below. 
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Algorithm I. 
 

[
�̃�(0)

�̃�(0)
] = [

𝐸(𝑥(0))

𝐸(𝑦(0))
], 𝑃(0) = 𝑉𝑎𝑟 ([

𝑥(0)

𝑦(0)
]) 

 

A1.The sigma points are formed by  
 

{
  
 

  
 𝜒𝑖(k − 1) = [

x̂(k − 1)

ỹ(k − 1)
]   , 𝑖 = 0

𝜒𝑖(k − 1) = [
x̂(k − 1)

ỹ(k − 1)
] + 𝑎 (√(𝑛 + 𝑚)𝑃(𝑘 − 1))

𝑖
   , 𝑖 = 1,2,… , 𝑛 + 𝑚                            (18)

                       

𝜒𝑖(k − 1) = [
x̂(k − 1)

ỹ(k − 1)
] − 𝑎 (√(𝑛 + 𝑚)𝑃(𝑘 − 1))

𝑖−𝑛+𝑚
      𝑖 = 𝑛 + 𝑚 + 1,… ,2(𝑛 +𝑚)    

             

 

 

A2. 

        𝜒𝑖(k|k − 1) = [
Fk−1([𝜒𝑖(k − 1)]2)[𝜒𝑖(k − 1)]1

Gk−1(𝜒𝑖(k − 1))
] 

 

[
x̃(k|k − 1)

ỹ(k|k − 1)
] = ∑ Wi

2(𝑛+𝑚)

i=0

𝜒𝑖(k|k − 1) 

 

            (19) 

                      

𝑃(k|k − 1) = ∑ Wi

2(𝑛+𝑚)

i=0

[𝜒𝑖(k|k − 1) − [
x̃(k|k − 1)

ỹ(k|k − 1)
]] 

                    × [𝜒𝑖(k|k − 1) − [
x̃(k|k − 1)

ỹ(k|k − 1)
]]

𝑇

+ 𝑄(𝑘)    

 

where [𝜒𝑖(. )]1 is part of the vector related to x̂(. ), and [𝜒𝑖(. )]2 is part of the vector related to ỹ(. ). 
 

 

A3.  

{
  
 

  
 𝜒𝑖

′(k|k − 1) = [
x̃(k|k − 1)

ỹ(k|k − 1)
]   , 𝑖 = 0

𝜒𝑖
′(k|k − 1) = [

x̃(k|k − 1)

ỹ(k|k − 1)
] + 𝑎 (√(𝑛 + 𝑚)𝑃(𝑘|𝑘 − 1))

𝑖
   , 𝑖 = 1,2,… , 𝑛 + 𝑚  

                     

𝜒𝑖
′(k|k − 1) = [

x̃(k|k − 1)

ỹ(k|k − 1)
] − 𝑎 (√(𝑛 + 𝑚)𝑃(𝑘|𝑘 − 1))

𝑖−𝑛+𝑚
 , 𝑖 = 𝑛 + 𝑚 + 1,… ,2(𝑛 +𝑚)

                  

 

 

  𝒵𝑖(𝑘) = 𝐻𝑘(𝜒𝑖
′(k|k − 1)) 

 

�̂�(𝑘) = ∑ Wi𝒵𝑖(𝑘)

2(𝑛+𝑚)

i=0
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𝑃𝑧𝑧(𝑘) = ∑ Wi

2(𝑛+𝑚)

i=0

(𝒵𝑖(𝑘) − �̂�(𝑘))(𝒵𝑖(𝑘) − �̂�(𝑘))
𝑇
+ 𝑅(𝑘) 

 
(20) 

 
 

𝑃𝑥𝑧(𝑘) = ∑ Wi

2(𝑛+𝑚)

i=0

(𝜒𝑖(k|k − 1) − [
x̃(k|k − 1)

ỹ(k|k − 1)
]) 

                                                             × (𝑧(𝑘) − �̂�(𝑘))
𝑇

 

[
x̃(k)

ỹ(k)
] = [

x̃(k|k − 1)

ỹ(k|k − 1)
] + 𝑃𝑥𝑧(𝑘)𝑃𝑧𝑧

−1(𝑘)(𝑧(𝑘) − �̂�(𝑘)) 

 

𝑃(𝑘) = 𝑃(𝑘|𝑘 − 1) − 𝑃𝑥𝑧(𝑘)𝑃𝑧𝑧
−1(𝑘)𝑃𝑥𝑧

𝑇 (𝑘) 
 

Algorithm II. 

 

�̂�(0) = 𝐸(𝑥(0)), 𝑃(0) = 𝑉𝑎𝑟(𝑥(0)) 
 

𝑃(k|k − 1) = [𝐹𝑘−1(ỹ(k − 1))]𝑃(𝑘 − 1) × [𝐹𝑘−1(ỹ(k − 1))]
𝑇
+ 𝑄(𝑘 − 1) 

 

x̂(k|k − 1) = 𝐹𝑘−1(ỹ(k − 1))x̂(k − 1)                                     (21) 

 

𝐾(𝑘) = 𝑃(k|k − 1)[𝐻𝑘(x̃(k|k − 1), ỹ(k|k − 1))]
𝑇

 

× {[𝐻𝑘(x̃(k|k − 1), ỹ(k|k − 1))]𝑃(k|k − 1) + 𝑅𝑘}
−1

 
 

