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APPROXIMATION BY CHLODOWSKY TYPE
q-JAKIMOVSKI-LEVIATAN OPERATORS

ÖZGE DALMANOĞLU AND SEVILAY KIRCI SERENBAY

Abstract. This paper deals with the Chlodowsky type q-Jakimovski-Leviatan
operators. We first establish approximation properties and rate of convergence
results for these operators. Our main purpose is to give a theorem on the rate
of convergence of the rth q−derivative of the operators.

1. Introduction

In 1969, Jakimovski and Leviatan [8] introduced a new Favard-Szasz type oper-

ators by means of Appell polynomials pk(x) =

k∑
i=0

ai
xk−i

(k − i)! (k ∈ N) which satisfy

the identity

g(u)eux =

∞∑
k=0

pk(x)uk. (1)

Here g(u) =

∞∑
n=0

anu
n is an analytic function in the disc |u| < r, (r > 1) and

g(1) 6= 0. In [8], the authors considered the operator

Pn(f ;x) =
e−nx

g(1)

∞∑
k=0

pk(nx)f

(
k

n

)
(2)

for f ∈ E[0,∞) where E[0,∞) denotes the set of functions that satisfy the property
|f(x)| ≤ βeαx for some finite constants α, β ≥ 0. They studied approximation
properties of these operators as well as some results due to Szasz. Later in [6],
Ciupa defined a sequence of linear operators as

Pn,t(f ;x) =
e−nt

g(1)

∞∑
k=0

pk(nt)f

(
x+

k

n

)
(3)
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and established approximation properties and rate of convergence for these opera-
tors by using modulus of continuity. In 2010, Atakut and Büyükyazıcı[2] studied
some approximation properties of Stancu type generalization of the Favard-Szàsz
operators which is given by

Pα,βn,t (f ;x) =
e−nt

g(1)

∞∑
k=0

pk(nt)f

(
x+

k + α

n+ β

)
.

Another Stancu type generalization is given by Sucu and Varma [15] by means of
the Sheffer polynomials. They obtained convergence properties of the operators
and estimated the rate of convergence by using classical and second modulus of
continuity. In [16], Sucu et. al. constructed a new sequence of linear positive
operators that generalize Szasz operators including Boas-Buck-type polynomials.
They establish a convergence theorem for these operators.
Chlodowsky type generalization of Jakimovski-Leviatan operators is investigated

in [7]. These operators are defined as

P ∗n(f ;x) =
e−

n
bn
x

g(1)

∞∑
k=0

pk

(
n

bn
x

)
f

(
k

n
bn

)
(4)

with bn a positive increasing sequence with the properties

lim
n→∞

bn =∞, lim
n→∞

bn
n

= 0. (5)

The authors obtained some local approximation results and studied some conver-
gence properties in weighted spaces using weighted Korovkin-type theorems. Very
recently Kantorovich type generalization of Jakimovski-Leviatan operators are con-
structed in [5]. Authors studied the convergence of the operators in a weighted space
of function on positive semi axis.
In the last two decades quantum-calculus has attracted very much attention in

the approximation theory. Beginning in 1997 with Philips [14], a great number
of studies are performed related to this subject and still there are many authors
working on this subject. Lupaş [11] was the first to define a q−generalization of
Bernstein-operators, then Philips introduced another generalization of Bernstein
operators based on q−integers and it is known as q−Bernstein operators in liter-
ature. These operators motivated many author to study further in this direction
and a great number of studies have been done about the q-generalizations of other
linear positive operators.
Here, related to our work, we shall mention a few studies on q-generalizations of

some operators.
In 2008, Aral [3] defined a new operator called q-Szasz-Mirakyan operators, as

S∗n(f ; q, x) = E
(− [n]

bn
x)

q

∞∑
k=0

f

(
[k]bn
[n]

)
([n]x)

k

[k]! (bn)
k

(6)
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for 0 < q < 1, where 0 ≤ x ≤ αq(n), αq(n) =
bn

