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NIL-REFLEXIVE RINGS

HANDAN KOSE, BURCU UNGOR, AND ABDULLAH HARMANCI

Abstract. In this paper, we deal with a new approach to reflexive property
for rings by using nilpotent elements, in this direction we introduce nil-reflexive
rings. It is shown that the notion of nil-reflexivity is a generalization of that
of nil-semicommutativity. Examples are given to show that nil-reflexive rings
need not be reflexive and vice versa, and nil-reflexive rings but not semicom-
mutative are presented. We also proved that every ring with identity is weakly
reflexive defined by Zhao, Zhu and Gu. Moreover, we investigate basic prop-
erties of nil-reflexive rings and provide some source of examples for this class
of rings. We consider some extensions of nil-reflexive rings, such as trivial
extensions, polynomial extensions and Nagata extensions.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. Mason introduced the reflexive property for ideals, and this concept was
generalized by some authors, defining idempotent reflexive right ideals and rings,
completely reflexive rings, weakly reflexive rings (see namely, [6], [9], [13]). Let R
be a ring and I be a right ideal of R. In [13], I is called a reflexive right ideal if
for any x, y ∈ R, xRy ⊆ I implies yRx ⊆ I. The reflexive right ideal concept is
also specialized to the zero ideal of a ring, namely, a ring R is called reflexive [13]
if its zero ideal is reflexive. Reflexive rings are generalized to weakly reflexive rings
in [13]. The ring R is said to be weakly reflexive if arb = 0 implies bra is nilpotent
for a, b ∈ R and all r ∈ R. Motivated by the works on reflexivity, in this note we
study the reflexivity property in terms of nilpotent elements, namely, nil-reflexive
rings. It is shown by examples that the class of reflexive rings and the class of
nil-reflexive rings are incomparable. In [13], a ring R is called completely reflexive
if for any a, b ∈ R, ab = 0 implies ba = 0. Completely reflexive rings are called
reversible by Cohn in [4] and also studied in [5]. The rings without nonzero nilpotent
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elements are said to be reduced rings. Reduced rings are completely reflexive and
every completely reflexive ring is semicommutative, i.e. according to [12], a ring
R is called semicommutative if for all a, b ∈ R, ab = 0 implies aRb = 0. This is
equivalent to the definition that any left (right) annihilator of R is an ideal of R.
In [3], semicommutativity of rings is generalized to nil-semicommutativity of rings.
A ring R is called nil-semicommutative if a, b ∈ R satisfy that ab is nilpotent, then
arb ∈ nil(R) for any r ∈ R where nil(R) denotes the set of all nilpotent elements
of R. Clearly, every semicommutative ring is nil-semicommutative. In this paper
it is proved that the class of nil-reflexive rings lies strictly between the classes of
nil-semicommutative rings and weakly reflexive rings.
We first summarize the contents of the sections of this paper. First section is

the introduction. In the second section, we investigate the structure of nil-reflexive
rings, and some basic characterizations of these rings are obtained. We also deal
with relations between nil-reflexive rings and certain classes of rings. We present
some examples to illustrate nil-reflexive rings. Examples are given to show that
the notions of reflexive rings and nil-reflexive rings do not imply each other. Nil-
reflexive rings share a number of important properties with other classes of rings.
For instance, among other interesting results, we prove every semicommutative ring
is nil-reflexive. For a nil ideal I of a ring R, it is proved that R is nil-reflexive if
and only if R/I is nil-reflexive. Also if R is a nil-reflexive ring, then Tn(R), Sn(R)
and Vn(R) (see below for the definitions) are nil-reflexive. It is shown that every
corner ring of any nil-reflexive ring inherits the nil-reflexive property. On the other
hand, we determine abelian semiperfect nil-reflexive rings, they are exactly in the
form of a finite direct sum of local nil-reflexive rings. In the third section, we
study some extensions of nil-reflexive rings and it is proved that a ring R with a
multiplicatively closed subset U consisting of some central elements is nil reflexive
if and only if U−1R is nil-reflexive; for a ring R, R[x] is nil-reflexive if and only if
R[x;x−1] is nil-reflexive; if R is a nil-reflexive and Armendariz ring, then R[x] is a
nil-reflexive ring. Also, R is nil-reflexive if and only if its trivial extension T (R,R) is
nil-reflexive. We also deal with the Nagata extension N [R,R;α] of a commutative
ring R in terms of nil-reflexivity.
In what follows, N, Z and Q denote the set of natural numbers, the ring of