𝑃(𝑘) = {𝐼 − 𝐾(𝑘)[𝐻𝑘(x̃(k|k − 1), ỹ(k|k − 1))]} 

  × 𝑃(k|k − 1) 
 x̂(k) = x̂(k|k − 1) + 𝐾(𝑘) ×                    

             {𝑧(𝑘) − [𝐻𝑘(x̃(k|k − 1), ỹ(k|k − 1))x̂(k|k − 1)]}, 𝑘 = 1,2,…        

      

4. SIMULATION STUDY 

 

In this section we present some simulation results to show numerically the performance differences 

of the EKF, MEKF, UKF and proposed MUKF. Let consider the state-space model given by 

 

[

𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)

𝑥3(𝑘 + 1)
] = [

1 − 0.1𝑥3(𝑘) 0.1     0
−0.1 1        0

               0        0     1
] [

𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)
] + 𝜉(𝑘)                                (22) 

 

                    𝑧(𝑘) = [1 0    0]𝑥(𝑘) + 𝜐(𝑘). 
 

 

Here the system is nonlinear according to state variable 𝑥3 and the system can be described 

as  
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[

𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)

𝑥3(𝑘 + 1)
] = [

[
1 − 0.1𝑥3(𝑘) 0.1

−0.1 1
] [
𝑥1(𝑘)

𝑥2(𝑘)
]

𝑥3(𝑘)
] + 𝜉(𝑘) 

 

𝑧(𝑘) = [[1 0]    0] [
[
𝑥1(𝑘)

𝑥2(𝑘)
]

𝑥3(𝑘)
] + 𝜐(𝑘) . 

 

The state variable 𝑥3 is the parameter of the upper subsystem and can be estimated with 

using EKF, MEKF, UKF and MUKF. 𝜉(𝑘) and 𝜐(𝑘) are uncorrelated zero-mean Gaussian white 

noise sequences with       𝑉𝑎𝑟(𝜉(𝑘)) = 10−6𝐼3 and 𝑉𝑎𝑟(𝑣(𝑘)) = 10−5 for all 𝑘    (𝐼3-3 × 3 idendity 

matrix). 
 

For simulation study, the values of 𝑥3(𝑘) are given by, 
 

a) 𝑥3(𝑘) = 1,   𝑘 = 1,… ,200 

b) 𝑥3(𝑘) = 1 + 0.01 × 𝑘,   𝑘 = 1,… ,200           (23) 

 

Table 1. Initial values and noise covariance 
 

Initial state 𝑥(0) [0.9; 0.9; 0.9 ] 
Initial error covariance -𝑃(0) 10−5𝐼3 

 

and we want to identify these values by using EKF, MEKF, UKF and MUKF. 

 

For simulations initial values and noise covariance are given in Table 1. Scaling parameter 𝑎 is taken 

as 0.1. The aim is to compare the performance of the EKF, MEKF, UKF and the performance of the 

proposed MUKF. Simulation was repeated 100 times. For state variable 𝑥3, simulation results are 

given in Figures 1-2 and the mean square errors (MSE) of all variables are given Table 2 and Table 

3. As, it can be seen, for all state variables the proposed MUKF is giving better results than 

conventional UKF. For state variable 𝑥3, performance of the proposed MUKF is the best, 

performance of the MEKF is better than EKF and UKF. But for state variables 𝑥1 and 𝑥2, the EKF 

demonstrates the best performance.  

 

5. CONCLUSION 

In this paper, with the intention to improve the performance of the UKF for special 

nonlinear signal models, MUKF algorithm is introduced. The MUKF contains two parallel 

algorithms. Algorithm I is used for yielding the estimates which are used in Algorithm II 

to implement conventional Kalman Filter Algorithm. Two algorithms are applied in parallel 

starting with the same initial estimate.  

 

In simulation study, a nonlinear system that contains a linear subsystem is 

considered. EKF, MEKF, UKF and newly proposal MUKF were applied to obtain systems 

states estimates and results are compared using mean square error criteria. 
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It can be seen that, performance of the proposed MUKF is better than UKF in 

terms of mean square estimation error. As a result, we can say that the proposed MUKF is 

considered as an alternative method to parameter estimation problem in state-space models. 
 

Table 2. MSE of EKF and MEKF 

 

                         

  

MSE 

EKF                        MEKF 

 

𝑎) [ 

𝑥1
𝑥2
𝑥3
] 

 

 

[
0.0001702
0.0025883
0.004326

] 

 

[
0.0001752
0.0025893
0.004019

] 

  

𝑏) [

𝑥1
𝑥2
𝑥3
] 

 

 

[
0.0001852
0.0028743
0.0057051

] 

 

 

[
0.000189
0.002924
0.005453

] 

 

Table 3. MSE of UKF and MUKF 
 

   MSE 

UKF                       MUKF 
 

𝑎) [ 

𝑥1
𝑥2
𝑥3
] 

 

 

[
0.0001822
0.0026913
0.004229

] 

 

[
0.0001752
0.0025633
0.003973

] 

 

𝑏) [

𝑥1
𝑥2
𝑥3
] 

 

 

[
0.000205
0.003013
0.005513

] 

 

[
0.0001882
0.0028963
0.005344

] 
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Figure 1. Estimation of state variable 𝑥3(𝑘) for case a 

 

 
 

Figure 2. Estimation of state variable 𝑥3(𝑘) for case b 
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