(1− q)[n]
, f ∈ C(R0) and (bn) is a

sequence of positive numbers such that lim
n→∞

bn =∞. Approximation properties of
these operators are obtained by means of the weighted Korovkin-type theorem and
rate of convergence is computed. Also a representation for the rth q-derivative of q-
Szasz-Mirakyan operators is given in terms of q-differences and divided differences.
In [1], Atakut and Büyükyazıcı introduced a q-analogue of Favard-Szasz type

operators related to the q-Appell polynomials as

Ln(f ; q, x) =
E
(−[n]t)
q

A(1)

∞∑
k=0

Pk(q; [n]t)

[k]!
f

(
x+

[k]

[n]

)
(7)

The authors proved approximation theorems and the rate of convergence theorems
for these operators. Later in [9] a Stancu type generalization of the above q-Favard-
Szasz operators are defined as

Tα,βn,t (f ; q;x) =
E
(−[n]t)
q

g(1)

∞∑
k=0

pk(q; [n]t)

[k]!
f

(
x+

[k] + α

[n] + β

)
.

The approximation properties and rates of convergence results for these operators
are obtained in the statistical sense.
Very recently, A. Karaisa [10] defined Chlodowsky type generalization of the

q-Favard-Szasz operators as follows:

P ∗n(f ; q, x) =
E

(− [n]
bn
x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
f

(
[k]

[n]
bn

)
(8)

where q ∈ (0, 1) , (bn) is a positive increasing sequence with the properties

lim
n→∞

bn =∞, lim
n→∞

bn
[n]

= 0. (9)

Here {pn(q; .)}n≥0 is a q-Appell polynomial set which is generated by

A(t)e(xt)q =
∑
n≥0

pn(q;x)
tn

[n]!
(10)

and A(t) is defined by

A(t) =
∑
n≥0

akt
k, a0 = 1.

The author studied the weighted statistical approximation properties of the oper-
ators via Korovkin type approximation theorem and computed the rate of statistical
convergence by using modulus of continuity. In [12], authors also studied weighted
approximation and error estimation of these operators.
Before giving our main results let us recall some basic notations from q-calculus.
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For any real number q > 0, the q-integer and the q-factorial of a nonnegative
integer k are defined as

[k]q := [k] =

 1− qk
1− q , q 6= 1

k , q = 1.

[k]q! := [k]! =

{
[k]q [k − 1]q ... [1]q , k = 1, 2, ..

1 , k = 0

respectively. For the integers n and k, the q-binomial coeffi cients are also defined
as [

n
k

]
q

:=

[
n
k

]
=

[n]q!

[k]q! [n− k]q!
(n ≥ k ≥ 0).

The q-derivative of a function f(x) with respect to x is

Dqf(x) =
f(qx)− f(x)

(q − 1)x

and higher q-derivatives are defined as

D0
q(f(x)) = f(x), Dn

q (f(x)) = Dq(D
n−1
q (f(x)), n = 1, 2, 3, ...

The q-derivative of the product of the functions f(x) and g(x) are defined as

Dq(f(x)g(x)) = f(qx)Dqg(x) + g(x)Dqf(x). (11)

By symmetry we can interchange f(x) and g(x) and write the equivalent form of
the above equality as

Dq(f(x)g(x)) = f(x)Dqg(x) + g(qx)Dqf(x). (12)

The two q-analogues of the classical exponential function ex are defined by

exq =

∞∑
j=0

xj

[j]!

and

Exq =

∞∑
j=0

qj(j−1)/2
xj

[j]!
.

It is clear that these two analogues satisfy the following properties:

Dqe
ax
q = aeaxq and DqE

ax
q = aEaqxq , (13)

exqE
−x
q = Exq e

−x
q = 1. (14)

For any real function f , the q-difference operators are defined as

∆0
qfj = fj

∆k+1
q fj = ∆k

qfj+1 − qk∆k
qfj (15)
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where fj = f

(
[j]

[n]
bn

)
and j, n, k ∈ N (see [3]).