integers and the ring of rational numbers, and for a positive integer n, Zn is the
ring of integers modulo n. For a positive integer n, let Matn(R) denote the ring of
all n × n matrices and Tn(R) the ring of all n × n upper triangular matrices with
entries in R. We write R[x], U(R), P (R), and Sn(R) (Vn(R)) for the polynomial
ring over a ring R, the set of invertible elements, the prime radical of R, and the
subring consisting of all upper triangular matrices over a ring R with equal main
diagonal (every diagonal) entries, respectively.
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2. Nil-Reflexivity of Rings

In this section, we introduce nil-reflexive rings, and investigate basic properties
of this class of rings. We also study the relations between nil-reflexive rings and
some certain classes of rings.

Definition 2.1. A ring R is said to be nil-reflexive if for any a, b ∈ R, arb being
nilpotent implies that bra is nilpotent for all r ∈ R.

In the next, we provide some examples for nil-reflexive rings. The third example
in the following also shows that nil-reflexive rings need not be reflexive. In [6,
Theorem 2.6], Kwak and Lee proved that R is a reflexive ring if and only ifMatn(R)
is a reflexive ring for all n ≥ 1. However, this is not the case in nil-reflexivity of
R. There are nil-reflexive rings over which matrix rings need not be nil-reflexive as
shown below.

Examples 2.2. (1) Let R be a ring with nil(R) an ideal of R. Then R is

nil-reflexive.

(2) For any reduced ring S, the ring Tn(S) is nil-reflexive. However, the ring

of all 2× 2 matrices over any field is not nil-reflexive.

(3) Let R be a reduced ring. Consider the ring

Sn(R) =




a a12 a13 · · · a1n

0 a a23 · · · a2n
...

...
...

. . .
...

0 0 0 · · · a

 | a, aij ∈ R; 1 ≤ i, j ≤ n


.

Then Sn(R) is not reflexive when n ≥ 4, but Sn(R) and R are nil-reflexive

for all n ≥ 1.

Proof. (1) Let a, b ∈ R. Assume that arb is nilpotent for all r ∈ R. Then ab ∈
nil(R) and so brabra ∈ nil(R). Hence bra is nilpotent for all r ∈ R. Hence R is

nil-reflexive.

(2) For a ring R, by [2], nil(Tn(R)) =


nil(R) R R · · · R

0 nil(R) R · · · R
...

...
...

. . .
...

0 0 0 · · · nil(R)

. Let
S be a reduced ring. Then nil(S) = 0 and so nil(Tn(S)) is an ideal. By (1),

Tn(S) is nil-reflexive. Let A =

(
0 1

0 0

)
, B =

(
0 0

0 1

)
∈ Mat2(F ) where F is
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a field. For any C =

(
a b

c d

)
∈ Mat2(F ), ACB =

(
0 d

0 0

)
is nilpotent for

all C ∈ Mat2(F ), but for C =

(
0 0

1 0

)
∈ Mat2(F ), BCA =

(
0 0

0 1

)
is not

nilpotent. Therefore Mat2(F ) is not nil-reflexive.

(3) It is proved in [6] that Sn(R) is not reflexive when n ≥ 4. Since R is reduced,

R is nil-reflexive. Note that

nil(Sn(R)) =




a a12 a13 · · · a1n

0 a a23 · · · a2n
...

...
...

. . .
...

0 0 0 · · · a

 | a ∈ nil(R), aij ∈ R, 1 ≤ i, j ≤ n


.

The ring R being reduced implies that nil(Sn(R)) is an ideal. By (1), Sn(R) is

nil-reflexive. �

Lemma 2.3. For a ring R, consider the following conditions.

(1) R is nil-reflexive.

(2) If ARB is a nil set, then so is BRA for any subsets A,B of R.

(3) If IJ is nil, then JI is nil for all right (or left) ideals I, J of R.

Then (1) ⇒ (2) ⇒ (3).