Now we recall some statements that give the relation between divided differ-
ences and the kth q− difference of a function and also the relation between the q−
difference of a function and its q−derivatives.

Lemma 1. (See [4]) For all j, k ≥ 0,

f [xj , ...xj+k] =
∆k
qf(xj)

qk(2j+k−1)/2[k]!hk

where xj = x0 + [j]h and h > 0 is an arbitrary constant.

Corollary 2. (See [4]) Let the function f and its first (n− 1) q−derivatives be
continuous, and Dn

q (f) exist in the open interval (a, b). Then there exists q̂ ∈ (0, 1)

such that, for all q ∈ (q̂, 1) ∪ (1, q̂−1),

∆n
q f(x0)

qn(n−1)/2hn
= Dn

q (f)(ξx)

where ξx is in the interval containing x0,...xn and xj = x0 + [j]h.

In this study our main aim is to examine the rth q−derivative of the operator
P ∗n(f ; q, x) defined in (8). We first investigate approximation properties of these
new operators with the help of Korovkin’s Theorem and obtain rate of convergence
results by means of modulus of continuity. Finally we give a statement about the
rate of convergence of the rth q−derivative of the operator.

2. Main Results

In order to give the approximation theorem for the sequence {P ∗n(f ; q, x)}, we
shall need the following Lemma.

Lemma 3. For any n ∈ N,

P ∗n(e0; q, x) = 1 (16)

P ∗n(e1; q, x) = x+ E
(− [n]

bn
x)

q e
(q [n]bn

x)
q

bn
[n]

Dq(A(1))

A(1)
(17)

P ∗n(e2; q, x) = qx2 +
bn
[n]
x+ E

(− [n]
bn
x)

q e
(q [n]bn

x)
q

{(
bn
[n]

)2
Dq(A(1))

A(1)
(18)

+
bn
[n]
qx
Dq(A(1))

A(1)
+

(
bn
[n]

)2
q
D2
q(A(1))

A(1)
+
bn
[n]
q2x

Dq(A(q))

A(1)

}
for all x ∈ [0,∞).
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Proof. We have,

A(1)e
( [n]bn

x)
q =

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
(19)

A(1)
[n]

bn
xe

( [n]bn
x)

q +Dq(A(1))e
(q [n]bn

x)
q =

∞∑
k=0

pk+1(q;
[n]

bn
x)

[k]!
(20)

and

A(1)

(
[n]

bn

)2
x2e

( [n]bn
x)

q +
[n]

bn
xe

(q [n]bn
x)

q Dq(A(1)) +D2
q(A(1))e

(q [n]bn
x)

q

+Dq(A(q))
q[n]

bn
xe

(q [n]bn
x)

q =
∞∑
k=0

pk+2(q;
[n]

bn
x)

[k]!
. (21)

Identities (16) and (17) are obvious from (19) and (20), respectively. (See [10]) One
gets the equality (18) from the identity [k] = 1 + q[k − 1] and from (21). �

Remark 4. For the special case q = 1, we have

P ∗n(e0; 1, x) = P ∗n(e0;x)

P ∗n(e1; 1, x) = P ∗n(e1;x)

P ∗n(e2; 1, x) = P ∗n(e2;x).

where P ∗n(e0;x), P ∗n(e1;x) and P ∗n(e2;x) are given explicitly in [7].

Theorem 5. Let

C∗ [0,∞) = {f ∈ C [0,∞) : |f(x)| ≤ eγx for any x ≥ 0 and certain γ finite} .

If f ∈ C∗ [0,∞), then
lim
n→∞

P ∗n(f ; q, x) = f(x)

uniformly on each compact [0, a] ⊂ R.

Proof. The proof is obvious from the Korovkin’s Theorem. �

Now we compute the rate of convergence of P ∗n(f ; q, x) by means of modulus of
continuity w(f : δ) which is defined as

w(f ; δ) = sup
t,x∈[0,∞)
|t−x|≤δ

|f(t)− f(x)| .

A necessary and suffi cient condition for a function f ∈ C [0, a] is

lim
δ→0

w(f ; δ) = 0, (22)
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and it is well known that for any δ > 0 and each t ∈ [0, a]

|f(t)− f(x)| ≤ w(f ; δ)

(
1 +
|t− x|
δ

)
. (23)

Before giving the theorem on the rate of convergence of the operator L∗n(f ; q, x),
let us first investigate its second central moment:

P ∗n((e1 − x)2; q, x) = P ∗n(e2; q, x)− 2xP ∗n(e1; q, x) + x2P ∗n(e0; q, x)

= (q − 1)x2 +
bn
[n]
x+ E

(− [n]
bn
x)

q e
(q [n]bn

x)
q

{(
bn
[n]

)2(
Dq(A(1))

A(1)

+ q
D2
q(A(1))

A(1)

)
+
bn
[n]
x

(
(q − 2)

Dq(A(1))

A(1)
+ q2

Dq(A(q))

A(1)

)}
(24)

Theorem 6. Let (qn) denote a sequence satisfying 0 < qn < 1 and qn → 1 as

n→∞. For any function f ∈ C∗ [0,∞), if lim
n→∞

bn
[n]

= 0, then

|P ∗n(f ; q, x)− f(x)| ≤ 2w(f ; δn(x))

where

δn(x) =

{
(q − 1)x2 +

bn
[n]
x+ E

(− [n]
bn
x)

q e
(q [n]bn

x)
q

{(
bn
[n]

)2(
Dq(A(1))

A(1)

+ q
D2
q(A(1))

A(1)

)
+
bn
[n]
x

(
(q − 2)

Dq(A(1))

A(1)
+ q2

Dq(A(q))

A(1)

)}}
.1/2

Proof. For the proof see [10] (Theorem 4.1) with P ∗n((e1−x)2; q, x) given in (24). �
Lastly we give our main theorem on the rate of convergence of the rth q−derivative

of the operator P ∗n(f ; q, x) (Dr
qP
∗
n(f ; q, x)) to the rth q−derivative of the function

f (Dr
qf).

Corollary 7. For each integer r > 0

Dr
qP
∗
n(f ; q, x) =

E
(− [n]

bn
qrx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

(
[n]

bn

)r
∆r
qf

(
[k]

[n]
bn

)
(25)

Proof. Applying the q-differential operator to (8) and using (11) and (12) we have

Dq (P ∗n(f ; q, x)) = − [n]

bn

E
(− [n]

bn
qx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
f

(
[k]

[n]
bn

)

+
E

(− [n]
bn
qx)

q

A(1)

∞∑
k=0

Dq

(
pk(q;

[n]

bn
x)

)
[k]!

f

(
[k]

[n]
bn

)
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Computing the second sum in the right hand side of the above inequality, we find

∞∑
k=0

Dq

(
pk(q;

[n]

bn
x)

)
[k]!

f

(
[k]

[n]
bn

)
=

[n]

bn

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
f

(
[k + 1]

[n]
bn

)
.

Hence we get

Dq (P ∗n(f ; q, x)) =
[n]

bn

E
(− [n]

bn
qx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

(
f

(
[k + 1]

[n]
bn

)
− f

(
[k]

[n]
bn

))

=
E

(− [n]
bn
qx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

[n]

bn
∆1
qf

(
[k]

[n]
bn

)
.

Similarly

D2
q (P ∗n(f ; q, x)) = Dq (Dq (P ∗n(f ; q, x)))

= −q
(

[n]

bn

)2
E

(− [n]
bn
q2x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

(
f

(
[k + 1]

[n]
bn

)
− f

(
[k]

[n]
bn

))

+

(
[n]

bn

)2
E

(− [n]
bn
q2x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

(
f

(
[k + 2]

[n]
bn

)
− f

(
[k + 1]

[n]
bn

))

=

(
[n]

bn

)2
E

(− [n]
bn
q2x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
∆2
qf

(
[k]

[n]
bn

)
.