Proof. (1) ⇒ (2) Assume that R is a nil-reflexive ring and ARB is a nil set. For

any a ∈ A, b ∈ B, arb is nilpotent for all r ∈ R, then bra is nilpotent. This implies
that BRA is nil.

(2) ⇒ (3) Let I and J be any right ideals of R such that IJ is nil. Since IR ⊆ I,

IRJ is nil. By (2), JRI is nil. Since JI ⊆ JRI, we get JI is nil. Assume that I

and J be any left ideals of R such that IJ is nil. Since RJ ⊆ J and then IRJ ⊆ IJ ,
IRJ is nil. By (2), JRI is nil. Since JI ⊆ JRI, we get JI is nil. �

Lemma 2.4. The following conditions are equivalent for a ring R.

(1) aR ⊆ nil(R) for any a ∈ nil(R).

(2) Ra ⊆ nil(R) for any a ∈ nil(R).

Proof. (1) ⇒ (2) Assume that ar ∈ nil(R) for all r ∈ R, for any a ∈ nil(R). Let

(ar)n = 0 for some positive integer n. Then (ra)n+1 = 0, hence ra is nilpotent.

Thus Ra ⊆ nil(R). Similarly, we can show (2)⇒ (1). �
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The next result gives a source of nil-reflexive rings.

Proposition 2.5. Let R be a ring such that aR ⊆ nil(R) for any a ∈ nil(R). Then

R is nil-reflexive.

Proof. Assume that for a, b ∈ R, arb ∈ nil(R) for any r ∈ R. So ab ∈ nil(R). By

hypothesis, abR ⊆ nil(R). Then there exists m ∈ N such that (abr)m = 0. Hence

br (abrabrabr . . . abr)︸ ︷︷ ︸ a = (bra)m+1 = 0. So bra ∈ nil(R) for any r ∈ R. �

[13, Example 2.1] shows that any semicommutative ring need not be reflexive,
but this is not the case when we deal with nil-reflexive rings. It can be observed
that every semicommutative ring is nil-reflexive as a consequence of Proposition
2.5. But we give its direct proof in the next.

Lemma 2.6. If R is a semicommutative ring, then it is nil-reflexive.

Proof. Assume that R is semicommutative and arb is nilpotent for a, b ∈ R and

for all r ∈ R. Let r ∈ R with (arb)n = 0 for some positive integer n.

(arb)(arb)(arb) . . . (arb)︸ ︷︷ ︸
n-times

= 0 (2.1)

In (2.1) insert b before r, and a after r to have

a(bra)ba(bra)ba(bra)b . . . ba(bra)b = 0 (2.2)

Replacing ba in (2.2) by bra to obtain

a(bra)(bra)(bra)(bra)(bra)bra . . . bra(bra)b = 0 (2.3)

Multiplying the equation (2.3) by br from the left and by ra from the right, we get

(bra)(bra)(bra)(bra)(bra)(bra)br . . . bra(bra)(bra) = (bra)2n+1 = 0 (2.4)

Hence R is nil-reflexive. �
In [13], weakly reflexive rings are studied in detail for rings having an identity.

However weakly reflexive rings are nothing but all rings with identity as it is shown
below.

Lemma 2.7. Every ring with identity is weakly reflexive.

Proof. Let a, b ∈ R with arb = 0 for all r ∈ R. Then ab = 0 and so (bra)2 =

br(ab)ra = 0 for all r ∈ R. Hence bra is nilpotent for all r ∈ R. Thus R is weakly

reflexive. �
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Lemma 2.6 and the next result show that the class of nil-reflexive rings lies
between the classes of semicommutative rings and weakly reflexive rings. It is
known that every completely reflexive ring is semicommutative and so nil-reflexive
by Lemma 2.6. In the following, we give the direct proof of this fact for the sake of
completeness.

Lemma 2.8. If R is a completely reflexive ring, then it is nil-reflexive.