Applying the q−differential operator to (25), we find
Dq

(
Dr
q (P ∗n(f ; q, x))

)
= Dr+1

q (P ∗n(f ; q, x))

= −qr
(

[n]

bn

)r+1
E

(− [n]
bn
qr+1x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
∆r
qf

(
[k]

[n]
bn

)

+

(
[n]

bn

)r+1
E

(− [n]
bn
qr+1x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
∆r
qf

(
[k + 1]

[n]
bn

)

=
E

(− [n]
bn
qr+1x)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

(
[n]

bn

)r+1
∆r+1
q f

(
[k]

[n]
bn

)
.

When k is replaced by k + 1 (25) holds and the proof is completed. �
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Using the relation between divided differences and q-difference given in Lemma
1, we can write

∆r
qf

(
[k]

[n]
bn

)
=

(
bn
[n]

)r
[r]!qrkqr(r−1)/2

[
[k]

[n]
bn,

[k + 1]

[n]
bn, ...

[k + r]

[n]
bn; f

]
.

Then for each integer r > 0, we can rewrite (25) as

Dr
qP
∗
n(f ; q, x) = qr(r−1)/2[r]!

E
(− [n]

bn
qrx)

q

A(1)

×
∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
qrk
[

[k]

[n]
bn,

[k + 1]

[n]
bn, ...,

[k + r]

[n]
bn; f

]
.

In order to prove our last theorem we need the following theorem.

Theorem 8. (See [13]) Let Cr+1[a, b] be the space of (r + 1)-times continuously
differentiable functions and f ∈ Cr+1[a, b]. If xi ≥ yi for all i = 0, 1, ...r and
r∑
i=0

(xi − yi) 6= 0, then there exists q̂ ∈ (0, 1) and ξ ∈ (a, b) so that for all q ∈

(q̂, 1) ∪ (1, q̂−1)

f [x0, ...xr]− f [y0, ...yr] =
D
(r+1)
q (ξ)

(r + 1)!

r∑
i=0

(xi − yi). (26)

Proof. The proof is the q−analogue of the the proof of Theorem 2.1 in [13] and can
be done similarly. �

Theorem 9. Let f ∈ Cr+1 [0, bn) with lim
n→∞

bn =∞. If D(n+1)
q (ξ) ≥ 0 (n = 0, ...r)

then we have,∣∣∣∣∣∣Dr
q (P ∗n(f ; q, x))− qr(r−1)/2E

(− [n]
bn
qrx)

q

E
(− [n]

bn
x)

q

Dr
qf(x)

∣∣∣∣∣∣
≤ 2qr(r−1)/2

E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

w

(
Dr
qf, δn +

[r]

[n]
bn

)

+qr(r−1)/2
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
x)

q

(
w

(
Dr
qf,

[r]

[n]
bn

))
.
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Proof. From Theorem 8, by considering D(n+1)
q (ξ) ≥ 0, we can write

Dr
q (P ∗n(f ; q, x))

= qr(r−1)/2[r]!
E

(− [n]
bn
qrx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
qrk
[

[k]

[n]
bn,

[k + 1]

[n]
bn, ...

[k + r]

[n]
bn; f

]

≤ qr(r−1)/2[r]!
E

(− [n]
bn
qrx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!

[
[k]

[n]
bn,

([k] + [1])

[n]
bn, ...

([k] + [r])

[n]
bn; f

]

= qr(r−1)/2[r]!
E

(− [n]
bn
qrx)

q

A(1)

∞∑
k=0

pk(q;
[n]

bn
x)

[k]!
φ

(
[k]

[n]
bn

)

= qr(r−1)/2[r]!
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
x)

q

P ∗n(φ; q, x)

where φ(x) =

[
x, x+

[1]

[n]
bn, x+

[2]

[n]
bn, ..., x+

[r]

[n]
bn; f

]
. Hence, we have

∣∣∣∣∣∣Dr
q (P ∗n(f ; q, x))− qr(r−1)/2E

(− [n]
bn
qrx)

q

E
(− [n]

bn
qx)

q

Dr
qf(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣qr(r−1)/2[r]!E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

P ∗n(φ; q, x)− qr(r−1)/2E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

Dr
qf(x)

∣∣∣∣∣∣
≤ qr(r−1)/2[r]!