Proof. Let R be a completely reflexive ring and a, b ∈ R. Assume that arb is nilpo-
tent for all r ∈ R. Then there exists n ∈ N such that (arb)n = 0. For any r ∈ R, we
apply successively completely reflexivity of R to get 0 = (ab)(ab)(ab) . . . (ab)abr =

br(ab)(ab)(ab) . . . (ab)a= abr(ab)(ab)(ab) . . . (ab)abr = brabr(ab)(ab)(ab) . . . (ab)a=

(bra)(bra)b(ab)(ab) . . . (ab)a = a(bra)(bra)b(ab) . . . (ab) = a(bra)(bra)b(ab) . . . (ab)r

= (bra)(bra)(bra)b(ab) . . . a = · · · = (bra)n. Therefore R is nil-reflexive. �
Now we shall give an example to show that there exists a nil-reflexive ring which

is not reflexive. Also reflexive rings may not be nil-reflexive either as shown below.

Example 2.9. There exists a nil-reflexive ring which is neither reflexive nor semi-

commutative.

Proof. Let R be a reduced ring. By Examples 2.2(2), T2(R) is nil-reflexive. On the

other hand, nil(T2(R)) =

{(
0 b

0 0

)
| b ∈ R

}
. Consider

(
0 1

0 0

)
,

(
1 0

0 0

)
∈

T2(R). Then

(
0 1

0 0

)(
R R

0 R

)(
1 0

0 0

)
= 0,

(
1 0

0 0

)(
1 1

0 1

)(
0 1

0 0

)
6=

0 for

(
1 1

0 1

)
∈ R. This shows that T2(R) is not reflexive. T2(R) is also not

semicommutative. For if, A =

(
1 1

0 0

)
, B =

(
0 −1

0 1

)
and C =

(
1 1

0 1

)
∈

T2(R), then AB = 0 but ACB 6= 0. �

Example 2.10. Consider the ring Mat2(F ) where F is a field. Since F is a

semiprime ring, Mat2(F ) is also semiprime due to [7, Proposition 10.20]. This

implies that Mat2(F ) is a reflexive ring, it is also weakly reflexive. On the other

hand, Mat2(F ) is not nil-reflexive by Examples 2.2(2).

Note that there are nil-reflexive rings but not completely reflexive as the following
example shows.



NIL-REFLEXIVE RINGS 25

Example 2.11. Let F be a field. Then T2(F ) is nil-reflexive which is not com-

pletely reflexive.

We now observe some relations among nil-reflexive rings, nil-semicommutative
rings and semiprime rings. According to next result, the class of nil-reflexive rings
is weaker than that of nil-semicommutative rings.

Proposition 2.12. Every nil-semicommutative ring is nil-reflexive.

Proof. Let R be a nil-semicommutative ring. Let a, b ∈ R with arb ∈ nil(R) for

all r ∈ R. In particular, for r = 1, we have ab ∈ nil(R). So ba ∈ nil(R). Since

R is nil-semicommutative, bra ∈ nil(R) for any r ∈ R. Thus R is a nil-reflexive

ring. �

It is easy to check that every semiprime ring is reflexive (see, for example [6]).
We have given an example showing that this is not the case for nil-reflexive rings
in Example 2.10. There are also nil-reflexive rings but not semiprime.

Example 2.13. Let D be a division ring. Consider the ring

R =



a b c

0 a d

0 0 a

 | a, b, c, d ∈ D
 .

Then R is nil-reflexive but not semiprime.

Proof. R is not semiprime since the set consisting of all main diagonal off elements

of R is a nonzero nilpotent ideal. On the other hand, R is nil-reflexive by Examples

2.2(3). �

In the next, we investigate the relations between a ring R and R/I for some ideal
I of R in terms of nil-reflexivity. Lambek called a ring R symmetric [8] provided
that abc = 0 implies acb = 0 for all a, b, c ∈ R. By Lemma 2.6, every symmetric
ring is nil-reflexive.

Proposition 2.14. Let R be a ring. Then the following hold.

(1) Let I be an ideal of R contained in nil(R). Then R is nil-reflexive if and

only if R/I is nil-reflexive.

(2) If R is symmetric, I is an ideal of R and I is a right annihilator I = rR(S)

for some nonempty subset S of R, then R/I is nil-reflexive.
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Proof. (1) “=⇒" Let ā, b̄ ∈ R/I with ār̄b̄ ∈ nil(R/I) for all r̄ ∈ R/I. Then

there exists n ∈ N such that (ār̄b̄)n = 0̄. So (arb)n ∈ I. Since I ⊆ nil(R),

(arb)n ∈ nil(R). Hence arb ∈ nil(R). Since R is nil-reflexive, bra ∈ nil(R). Thus

b̄r̄ā ∈ nil(R/I) for all r̄ ∈ R/I. Therefore R/I is nil-reflexive.
“⇐=" Let a, b ∈ R and suppose that arb ∈ nil(R) for all r ∈ R. Then ār̄b̄ ∈
nil(R/I) and so b̄r̄ā ∈ nil(R/I) since R/I is nil-reflexive. There exists m ∈ N such
that (b̄r̄ā)m = 0̄. This shows that (bra)m ∈ I. Since I ⊆ nil(R), (bra)m ∈ nil(R).

So there exists n ∈ N such that ((bra)m)n = 0 and so bra ∈ nil(R). This implies

that R is nil-reflexive.

(2) Let a, b ∈ R with arb ∈ nil (R/I) for all r ∈ R/I. There exists a positive

integer t such that (arb)t ∈ I and so S(arb)t = 0. Hence

0 = S(arb)t = S (arb)(arb)(arb) . . . (arb)(arb)(arb)︸ ︷︷ ︸
t−times

= S(arb)(arb)(arb) . . . (arb)(arb)(arb)b

= S(bar)(bar)(bar)b . . . (arb)(arb)(arb)

= S(bar)(bar)(bar)b . . . (arb)(arb)(ar)(bra)

= S(bra)(bar)(bar)(bar)b . . . (arb)(arb)(ar)

= S(bra)(bar)(bar)(bar)b . . . (arb)(ar)(bar)

= S(bra)(bar)(bar)(bar)b . . . (arb)(ar)(bra)

= S(bra)(bra)(bar)(bar)(bar)b . . . (arb)(ar).

We continue in this way to have S(bra)t+1 = 0. Hence (bra)t+1 ∈ I. This shows
that bra is nilpotent for each r ∈ R/I. Thus R/I is nil-reflexive. �
Now we give some characterizations of nil-reflexivity by using the prime radical

of a ring, upper triangular matrix rings and polynomial rings.

Corollary 2.15. A ring R is nil-reflexive if and only if R/P (R) is nil-reflexive.

Proof. Since every element of P (R) is nilpotent, it follows from Proposition 2.14.

�

Proposition 2.16. A ring R is nil-reflexive if and only if Tn(R) is nil-reflexive,

for any positive integer n.

Proof. Let A = (aij), B = (bij) ∈ Tn(R), with ACB ∈ nil(Tn(R)) for all C =

(cij) ∈ Tn(R), where 1 ≤ i ≤ j ≤ n. Then we have aiiciibii ∈ nil(R) for any 1 ≤ i ≤
n. Since R is nil-reflexive, biiciiaii ∈ nil(R). So it follows from BCA ∈ nil(Tn(R))
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that Tn(R) is nil-reflexive. Conversely, let a, b ∈ R with arb ∈ nil(R) for all r ∈

R. Then


a 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0




r 0 0 · · · 0

0 0 0 · · · 0
...
...
...

. . .
...

0 0 0 · · · 0




b 0 0 · · · 0

0 0 0 · · · 0
...
...
...

. . .
...

0 0 0 · · · 0

 ∈
nil(Tn(R)). Since Tn(R) is nil-reflexive,

b 0 0 · · · 0

0 0 0 · · · 0
...
...
...

. . .
...

0 0 0 · · · 0




r 0 0 · · · 0

0 0 0 · · · 0
...
...
...

. . .
...

0 0 0 · · · 0




a 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ nil(Tn(R)).

So bra ∈ nil(R). Therefore R is nil-reflexive. �

Proposition 2.17. A ring R is nil-reflexive if and only if R[x]/(xn) is nil-reflexive

for any n ≥ 1 where (xn) is the ideal generated by xn in R[x].

Proof. Note that for n = 1, R[x]/(x) ∼= R and for n ≥ 2,

R[x]/(xn) ∼=





a1 a2 a3 · · · an−1 an

0 a1 a2 · · · an−2 an−1

0 0 a1
. . . an−3 an−2

...
...

...
. . .