E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

|P ∗n(φ; q, x)− φ(x)|

+

∣∣∣∣∣∣qr(r−1)/2[r]!E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

φ(x)− qr(r−1)/2E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

Dr
qf(x)

∣∣∣∣∣∣
= I1 + I2. (27)

From Theorem 6, we can write

I1 ≤ 2qr(r−1)/2[r]!
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
qx)

q

w(φ; δn(x)).
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We also have

|φ(x+ h)− φ(x)| =

∣∣∣∣[x+ h, x+ h+
[1]

[n]
bn, x+ h+

[2]

[n]
bn, ..., x+ h+

[r]

[n]
bn; f

]
−
[
x, x+

[1]

[n]
bn, x+

[2]

[n]
bn, ..., x+

[r]

[n]
bn; f

]∣∣∣∣ (28)

The connection between q−differences ∆k
qf (x0) and the kth q−derivative of

the function f , Dk
q (f), was given in Corollary 2. If we take h as

bn
[n]
, we get

∆k
qf (x0)

qk(k−1)/2[k]!

(
bn
[n]

)k = f [x0, ...xk] =
Dk
q f (ξ)

[k]!

where ξ ∈ (x0, xk) and xj = x+ [j] bn[n] . Using this equality in (28) we can write, for
θ1,θ2 ∈ (0, 1),

|φ(x+ h)− φ(x)| =
1

[r]!

∣∣∣∣Dr
qf(x+ h+

[r]

[n]
bnθ1)−Dr

qf(x+
[r]

[n]
bnθ2)

∣∣∣∣
≤ 1

[r]!
w

(
Dr
qf, h+

[r]

[n]
bn |θ1 − θ2|

)
≤ 1

[r]!
w

(
Dr
qf, h+

[r]

[n]
bn

)
.

If we take h = δn, we get

|φ(x+ δn)− φ(x)| ≤ 1

[r]!
w

(
Dr
qf, δn +

[r]

[n]
bn

)
from which we can write

w(φ, δn) ≤ 1

[r]!
w

(
Dr
qf, δn +

[r]

[n]
bn

)
.

Hence we have

I1 ≤ 2qr(r−1)/2[r]!
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
qx)

q

w(φ; δn(x))

≤ 2qr(r−1)/2
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
qx)

q

w

(
Dr
qf, δn +

[r]

[n]
bn

)
. (29)
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Now let us consider I2. We have

I2 =

∣∣∣∣∣∣qr(r−1)/2[r]!E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

φ(x)− qr(r−1)/2E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

Dr
qf(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣qr(r−1)/2[r]!E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

[
x, x+

[1]

[n]
bn, x+

[2]

[n]
bn, ..., x+

[r]

[n]
bn; f

]

− qr(r−1)/2
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
qx)

q

Dr
qf(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣qr(r−1)/2E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

(
Dr
qf(x+

[r]

[n]
bnθ3)−Dr

qf(x)

)∣∣∣∣∣∣
≤ qr(r−1)/2

E
(− [n]

bn
qrx)

q

E
(− [n]

bn
qx)

q

w

(
Dr
qf,

[r]

[n]
bnθ3

)
, θ3 ∈ (0, 1) (30)

≤ qr(r−1)/2
E

(− [n]
bn
qrx)

q

E
(− [n]

bn
qx)

q

w

(
Dr
qf,

[r]

[n]
bn

)
.

Lastly substituting (29) and (30) into (27) we get the desired result and the proof
of the theorem is completed. �

Acknowledgement: The authors are thankful to Mehmet Ali Özarslan, who
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Current address : Başkent University, Faculty of Education, Department of Mathematics Ed-
ucation, Ankara, Turkey
E-mail address : ozgedalmanoglu@gmail.com
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