...
...

0 0 0 · · · a1 a2

0 0 0 · · · 0 a1


| ai ∈ R, 1 ≤ i ≤ n


= Vn(R)

and Vn(R) is a subring of Tn(R). Therefore

nil(Vn(R)) =





a1 a2 a3 · · · an−1 an

0 a1 a2 · · · an−2 an−1

0 0 a1
. . . an−3 an−2

...
...

...
. . .

...
...

0 0 0 · · · a1 a2

0 0 0 · · · 0 a1


| a1 ∈ nil(R), a2, . . . , an ∈ R


.

The proof is completed as in the proof of Proposition 2.16. �
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Theorem 2.18. Let I and K be ideals of a ring R. Assume that R = I ⊕ K is

a ring direct sum of I and K. Then R is nil-reflexive if and only if I and K are

nil-reflexive rings.

Proof. Note that R = I ⊕K is a ring direct sum of ideals I and K. Then I and

K become rings with identity. Suppose that R is nil-reflexive. Let x, y ∈ I with
xiy nilpotent for all i ∈ I. Then (x, 0)(i, k)(y, 0) is nilpotent for all (i, k) ∈ R. By
supposition, (y, 0)(i, k)(x, 0) is nilpotent for all (i, k) ∈ R. Hence yix is nilpotent for
all i ∈ I or I is nil-reflexive. A similar discussion proves that K is also nil-reflexive.

Conversely, assume that I and K are nil-reflexive rings. Let (x, y), (x′, y′) ∈ R with
(x, y)(x′′, y′′)(x′, y′) nilpotent for all (x′′, y′′) ∈ R. Then xx′′x′ is nilpotent for all
x′′ ∈ I and yy′′y′ is nilpotent for all y′′ ∈ K. By assumption, x′x′′x is nilpotent
for all x′′ ∈ I and y′y′′y is nilpotent for all y′′ ∈ K. Then (x′, y′)(x′′, y′′)(x, y) is

nilpotent for all (x′′, y′′) ∈ R. Hence R is nil-reflexive. �

Proposition 2.19. Finite product of nil-reflexive rings is nil-reflexive.

Proof. Let {Ri}i∈I be a class of nil-reflexive rings for an indexed set I = {1, 2, . . . , n}
where n ∈ N. By [10, Proposition 2.13], nil(

n∏
i=1

Ri) =
n∏
i=1

nil(Ri). Suppose that for

any (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈
n∏
i=1

Ri,

(a1, a2, . . . , an)(r1, r2, . . . , rn)(b1, b2, . . . , bn) ∈ nil(
n∏
i=1

Ri)

for all (r1, r2, . . . , rn) ∈
n∏
i=1

Ri. Then we have airibi ∈ nil(Ri) for each i =

1, 2, . . . , n. Since Ri is nil-reflexive, biriai ∈ nil(Ri) for each 1 ≤ i ≤ n. Therefore

(b1, b2, . . . , bn)(r1, r2, . . . , rn)(a1, a2, . . . , an) ∈ nil(
n∏
i=1

Ri). �

In the next result it is presented that any corner ring of a nil-reflexive ring
inherits the nil-reflexivity property. But the nil-reflexivity property is not Morita
invariant because of Examples 2.2(2).

Proposition 2.20. Let R be a ring and e2 = e ∈ R. If R is nil-reflexive, then so

is eRe.

Proof. Let exe, eye ∈ eRe with (exe)(ere)(eye) ∈ nil(eRe) for all ere ∈ eRe. Then
there exists m ∈ N such that ((exe)(ere)(eye))m = 0. Hence (exe)r(eye) ∈ nil(R).
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Since R is nil-reflexive, we have (eye)r(exe) ∈ nil(R). Thus (eye)(ere)(exe) ∈
nil(eRe). �

Corollary 2.21. For a central idempotent e of a ring R, eR and (1 − e)R are

nil-reflexive if and only if R is nil-reflexive.

Proof. Assume that eR and (1 − e)R are nil-reflexive. Since the nil-reflexivity

property is closed under finite direct products, R ∼= eR × (1 − e)R is nil-reflexive.

The converse is trivial by Proposition 2.20. �
By Examples 2.2(2), for any positive integer n, there are rings R for which

Matn(R) can not be nil-reflexive. However the converse statement holds as the
next result shows.

Corollary 2.22. Let R be a ring. If Matn(R) is a nil-reflexive ring for some

n ∈ N, then R is a nil-reflexive ring.

Proof. Let E11 denote the matrix unit whose (1, 1) entry is 1 and all other entries are

zero. Assume that Matn(R) is nil-reflexive. Then R ∼= RE11 = E11Matn(R)E11 is

nil-reflexive by Proposition 2.20. �
Recall that a ring R is said to be abelian if every idempotent is central, that is,

ae = ea for any e2 = e, a ∈ R. There exists a nil-reflexive ring which is not abelian
as shown below.

Example 2.23. Let F be a field. The ring T2(F ) is nil-reflexive by Example

2.2(2). But for an idempotent E =

(
0 y

0 1

)
∈ T2(F ) and for A = E12 ∈ T2(F ),

EA 6= AE. Thus T2(F ) is not an abelian ring.

We close this section by determining abelian semiperfect nil-reflexive rings.

Theorem 2.24. Let R be a ring. Consider the following statements.

(1) R is a finite direct sum of local nil-reflexive rings.

(2) R is a semiperfect nil-reflexive ring.

Then (1) ⇒ (2). If R is abelian, then (2) ⇒ (1).

Proof. (1) ⇒ (2) Assume that R is a finite direct sum of local nil-reflexive rings.

Then R is semiperfect because local rings are semiperfect and a finite direct sum

of semiperfect rings is semiperfect, and moreover R is nil-reflexive by Proposition
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2.19.

(2) ⇒ (1) Suppose that R is an abelian semiperfect nil-reflexive ring. Since R

is semiperfect, R has a finite orthogonal set {e1, e2, . . . , en} of local idempotents
whose sum is 1 by [1, Theorem 27.6], say 1 = e1+e2+ · · ·+en such that each eiRei
is a local ring where 1 ≤ i ≤ n. The ring R being abelian implies eiRei = eiR.

Each eiR is a nil-reflexive ring by Proposition 2.20. Hence R is nil-reflexive by

Proposition 2.19. �

3. Extensions of Nil-Reflexive Rings

In this section, we consider some extensions of nil-reflexive rings and characterize
nil-reflexive rings from various aspects. Let R be a ring and U be a multiplicative
closed subset of R consisting of some central regular elements, that is, for any
element u ∈ U , ur = 0 implies that r = 0 and u is in the center of R. Consider the
ring U−1R = {u−1r | u ∈ U, r ∈ R}. In the following, we obtain a characterization
of nil-reflexivity of the ring U−1R.

Proposition 3.1. A ring R is nil-reflexive if and only if U−1R is nil-reflexive.

Proof. Assume that R is a nil-reflexive ring. Let u−1a, v−1b ∈ U−1R be such that

(u−1a)(s−1r)(v−1b) is nilpotent for all s−1r ∈ U−1R. Since (u−1a)(s−1r)(v−1b) =

(usv)−1(arb) and usv is central and invertible, arb is nilpotent for all r ∈ R. By
assumption bra is nilpotent for all r ∈ R. It gives rise to (v−1b)(s−1r)(u−1a) is

nilpotent for all s−1r ∈ U−1R. So U−1R is nil-reflexive. Conversely, suppose that

U−1R is nil-reflexive. Let a, b ∈ R with asb nilpotent for each s ∈ R. Then for
any u ∈ U , (u−1a)(u−1s)(u−1b) = u−3asb is nilpotent for each u−1s ∈ U−1R.

By supposition (u−1b)(u−1s)(u−1a) = u−3bsa is nilpotent for each u−1s ∈ U−1R.
Since u is central invertible, bsa is nilpotent for each s ∈ R. This completes the
proof. �

Corollary 3.2. For a ring R, R[x] is nil-reflexive if and only if R[x;x−1] is nil-

reflexive.

Proof. Let U = {1, x, x2, . . . }. Clearly, U is a multiplicatively closed subset of

R[x]. Since R[x;x−1] = U−1R[x], the ring R[x;x−1] is nil-reflexive by Proposition

3.1. �
In [12], a ring R is said to be Armendariz if whenever two polynomials f(x) =∑n
i=0 aix

i, g(x) =
∑m

j=0 bjx
j ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 where
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0 ≤ i ≤ n, 0 ≤ j ≤ m. There are nil-reflexive rings but not Armendariz as the
following example shows.

Example 3.3. Let F be a field and consider the ring T2(F ). Then by Example

2.2(2), T2(F ) is nil-reflexive. On the other hand, let f(x) and g(x) be given by

f(x) =

(
1 1

0 0

)
+

(
0 1

0 0

)
x, g(x) =

(
0 1

0 −1

)
+

(
0 1

0 0

)
x ∈ T2(F )[x].

Then f(x)g(x) = 0, but

(
1 1

0 0

)(
0 1

0 0

)
6= 0. Therefore T2(F ) is not an

Armendariz ring.

Theorem 3.4. If R is a nil-reflexive Armendariz ring, then R[x] is a nil-reflexive

ring.

Proof. Let f(x) =
∑n

i=0 aix
i, g(x) =

∑m
j=0 bjx

j ∈ R[x] such that f(x)h(x)g(x) ∈
nil(R[x]), for all h(x) =

∑t
k=0 ckx

k ∈ R[x]. Since R is Armendariz, by [2, Corollary

5.2], we have nil(R[x]) = nil(R)[x]. We get aickbj ∈ nil(R), 0 ≤ i ≤ n, 0 ≤ j ≤ m,
0 ≤ k ≤ t. Since R is nil-reflexive, bjckai ∈ nil(R), 0 ≤ i ≤ n, 0 ≤ j ≤ m,

0 ≤ k ≤ t. So g(x)h(x)f(x) ∈ nil(R[x]). �
Let R be a ring and M an R-bimodule. Recall that the trivial extension of R

by M is the ring T (R,M) = R ⊕ M with the usual addition and the following
multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to the

matrix ring
{(

r m
0 r

)
| r ∈ R,m ∈M

}
with the usual matrix operations.

Theorem 3.5. A ring R is nil-reflexive if and only if T (R,R) is nil-reflexive.

Proof. “ =⇒ ” Let A =

(
a b

0 a

)
, X =

(
x y

0 x

)
, B =

(
u v

0 u

)
∈ T (R,R)

with AXB nilpotent. Then axu is nilpotent for all x ∈ R. By hypothesis, uxa is

nilpotent, say (uxa)t = 0. Then (BXA)t =

(
0 ∗
0 0

)
. Hence ((BXA)t)2 = 0.

Thus T (R,R) is nil-reflexive.

“⇐= ” Suppose that T (R,R) is a nil-reflexive ring. Let a, b ∈ R with arb nilpotent

for all r ∈ R. Then for A =

(
a 0

0 a

)
, B =

(
b 0

0 b

)
∈ T (R,R), ACB =(

arb atb

0 arb

)
is nilpotent for all C =

(
r t

0 r

)
∈ T (R,R). By supposition
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BCA =

(
bra bta

0 bra

)
is nilpotent for all C =

(
r t

0 r

)
∈ T (R,R). It follows

that bra is nilpotent for all r ∈ R. This completes the proof. �

We end this paper by studying the Nagata extension of a ring in terms of the nil-
reflexive property. Let R be a commutative ring, M be an R-module, and α be an
endomorphism of R. Let R⊕M be a direct sum of R andM . Define componentwise
addition and multiplication given by (r1,m1)(r2,m2) = (r1r2, α(r1)m2 + r2m1),
where r1, r2 ∈ R and m1, m2 ∈M . This extension is called Nagata extension of R
by M and α, and denoted by N [R,M ;α] (see [11]).

Theorem 3.6. Let R be a ring. If R is commutative, then the Nagata extension

N [R,R;α] is nil-reflexive.

Proof. AssumeR is commutative. Let (a, n), (b,m) ∈ N [R,R;α]. If (a, n)(x, y)(b,m)

is nilpotent for all (x, y) ∈ N [R,R;α], then axb is nilpotent for all x ∈ R. By as-
sumption bxa, therefore (b,m)(x, y)(a, n) is nilpotent for all (x, y) ∈ N [R,R;α]. �
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